Universita degli
Studi di Pavia

Deep Legrning

10 —Reinforcement Learning

Marco Piastra

This presentation can be downloaded at:
http://vision.unipv.it/DL

Deep Learning : 10 - Reinforcement Learning

[1]

http://vision.unipv.it/DL

Basic gssumptions

[image from: https://arxiv.org/pdf/1811.12560.pdf]

Agent

 EEm—

(¢ St+1 Tt

\

Environment

St —» St+1

The Environment:is in state s, 1me
An Agent observes state s: and performs action ay
The Environment state transitions from s — S¢4+1

The Agent receives reward ¢

Deep Learning : 10 - Reinforcement Learning [2]

Basic gssumptions

[image from: https://arxiv.org/pdf/1811.12560.pdf]

Agent

 EEm—

(¢ St+1

.
Environment

St —» St+1

The Environment: is in state sy —— m¢
An Agent observes state s: and performs action ay
The Environment state transitions from s — S¢41
The Agent receives reward ¢

>0
Cumulative reward: R.— Z r,

t=0

Deep Learning : 10 - Reinforcement Learning

[3]

An example: grigworld

1 2 3 4
1
The state of the agent is the position on the grid:
. e.g. (1 ,1)’ (3’4)’ (2’3)
At each time step, the agent can move one box
in the directions <« Tl — with probability 0.8

/ the agent will end up here

The effect of each move is somewhat stochastic, however:
for example, a move T has a slight probability of producing
a different (and perhaps unwanted) effect

| .
Entering each state yields the reward shown in each box above\ but with probability 0.2
it might end up here

There are two absorbing states: entering either the green or the red box
means exiting the gridworld and completing the game

= What is the best (i.e. maximally rewarding) movement policy?

Deep Learning : 10 - Reinforcement Learning

(4]

Markov Decision Process (MDP)

1 2 3 4
1 Formalization and abstraction
of the gridworld example
.

Markov Decision Process: < S, A,r, P,y >
A setof states: S = {s1,82,...}

A setof actions: A = {ay,as,...}

A rewardfunction: r:S — R

A transition probability distribution : P(Si1+1 | St, A:) (also called a model)
Markov property: the transition probability depends only on the previous state and action

P(St—l—l | StJAt) — P(SH—l | StaAta St—laAt—la St—2aAt—23 ..)
A discount factor: 0 <~y <1

Deep Learning : 10 - Reinforcement Learning [5]

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a deterministic policy: ©:S — A
In other words, the agent always chooses its action depending on the state alone

Given a policy 7 , the state value function is defined, for each state s as:
VW(S) = E[T(St) —+ ’}/T(St_|_1) + ’72?“(51;4_2) —+ ... | T, St = S]

Note the role of the discount factor: avalue v < 1 means that that future rewards
could be weighted less (by the agent) than immediate ones

Note also that all states Sy must be described by random variables
i.e. the policy is deterministic but the state transition is not

Note also that when the reward is bounded, i.e. 7(S) < rpax

Z’Y T(St < TmaxZ’Y = Tmax %
=0 -

for v < 1 thisis the geometric series

Deep Learning : 10 - Reinforcement Learning

[6]

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a deterministic policy: ©:S — A
In other words, the agent always chooses its action depending on the state alone

Given a policy 7 , the state value function is defined, for each state s as:
VW(S) = E[T(St) —+ ’}/T(St_|_1) + ’72?“(51;4_2) —+ ... | T, St = S]

Note the role of the discount factor: avalue v < 1 means that that future rewards
could be weighted less (by the agent) than immediate ones

Note also that all states Sy must be described by random variables
i.e. the policy is deterministic but the state transition is not

In the gridworld example:
= The set of states is finite
= The set of actions is finite

= Forevery policy, each entire story is finite
Sooner or later the agent will fall into one of the absorbing states

Deep Legrning : 10 - Reinforcement Learning [7]

Bellman equations

By working on the definition of value function:
V™(s) :=E[r(S;) + vr(Si11) +¥2r(Seye) +...| m, S = 8]
E[r(St) +v(r(Se41) +7(Seq2) +...)[7,5 = 8]
(s) + VE[r(Se41) + 7 (Seq2) + ... [™, 5 =
(s) +v 2o P(s" | 5,7(5)) - E[r(Seq1) + 7 (Seg2) + ... | T, 41 = §]
() 725, P(Ses1 | 5,7(s)) - VT (Se41)

r

|
!-i

r

This means that in a Markov Decision Process:

V7(s) =7(s) +72s,,, P(St1|s,7m(s)) - VT (Se41)

This is true for any state, so there is one such equation for each of those

If the set of states is finite, there are exactly | S| (linear) Bellman equations for |S| variables:
in general, for any deterministic policy, V™ can be computed analytically

Deep Learning : 10 - Reinforcement Learning [8]

Optimal policy — Optimal value function

= Basic definitions
V*(s) :=maxV7(s), Vs € S

7

7*(s) := argmax_V7"(s), Vs € S

Property: for every MDP, there exists such an optimal deterministic policy (possibly non-unique)

With Bellman Equations:
max, V7™ (s) = r(s) + v max, (Zstﬂ P(Sty1 | s,7(s)) - Vﬂ(5t+1))

V*(s) =r(s) +ymax, (Zstﬂ P(Siy1 | s,m(s)) - V*(St+1))
= 1(s) +ymaxe (g, P(Si1|5,0) - V*(Siy))

7*(s) = argmax,, (ZSt+1 P(Sii1 | s,a)V™ (St+1))

Computing V™ directly from these equations is unfeasible, however
There arein fact | A|'®! possible strategies

Therefore:

However, once V™ has been determined, ™ can be determined as well

Deep Learning : 10 - Reinforcement Learning [9]

Optimal value function: value iteration

= Value iteration algorithm

Initialize: V' (s) :=r(s), Vs € S Note that there is no policy:
Repeat: all actions must be explored

1) Forevery state, update: V(s) := r(s) —I—’ymaxZP(s' | s,a)V(s")
a

Theorem: for every fair way (i.e. giving an equal chance) of visiting the statesin S,
this algorithm converges to V*

Deep Learning : 10 - Reinforcement Learning [10]

Value iteration ancl optimal policy

l ’ z Ml

Initialize states
(e.g. using rewards as initial values)

Define the optimal policy as:

T (8) 1= argmaxa(zs P(St+1 | Saa) -V (St41))

Deep Learning : 10 - Reinforcement Learning

[11]

Optimal policy: policy iteration

= Policy iteration algorithm

Initialize (3) ,Vs € § atrandom This step is computationally expensive:
Repeat: either solve the equations or use value iteration
' — (with fixed policy)

1) Foreach state, compute: V(s) := V7™ (s)
2) Foreach state, define: 7(s) := argmax, Z P(s' | s,a)V(s")

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in .5,

this algorithm converges to 7"

As with the value iteration algorithm, this algorithm uses partial estimates
to compute new estimates.
Itis also greedy, in the sense that it exploits its current estimate V'™ (s)

Policy iteration converges with very few number of iterations,
but every iteration takes much longer time than that of value iteration

The tradeoff with value iteration is the action space:
when action space is large and state space is small, policy iteration could be better

Deep Learning : 10 - Reinforcement Learning [12]

Offline vs. Online learning

» Value iteration and policy iteration are offline algorithms
The model, i.e. the Markov Decision Process is known
What needs to be learn is the optimal policy 7*

In the algorithms, visiting states just means considering: there is no agent
actually playing the game.

= Different conditions: learning by doing ...
Suppose the model (i.e. the MDP) is NOT known, or perhaps known only in part
Then the agent must learn by doing...

Deep Learning : 10 - Reinforcement Learning [13]

Action value function

An analogous of the value function V'™

Given a policy 7, the action value function is defined, for each pair (s,a) as:
Q7 (s,a) =3 g, P(Ses1]s,a) VT (St41)
=25, P(St+1]5,a) - E[r(Se41) + 7 (Seq2) + ... | T, Seia]
=2.5,,, P(Sev1 [s,a) - [r(Seq1) + E[yr(Seq2) + ... | 7, Sea]]
=25,,., P(St+1]s,a) - [r(Se41) + vQ" (St41, T(St41))]

In other words, Q™ (s, a) is the expected value of the reward in S; 11
by taking action a in state s and then following policy st from that point on

Following a similar line of reasoning, the optimal action value function is

Q* (37 a,) = ZSt-{-l P(St—l—l | S, O‘,) . [T(St—l—l) + ymaXg/ Q*(St+17a’)]

Deep Learning : 10 - Reinforcement Learning [14]

Q-Learning

= Q-learning algorithm (e-greedy version)
Initialize Q(s, a) atrandom, put the agent is in a random state s
Repeat:

1) Select the action argmax,Q(s,a) with probability (1 — &)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r
3) Update Q(s,a) by

AQ(s,a) = alr + ymaxy Q(s',a’) — Q(s,a)]
~————_ Exponential Moving Average
(see later ...)

Deep Learning : 10 - Reinforcement Learning [15]

Q-Learning

» Q-learning algorithm

Theorem (Watkins, 1989): in the limit of that each action is played infinitely often
and each state is visited infinitely often and « — 0 as experience progresses, then

Q(s,a) = Q*(s,a)

with probability 1

The Q-learning algorithm bypasses the MDP entirely,
in the sense that the optimal strategy is learnt without learning the model P(Syy1 | St, A¢)

Deep Learning : 10 - Reinforcement Learning [16]

An aside: moving gverages

Following non-stationary phenomena
= Average -
" _ 1
Definition: 7, := 7];1 Vi

Running implementation:
1 — 1
U = T('UT + kgl ”Uk) = T(’UT + (T — 1)’UT_1)

1 1 1
=vr_1+ —(UT — @T—l) = — v + (1 — _)5T—1

T T T
= Simple Moving Average (SMA)
T

_ 1
Vrm == Y
n

k=T—n
= Exponential Moving Average (EMA)
Ura:=avr+ (1 —a)Up_1.4, o €]0,1]

“the weight of newer observations remains constant”

Global Temperatures

—— Annual Average
— Five Year Average

-0.2

Temperature Anomaly (°C)

0.4t

1880 1900 1920 1940 1960 1980 2000
[image from wikipedia]

“the weight of newer observations diminishes with time”

Deep Learning : 10 - Reinforcement Learning

An aside: moving averages
= Exponential Moving Average (EMA)

Uro :=avp+ (1 —a)Up_14, @ €]0,1]

Expanding:
UVt =t + (1 —)T 1 0

b

= v + (1 — 04) avy_1 + (1 — Oé)®t—2,a)

(1—a)?

“the weight -
of older observations | '
diminishes with time” | : Il“lllll I

[image from wikipedia]

(
=av+ (1 —a)(avi—1 + (1 —a)(avi—s + (1 — @)Ti—3.0))
=a(v+(1—-a)v_1+(1—a) v)+ (1—a)’Ti_34

The weight of past contributions decays as

(1— oz)At

A SMA withn previous values
is approximately equal to an EMA with

2
n—+1

o =

S&P 500 Total Return Index (Monthly)
a

1,600

1,000

g

8

=y
]

200

Computerized Investing

A
7

A
i Ay
;¥

;S

ey

pals

& P R I N I N T N N

(A T S Y S N S A~ Sl e Vol > Sl T~
oF o o o o
G N N AN S I S SN (- S P M R

Deep Learning : 10 - Reinforcement Learning

AN

+
¥
11’
k + Ra
¥ —_—
+
SMA 6

Q-Learning revisited

= Q-learning algorithm (e-greedy version) off-policy

Initialize Q(s, a) atrandom, put the agent is in a random state s
Repeat:

~

1) Select the action a = argmax,Q(s, a) with probability (1 — ¢)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r
3) Update Q(s,a) by
AQ(s,a) = alr + ymaxy Q(s',a’) — Q(s,a)]
By rewriting step 3)
Q(s,a) = Q(s,a) + AQ(s,a) = Q(s,a) + afr + ymaxy Q(s',d') = Q(s, a)]

A A

= afr + ymax, Q(s',a")] + (1 — a)Q(s, a)

Exponential Moving Average

compare with (see before):

Q*(s,a) = ZSt—l—l P(Siy1|s,a) - [r(Sip1) +ymaxy Q*(Siy1,a’)]

Expectation

Deep Learning : 10 - Reinforcement Learning [19]

SARSA

= SARSA algorithm (e-greedy version)

Initialize Q(s, a) atrandom, put the agent is in a random state s
Repeat:

~

1) Select the action a = argmax,Q(s, a) with probability (1 — ¢)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r

A

3) Selectthe action @’ = argmax,Q(s’, a) with probability (1 — &)
otherwise, select a’ at random

4) Update Q(s,a) by

AQ(s.0) = alr +10(s',a') — (s, a)
I No more 'max’ here

Q-learning is a an off-policy algorithm: each update involves max Q(s',a")
(i.e. exploration is not taken into account) @

A~

SARSA is a an on-policy algorithm: each update involves Q(S’, a’)
(which involves the next policy action, exploration included)

Deep Learning : 10 - Reinforcement Learning [20]

SARSA vs Q-Learning

= Cliff World

'S"is the start
'G'is the goal
Each white box has r = —1

'The Cliff' region has r = —100
and entails going back to 'S’

= Experimental Results

SARSA finds a sub-optimal but safer path
since its learning takes into account
the € risk of going off the cliff

Q-learning finds the optimal path
but, occasionally, it falls off the cliff
during learning due to the &-greedy strategy

off-policy r--1

Reward
per
epsiode

> safe path
optimal path

Sarsa

25

_50— .

Q-learning
7'5
—100 - I I | I 1
0 100 200 300 400 500

Episodes

Deep Learning : 10 - Reinforcement Learning

[21]

Reinforcement Learning Methods

[image from: https://arxiv.org/pdf/1811.12560.pdf]

Experience

Model

Acti
learning FHS

Model-free
[Mo del] RL Value/p olicy}

Planning

Deep Learning : 10 - Reinforcement Learning [22]

