

Deep Learning

08-Deep Learning and Time Series

Marco Piastra

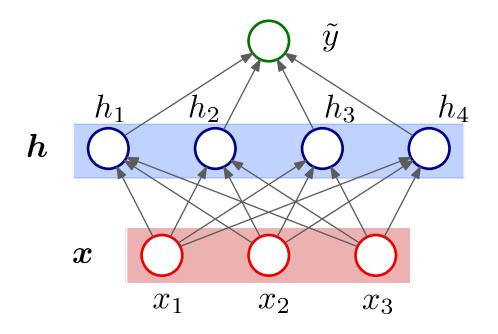
This presentation can be downloaded at: http://vision.unipv.it/DL

Feed-forward neural network

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{h} + b$$

where

$$oldsymbol{h} := g(oldsymbol{W} oldsymbol{x} + oldsymbol{b})$$



Deep Learning : 08- Recurrent Neural Networks

Feed-forward neural network

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{h} + b$$

where
$$oldsymbol{h} := g(oldsymbol{W} oldsymbol{x} + oldsymbol{b})$$

Recurrent Neural Network

$$ilde{y}^{(t)} = oldsymbol{w} \cdot oldsymbol{h}^{(t)} + b$$
 where $oldsymbol{h}^{(t)} := g(oldsymbol{W} oldsymbol{x}^{(t)} + oldsymbol{U} oldsymbol{h}^{(t-1)} + oldsymbol{b})$

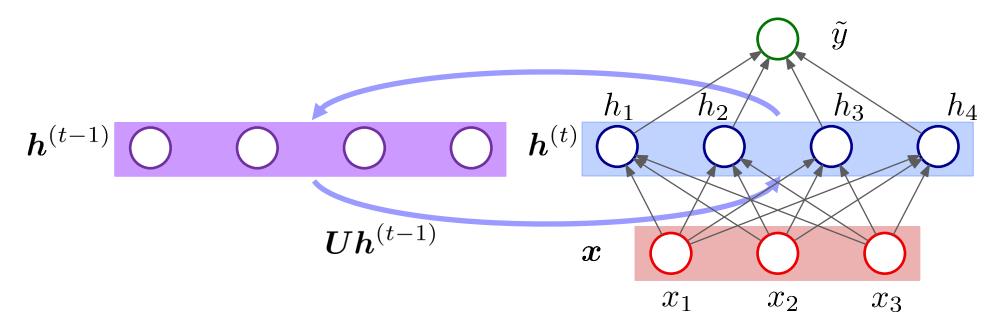
The basic idea is to make the network output depend on the past 'history'

[4] Deep Learning: 08- Recurrent Neural Networks

Recurrent Neural Network

$$ilde{y}^{(t)} = oldsymbol{w} \cdot oldsymbol{h}^{(t)} + b$$
 where $oldsymbol{h}^{(t)} := g(oldsymbol{W}_{oldsymbol{x}}^{(t)} + oldsymbol{U}_{oldsymbol{hidden}}^{(t-1)} + oldsymbol{b})$

The basic idea is to make the network output depend on the past 'history'



Deep Learning: 08- Recurrent Neural Networks [5]

Recurrent Neural Network

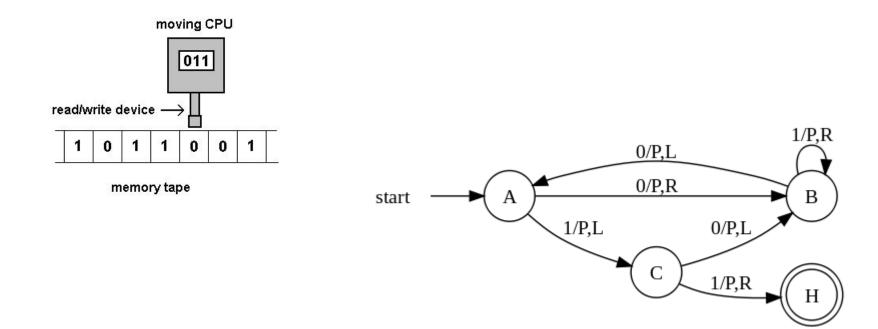
$$ilde{y}^{(t)} = m{w} \cdot m{h}^{(t)} + b$$
 where $m{h}^{(t)} := g(m{W}m{x}^{(t)} + m{U}m{h}^{(t-1)} + m{b})$

Deep Learning: 08- Recurrent Neural Networks [6]

RNN are Turing Machines

■ Computational power of RNNs (Siegelmann & Sontag, 1992)

"RNNs can simulate any Turing machine"



This means that they can compute anything a Turing Machine could

[image from https://en.wikipedia.org/wiki/Turing_machine]

Deep Learning: 08- Recurrent Neural Networks [7]

Recurrent Neural Network

$$ilde{y}^{(t)} = m{w} \cdot m{h}^{(t)} + b$$
 where $m{h}^{(t)} := g(m{W}_{m{x}^{(t)}}^{(t)} + m{U}_{m{hidden}}^{(t-1)} + m{b})$

General Properties

A recurrent neural network (RNN) is even more powerful than a FF neural network *It can approximate any Turing machine* (i.e. a general theoretical model of computation)

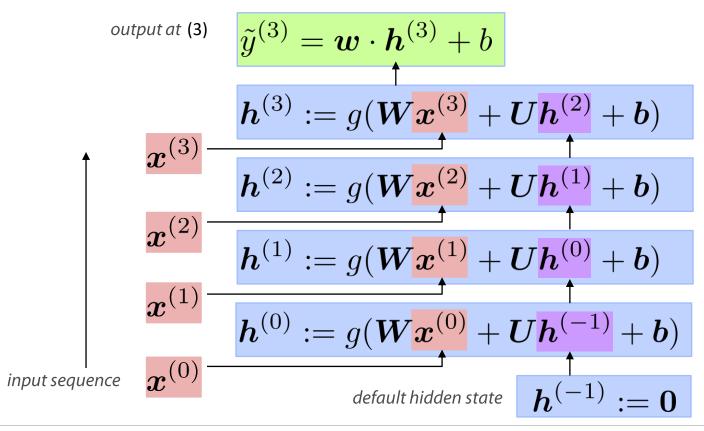
It is much harder to train than a FF neural network
Although, with temporal unfolding (see above), gradient descent methods can be applied

Deep Learning: 08- Recurrent Neural Networks [8]

Recurrent Neural Network

$$ilde{y}^{(t)} = oldsymbol{w} \cdot oldsymbol{h}^{(t)} + b$$
 where $oldsymbol{h}^{(t)} := g(oldsymbol{W}_{oldsymbol{x}}^{(t)} + oldsymbol{U}_{oldsymbol{h}}^{(t-1)} + oldsymbol{b})$

Temporal Unfolding



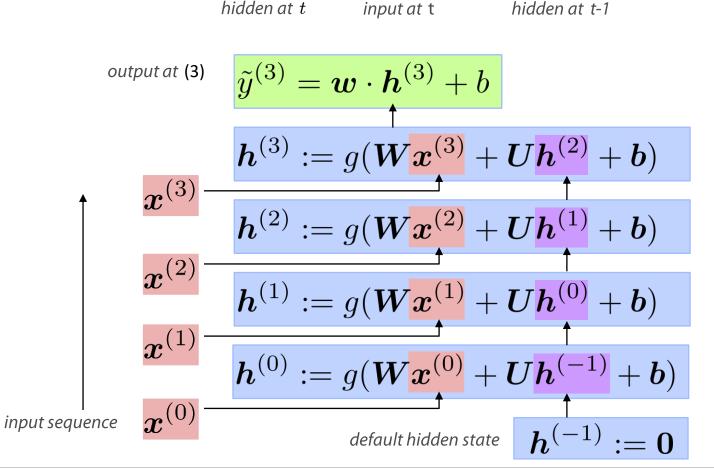
Deep Learning: 08- Recurrent Neural Networks [9]

Recurrent Neural Network

$$ilde{y}^{(t)} = oldsymbol{w} \cdot oldsymbol{h}^{(t)} + b \qquad ext{where} \qquad oldsymbol{h}^{(t)} := g(oldsymbol{W} oldsymbol{x}^{(t)} + oldsymbol{U} oldsymbol{h}^{(t-1)} + oldsymbol{b})$$

Temporal Unfolding

This looks very similar to a <u>deep</u> feed-forward neural network ...



hidden at t-1

[10] Deep Learning: 08- Recurrent Neural Networks

hidden at t

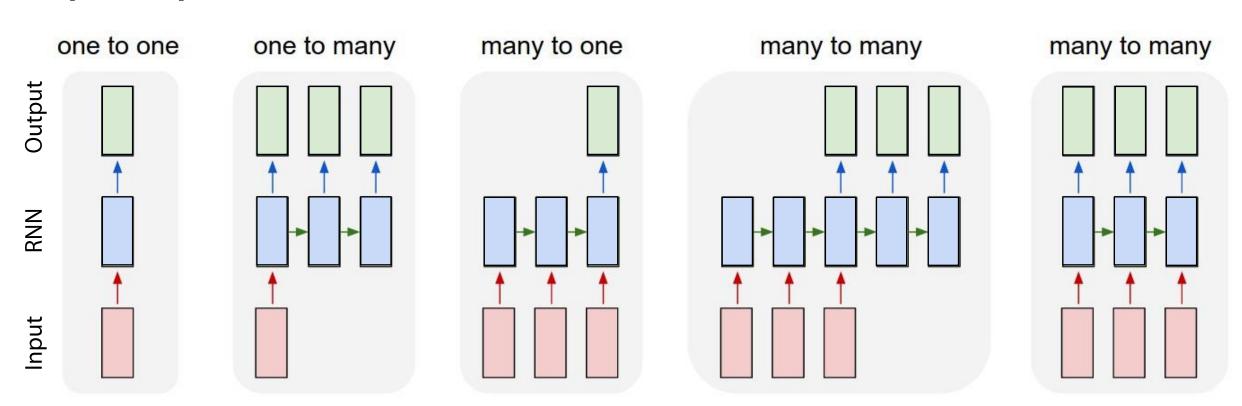
Recurrent Neural Network

$$\tilde{y}^{(t)} = \boldsymbol{w} \cdot \boldsymbol{h}^{(t)} + b$$

where

$$h^{(t)} := g(W_x^{(t)} + U_h^{(t-1)} + b)$$

Input-Output Modes



Deep Learning: 08- Recurrent Neural Networks

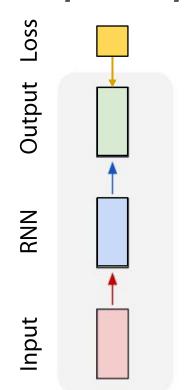
Recurrent Neural Network

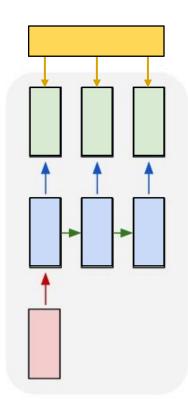
$$\tilde{y}^{(t)} = \boldsymbol{w} \cdot \boldsymbol{h}^{(t)} + b$$

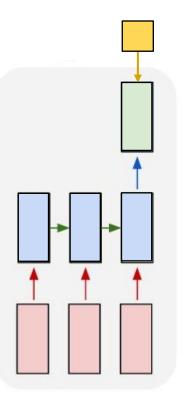
where

$$h^{(t)} := g(W_x^{(t)} + U_h^{(t-1)} + b)$$

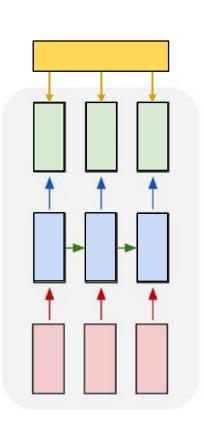
Input-Output Modes







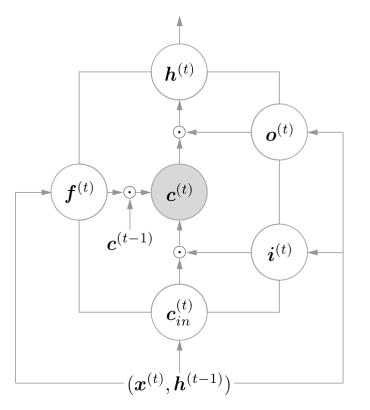




Long-Short Term Memory (LSTM)

Long-Short Term Memory (Hochreiter & Schmidhuber, 1995)

$$egin{aligned} ilde{y}^{(t)} &= oldsymbol{w} \cdot oldsymbol{h}^{(t)} + b \ oldsymbol{h}^{(t)} &:= oldsymbol{o}^{(t)} \odot anh(oldsymbol{c}^{(t)}) \ oldsymbol{c}^{(t)} &:= oldsymbol{f}^{(t)} \odot oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \odot oldsymbol{c}^{(t)} \ oldsymbol{c}^{(t)} &:= oldsymbol{\sigma}(oldsymbol{W}_o oldsymbol{x}^{(t)} + oldsymbol{U}_o oldsymbol{h}^{(t-1)} + oldsymbol{b}_o) \ oldsymbol{f}^{(t)} &:= oldsymbol{\sigma}(oldsymbol{W}_o oldsymbol{x}^{(t)} + oldsymbol{U}_o oldsymbol{h}^{(t-1)} + oldsymbol{b}_o) \ oldsymbol{c}^{(t)} &:= oldsymbol{c}(oldsymbol{W}_o oldsymbol{x}^{(t)} + oldsymbol{U}_o oldsymbol{h}^{(t-1)} + oldsymbol{b}_o) \ oldsymbol{c}^{(t)} &:= oldsymbol{c}(oldsymbol{W}_o oldsymbol{x}^{(t)} + oldsymbol{U}_o oldsymbol{h}^{(t-1)} + oldsymbol{b}_o) \ oldsymbol{c}^{(t)} &:= oldsymbol{c}(oldsymbol{W}_o oldsymbol{x}^{(t)} + oldsymbol{U}_o oldsymbol{h}^{(t-1)} + oldsymbol{b}_o) \ oldsymbol{c}^{(t)} &:= oldsymbol{c}(oldsymbol{W}_o oldsymbol{x}^{(t)} + oldsymbol{U}_o oldsymbol{h}^{(t-1)} + oldsymbol{b}_o) \ oldsymbol{c}^{(t)} &:= oldsymbol{c}(oldsymbol{h}^{(t)} + oldsymbol{C}(oldsymbol{h}^{(t-1)} + oldsymbol{b}_o) \ oldsymbol{c}^{(t)} &:= oldsymbol{c}(oldsymbol{h}^{(t)} + oldsymbol{C}(oldsymbol{h}^{(t-1)} + oldsymbol{b}_o) \ oldsymbol{c}^{(t)} &:= oldsymbol{c}(oldsymbol{h}^{(t)} + oldsymbol{C}(oldsymbol{h}^{(t)} + oldsymbol{C}(oldsymbol{h}^{(t)} + oldsymbol{C}(oldsymbol{h}^{(t)} + oldsymbol{C}(oldsymbol{c}) \ oldsymbol{c}^{(t)} &:= oldsymbol{c}(oldsymbol{c}) \ oldsymbol{c}^{(t)} + oldsymbol{C}(oldsymbol{c}) \ oldsymbol{c}^{(t)} = oldsymbol{c}(oldsymbol{c}) \ oldsymbol{c}^{(t)} + oldsymbol{c}(oldsymbol{c}) \ oldsymbol{c}^{(t)} + oldsymbol{c}(oldsymbol{c}) \ oldsymbol{c}^{(t)} = oldsymbol{c}(oldsymbol{c}) \ oldsymbol{c}^{(t)} + oldsymbol{c}(oldsymbol{c}) \ oldsymbol{c}^{(t)} + oldsymbol{c}(oldsymbol{c}) \ oldsymbol{c}^{(t)} = oldsymbol{c}(oldsymbol{c}) \ oldsymbol{c}^{(t)} + oldsymbol{c}(oldsymbol{c}) \ oldsy$$



Deep Learning: 08- Recurrent Neural Networks [14]

Long-Short Term Memory (Hochreiter & Schmidhuber, 1995)

$$\tilde{y}^{(t)} = \boldsymbol{w} \cdot \boldsymbol{h}^{(t)} + b$$

$$oldsymbol{h}^{(t)} := oldsymbol{o}^{(t)} \odot anh(oldsymbol{c}^{(t)})$$

$$oldsymbol{c}^{(t)} := oldsymbol{f}^{(t)} \odot oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \odot oldsymbol{c}^{(t)}_{in}$$

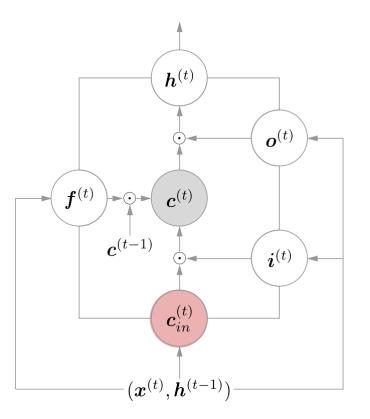
$$m{o}^{(t)} := \sigma(m{W}_om{x}^{(t)} + m{U}_om{h}^{(t-1)} + m{b}_o)$$

$$m{f}^{(t)} := \sigma(m{W}_f m{x}^{(t)} + m{U}_f m{h}^{(t-1)} + m{b}_f)$$

$$m{i}^{(t)} := \sigma(m{W}_im{x}^{(t)} + m{U}_im{h}^{(t-1)} + m{b}_i)$$

Combined input

$$c_{in}^{(t)} := \tanh(W_c x^{(t)} + U_c h^{(t-1)} + b_c)$$



Deep Learning: 08- Recurrent Neural Networks [15]

Long-Short Term Memory (Hochreiter & Schmidhuber, 1995)

$$\tilde{y}^{(t)} = \boldsymbol{w} \cdot \boldsymbol{h}^{(t)} + b$$

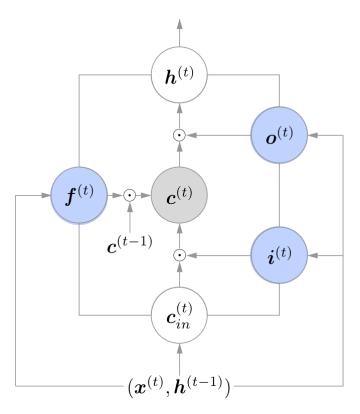
$$oldsymbol{h}^{(t)} := oldsymbol{o}^{(t)} \odot anh(oldsymbol{c}^{(t)})$$

$$oldsymbol{c}^{(t)} := oldsymbol{f}^{(t)} \odot oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \odot oldsymbol{c}^{(t)}_{in}$$

Gating values

$$m{o}^{(t)} := \sigma(m{W}_om{x}^{(t)} + m{U}_om{h}^{(t-1)} + m{b}_o)$$
 output $m{f}^{(t)} := \sigma(m{W}_fm{x}^{(t)} + m{U}_fm{h}^{(t-1)} + m{b}_f)$ forget $m{i}^{(t)} := \sigma(m{W}_im{x}^{(t)} + m{U}_im{h}^{(t-1)} + m{b}_i)$ input

$$oldsymbol{c}_{in}^{(t)} := anh(oldsymbol{W}_c oldsymbol{x}^{(t)} + oldsymbol{U}_c oldsymbol{h}^{(t-1)} + oldsymbol{b}_c)$$



Deep Learning: 08- Recurrent Neural Networks [16]

Long-Short Term Memory (Hochreiter & Schmidhuber, 1995)

$$\tilde{y}^{(t)} = \boldsymbol{w} \cdot \boldsymbol{h}^{(t)} + b$$

Applying gates

hidden

$$\boldsymbol{h}^{(t)} := \boldsymbol{o}^{(t)} \odot anh(\boldsymbol{c}^{(t)})$$

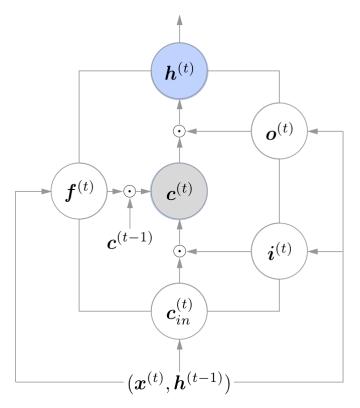
$$oldsymbol{c}^{(t)} := oldsymbol{f}^{(t)} \odot oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \odot oldsymbol{c}^{(t)}_{in}$$
 memory

$$m{o}^{(t)} := \sigma(m{W}_om{x}^{(t)} + m{U}_om{h}^{(t-1)} + m{b}_o)$$

$$m{f}^{(t)} := \sigma(m{W}_f m{x}^{(t)} + m{U}_f m{h}^{(t-1)} + m{b}_f)$$

$$i^{(t)} := \sigma(W_i x^{(t)} + U_i h^{(t-1)} + b_i)$$

$$oldsymbol{c}_{in}^{(t)} := anh(oldsymbol{W}_c oldsymbol{x}^{(t)} + oldsymbol{U}_c oldsymbol{h}^{(t-1)} + oldsymbol{b}_c)$$



Deep Learning: 08- Recurrent Neural Networks [17]

Long-Short Term Memory (Hochreiter & Schmidhuber, 1995)

$$ilde{y}^{(t)} = oldsymbol{w} \cdot oldsymbol{h}^{(t)} + b$$
 Cell output

$$oldsymbol{h}^{(t)} := oldsymbol{o}^{(t)} \odot anh(oldsymbol{c}^{(t)})$$

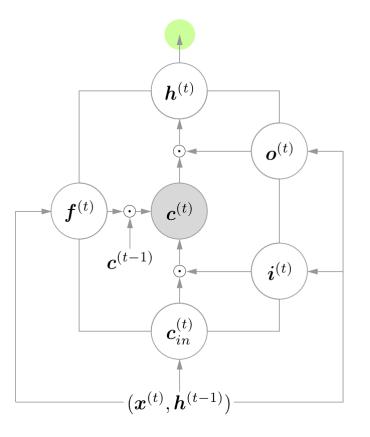
$$oldsymbol{c}^{(t)} := oldsymbol{f}^{(t)} \odot oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \odot oldsymbol{c}^{(t)}_{in}$$

$$m{o}^{(t)} := \sigma(m{W}_om{x}^{(t)} + m{U}_om{h}^{(t-1)} + m{b}_o)$$

$$f^{(t)} := \sigma(W_f x^{(t)} + U_f h^{(t-1)} + b_f)$$

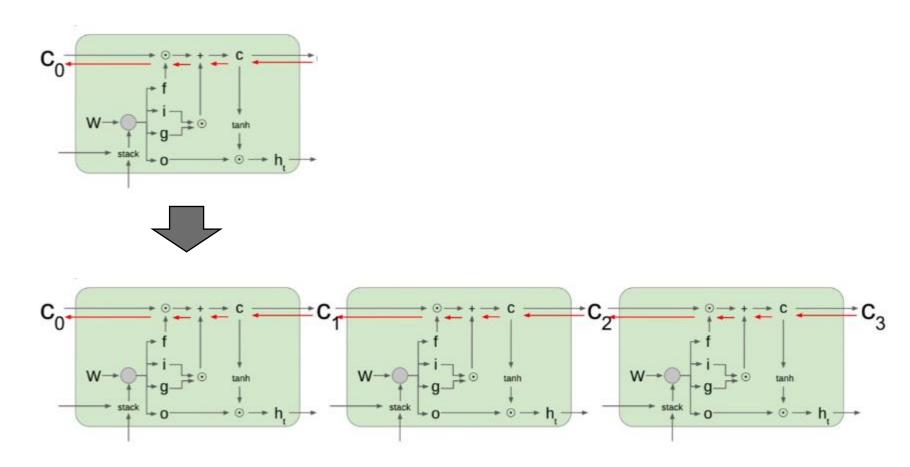
$$oldsymbol{i}^{(t)} := \sigma(oldsymbol{W}_i oldsymbol{x}^{(t)} + oldsymbol{U}_i oldsymbol{h}^{(t-1)} + oldsymbol{b}_i)$$

$$m{c}_{in}^{(t)} := anh(m{W}_cm{x}^{(t)} + m{U}_cm{h}^{(t-1)} + m{b}_c)$$



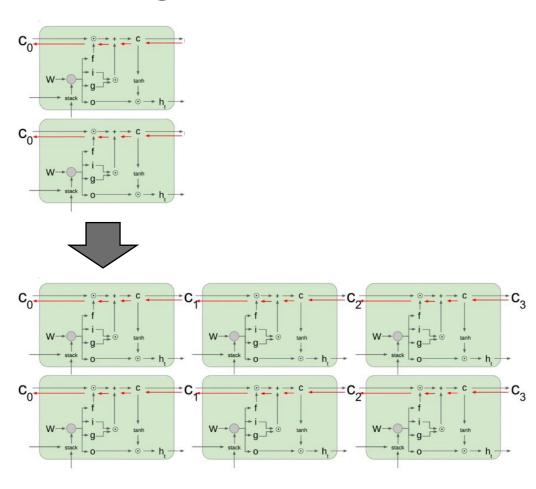
Deep Learning: 08- Recurrent Neural Networks [18]

Temporal Unfolding



Deep Learning: 08- Recurrent Neural Networks [19]

Stacking and Temporal Unfolding



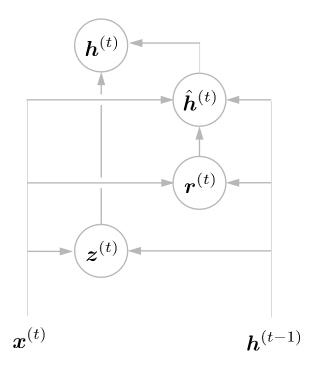
Deep Learning: 08- Recurrent Neural Networks [20]

GRU

■ **Gated Recurrent Unit** (Kyunghyun Cho et al., 1995)

$$egin{aligned} ilde{y}^{(t)} &= oldsymbol{w} \cdot oldsymbol{h}^{(t)} + b \ &= (exponential moving average) - (exponential$$

Simpler structure, no internal memory



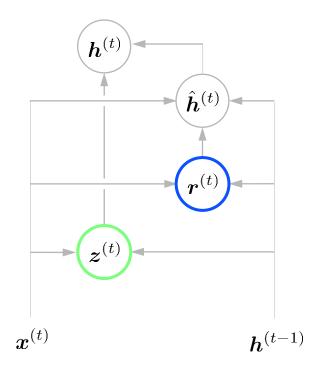
Deep Learning: 08- Recurrent Neural Networks [21]

GRU

■ Gated Recurrent Unit (Kyunghyun Cho et al., 1995)

$$egin{aligned} ilde{y}^{(t)} &= oldsymbol{w} \cdot oldsymbol{h}^{(t)} + b \ &= (1-oldsymbol{z}^{(t)}) \odot oldsymbol{h}^{(t-1)} + oldsymbol{z}^{(t)} \odot oldsymbol{\hat{h}}^{(t)} \ &\hat{oldsymbol{h}}^{(t)} := anh(oldsymbol{W}_h oldsymbol{x}^{(t)} + oldsymbol{U}_h (oldsymbol{r}^{(t)} \odot oldsymbol{h}^{(t-1)}) + oldsymbol{b}_h) \ & \hat{oldsymbol{h}}^{(t)} := oldsymbol{\sigma}(oldsymbol{W}_h oldsymbol{x}^{(t)} + oldsymbol{U}_h oldsymbol{h}^{(t-1)} + oldsymbol{b}_r) & \text{reset} \ & oldsymbol{z}^{(t)} := oldsymbol{\sigma}(oldsymbol{W}_z oldsymbol{x}^{(t)} + oldsymbol{U}_z oldsymbol{h}^{(t-1)} + oldsymbol{b}_z) & \text{update} \end{aligned}$$

Simpler structure, no internal memory

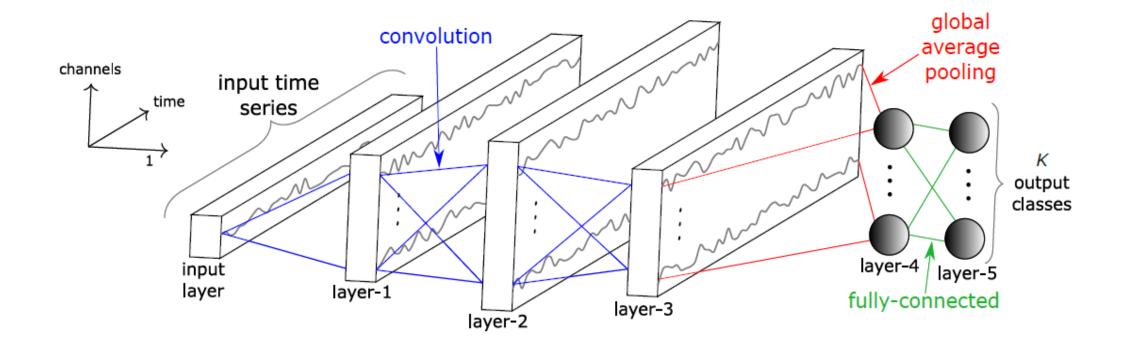


Deep Learning: 08- Recurrent Neural Networks

Deep Convolutional Networks for Time Series Analysis

1D Convolution Over Time

Time windows are treated as 1D 'images'

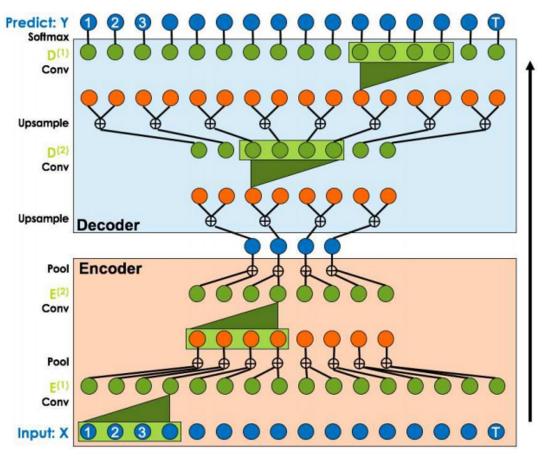


[image from https://link.springer.com/article/10.1007%2Fs10618-019-00619-1]

Deep Learning: 08- Recurrent Neural Networks [24]

Temporal Convolution Networks

1D Convolution-Deconvolution in an autoencoder architecture (Lea et al., 2016) Effective in segmenting actions and predicting time series



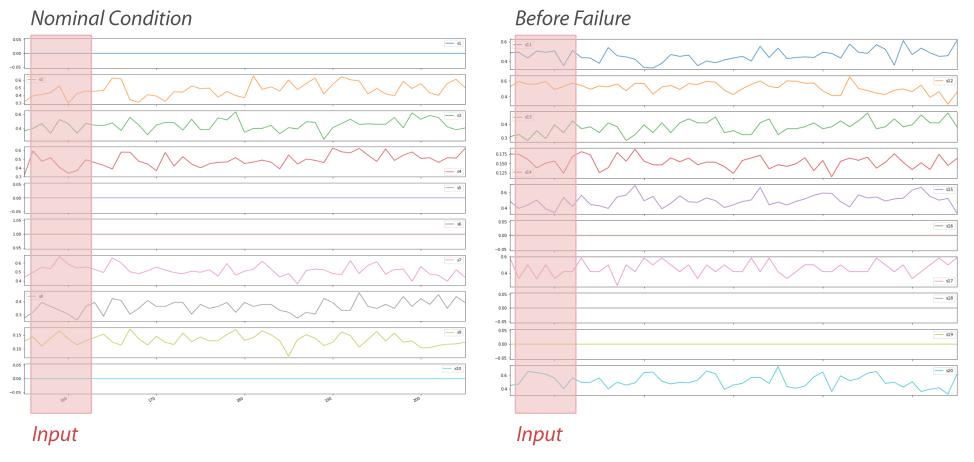
[image from https://arxiv.org/abs/1611.05267]

Deep Learning: 08- Recurrent Neural Networks [25]

RNN applications

Predictive Maintenance

Detecting failure conditions from sensor readings



Training and Prediction occurs by using a sliding window of sensor readings as input

Deep Learning: 08- Recurrent Neural Networks [27]

Action Detection

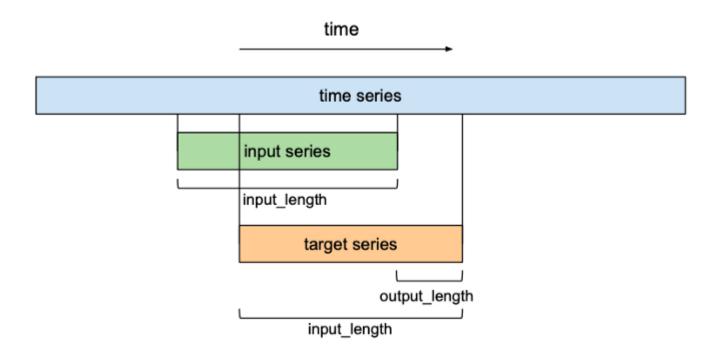
Find relevant actions in video sequences (See video)

[video from https://www.youtube.com/watch?v=9XphWB9w7p8]

Deep Learning: 08- Recurrent Neural Networks [28]

Time Series Forecasting

Forecasting time series ahead of time

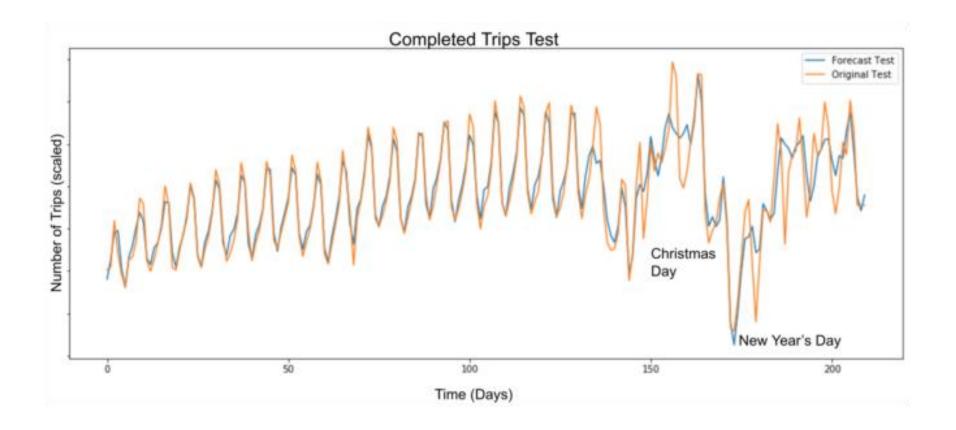


[image from https://medium.com/unit8-machine-learning-publication/temporal-convolutional-networks-and-forecasting-5ce1b6e97ce4]

Deep Learning: 08- Recurrent Neural Networks [29]

Time Series Forecasting

Detecting anomalies as differences from forecasted and actual



[image from https://eng.uber.com/neural-networks/]

Deep Learning: 08- Recurrent Neural Networks [30]

An Aside: Embedded Al (at UniPV)

Credits are due to M. Musci and E. Torti

STM SensorTile for Wearable Devices

Microcontroller STM32 (ARM Cortex M4)

80MHz Clock Frequency

128KB SRAM

1MB Flash memory

Microphone

3D Accelerometer + 3D Gyroscope

e-Compass, 3D Accelerometer, 3D Magnetic sensor

Barometer

Peripherals

100 mAh Li-Ion battery

Bluetooth Low Energy (BLE) radio module

Why Embedding?

Edge computing is a method of optimizing **cloud computing systems** by taking some portion of an application, its data, or services away from one or more central nodes (the "core") to the other logical extreme (the "edge") of the Internet which makes contact with the physical world or end users [Wikipedia]

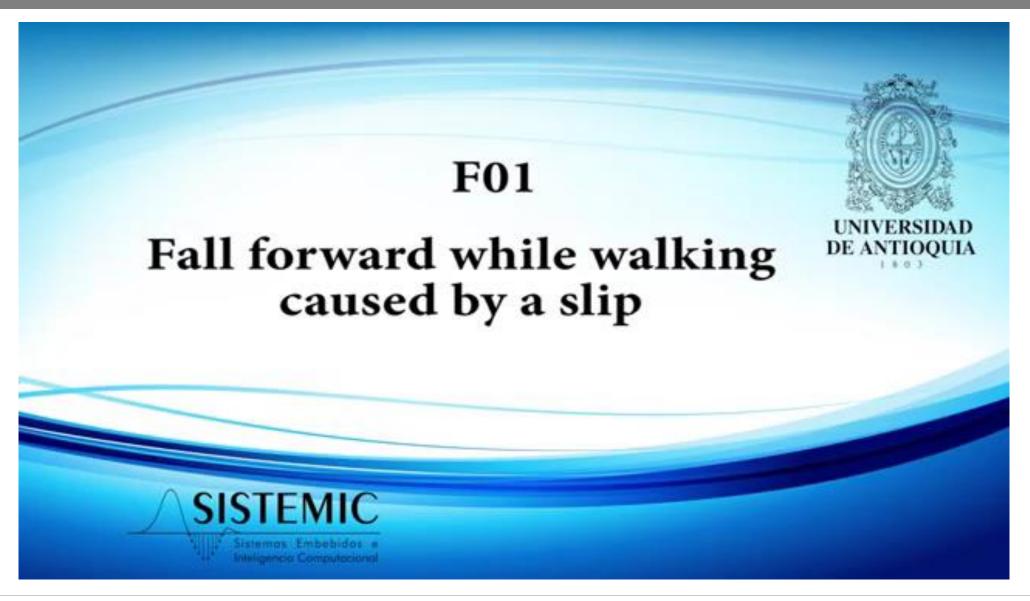
A critical problem for (any) Intelligent Wireless Sensor

Wireless transmission of raw sensor data to the cloud requires a substantial amount of power

All Internet-of-Things Low-Power Wide Area protocols (LPWA: Lora, Sigfox, NB-IoT) but also BLE, ZigBee, etc. are optimized for sparse and infrequent <u>short</u> messages

Ideally, in an Intelligent Sensor, data processing must be performed **onboard**: short messages should be sent only when relevant events or state transitions occur

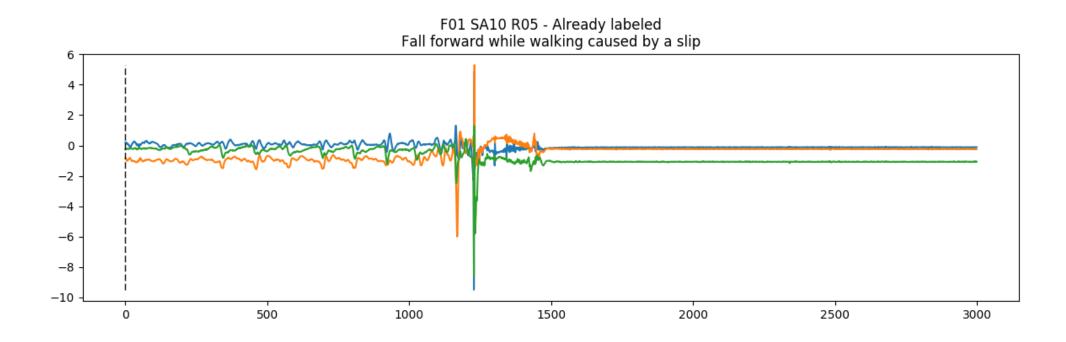
Human Fall (rehearsed)



Deep Learning: 08- Recurrent Neural Networks [34]

Human Fall (rehearsed)

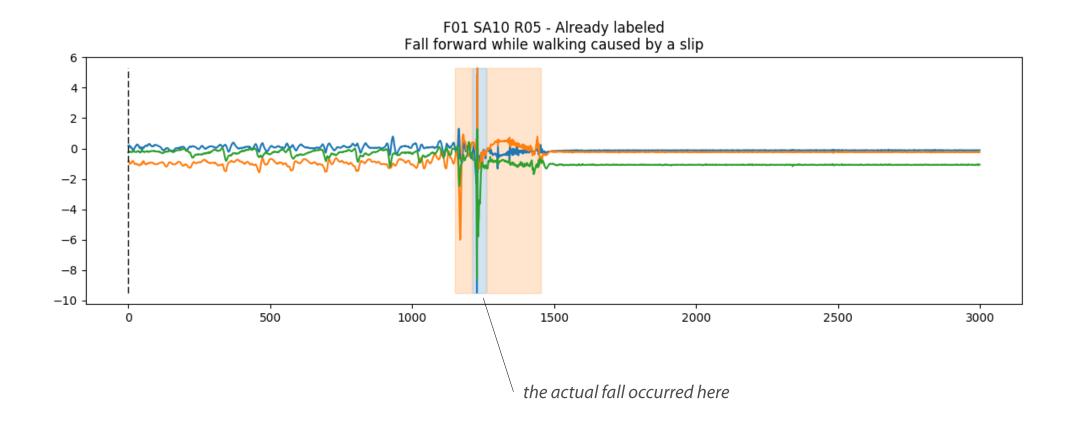
Accelerometers



Deep Learning: 08- Recurrent Neural Networks [35]

Human Fall (rehearsed)

Accelerometers (annotated)



Deep Learning: 08- Recurrent Neural Networks [36]

Fall Detection

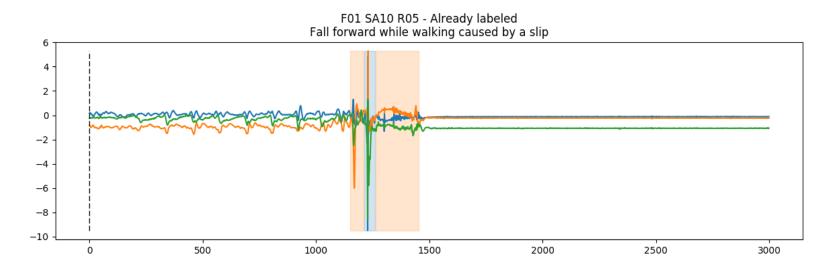
Detecting human falls from accelerometer signals is difficult

The input is time-variant (unlike a still image)

Information is limited (just three scalar values at each time instant)

It is the 'history' (i.e. the shape) of signals that describes the event

False negatives are to be avoided, but even false positives....



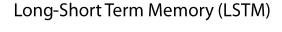
Deep Learning: 08- Recurrent Neural Networks [37]

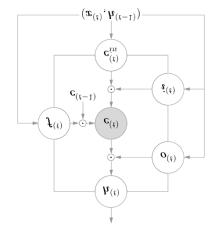
Smart Sensors: a Case Study

Fall detection with wearable sensors (IPHSDM)

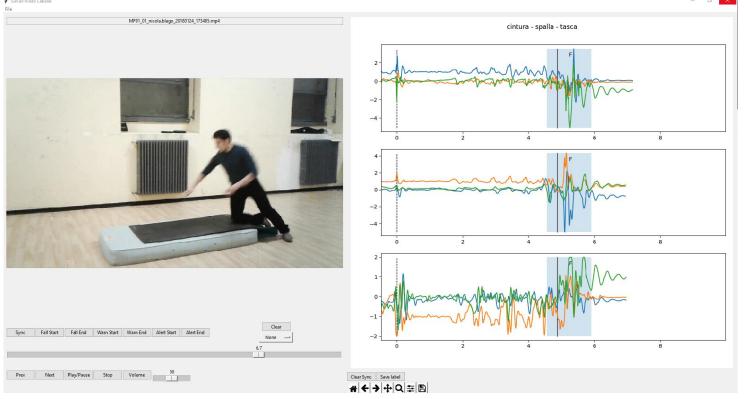
A project co-funded by Regione Lombardia

Event detection is performed by the smart sensors (SensorTile) Messages are sent over BLE only to signal relevant events





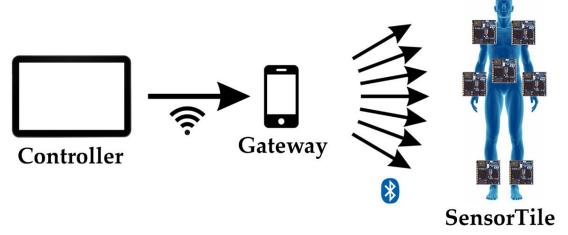
Embedded on Device



Deep Learning: 08- Recurrent Neural Networks

Creating a dataset (for fall detection)

Body Network



Deep Learning: 08- Recurrent Neural Networks [40]

Body Network

Deep Learning: 08- Recurrent Neural Networks [41]

Simulated Falls

Deep Learning: 08- Recurrent Neural Networks [42]

Dataset Annotation

Deep Learning: 08- Recurrent Neural Networks [43]