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ImageNet Challenge

= The ImageNet Large Scale Visual Recognition Challenge
NP % SF‘ [EII Inl !ﬁl ﬂl‘w
Iil LS mll QAR WS - W= FaSe

mammal —— placental —— carnivore canine —»worklngdog — husky

vehicle craft — watercraft —— sailing vessel sailboat trimaran

1,461,406 full resolution images

Complex and multiple textual annotation,
hierarchy of 1000 object classes along several dimensions

The image classification challenge is run annually since 2010

[figures from www.nvidia.com]
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ImageNet Challenge

= The ImageNet Large Scale Visual Recognition Challenge
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hierarchy of 1000 object classes along several dimensions

The image classification challenge is run annually since 2010
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The Mother of all DCNN's

Deep Convolutional Neural Network (DCNN)

= AlexNet [Krizhevsky, Sutskever & Hinton, 2012]
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Image from [Krizhevsky, Sutskever & Hinton, 2012]
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The Mother of all DCNN's

Deep Convolutional Neural Network (DCNN)

= AlexNet [Krizhevsky, Sutskever & Hinton, 2012]
AlexNet
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DCNN Building Blocks
(layerwise)
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Convolutional Layer

= Convolution operation

A convolution filter
is a square (or cubic) matrix

It is first centered on a pixel
of the input image

It produces a scalar value:
the dot product

between the filter

and the image region
around the pixel

By mapping the same
procedure on all pixels
of the input image,

a new image is produced
(i.e. a feature map)
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[image from http://cs231n.github.io/convolutional-networks/]
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Convolutional Layer

= Convolution operations (on images)

A convo Iutio n ﬁlte r ]n[put \-"oljuime (=pad 1) (7x7x3) Filter W0 (3x3x3)
is a square (or cubic) matrix E 2 f 2
In symbols HEEE
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YL‘ = Wz * X 0110
/ 00 0 0
1-th feature map / [, :,1]
convolution operator E ‘1’ ‘1’ ‘1’
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X — HESE 1as b0 (Ax1x1)
0 2 0 0 B0[:,4, 00
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o 0 0 0
®x[l:,:,2]
0 0 0 0 Eo 0 WO
g 2 0 1 |1 K1 f10
o 1 0 0 1|0
o1 0 0 1 1 0
OO RO SOOS RIS O RO R
o 0 0 2 0 2 0
o 0 0 0 0 0 O

Filter W1 (3x3x3)
wl[s,:,0]
-1 0 0

0 0 1
1 1 1

wll:,:,1]
-1 0 0

o -1 -1
1 0 1

wl[:,:,2]
-1 -1 -1

-1 0 0
1 0 1

Bias bl (1xlxl)
bl[:,:,0]
0

Wi

Convolution filters

Output Volume (3x3x2)
ol:,:,0]

8 10 -1 }fo

-2 -1 -1
ol:,:,11

_21/1

2 4 3

=t Laa
Tt 4

Feature Maps

height

: d\,‘(\

W
O’\

prb

[image from http://cs231n.github.io/convolutional-networks/]
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Convolutional Layer

= Convolution network (first layer)

Input image Convolutional Filters  Feature Maps

_—

A A4

X [W()a"'aWh] l/baaYh]

[image adapted from http://cs231n.github.io/convolutional-networks/]
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Convolutional Layer

= Convolution operation with non-linearity

The linear form for convolution

in actual networks is composed with a non-linearity

/

Applied elementwise to all matrix components ¥y= maX(O, :C)
| 9
Why RelLU? 2f
To be seen later on, when discussing training
RelLU
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Max Pooling Layer

* Max Pooling operation

Returns the maximum value in a pre-defined region of its input

Single depth slice

11124

max pool with 2x2 filters
5|16 |78 and stride 2 6| 8
3 | 2 [EINEG ] 3|4
1| 2 |BSREE
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Loca! Response Normalization Layer

» Local Response Normalization (LRN)

Rationale: Feature Maps Normalized Feature Maps
compensating the tendency V..
171
of ReLU to produce —
large values in output
X,
Y Nbr (1)
Two variants: A suitable cross-maps neighborhood
* across fegture maps [XO, o Xh] [YO, o Yh]
(i.e.as in figure)
* within feature map X = [Xijl] Y, = [Ytljl]

(i.e. with neighboring pixels)

Xiji

B
(a + QD peNbr() (Xijk)z)

where Q, (¢, ﬁ are fixed hyperparameters

Yiji :=

Deep Legrning : 06-Deep Convolutional Neural Networks [12]



AlexNet Architecture

= AlexNet [Krizhevsky, Sutskever & Hinton, 2012]

* number of parameters, per layer

in red on the left params AlexNet FLOPs

* number of floating point operations, 4M 4M
(FLOP) per layer in single forward pass 16M 16M
in green on the right 37M 37M

Al

74M
112M
149M

Higher layers have more parameters 442K || Cc
but the bulk of the computation 1.3M || Conv 3x3s1, 384/ ReLU
takes place at lower layers 884K |

~ Max Pool 3x3s2

Local Response Norm
307K '| Conv 5x5s1, 256 /ReLU | 223M
e around 60M parameters T Max Pool 3x3s2

Totals:

=) B | 3
A o P T i b s o e e At

« around 837M FLOPs for a single pass Local Response Norm

35K | Conv 11x11s4,96/ReLU | 105M
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AlexNet Gradient

= Computing gradients (backward propagation)

Gradient of Loss Function

Gradient of Softmax

Gradient of FF network layer

Gradient of Max Pool

Gradient of convolution layer
Gradient of ReLU

Gradient of LRN
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Convolutional Layer Gradient

= Gradient of convolutional layer

Define
Y =(WxX)

and, for convenience, assume that

W e R™>*™m X ¢ RVXN
the input image is square /
m—1m—1
Yij =) > WaX(ta)+o
a=0 b=0

the convolution operator is ‘centered'
in the lower left corner

-

N—-—m-+1

Xij N Yij

All matrices in this example
are indexed as images:
i.e. the lower left corner is 0,0

(In general m is odd and the convolution is 'centered’ in the centroid of the filter)
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Convolutional Layer Gradient

= Gradient of convolutional layer X

Y =(WxX) > Y
m—1m—1 : —
| +
Yij =) > WarX(ivayi+v) w s
a=0 b=0 S | Zl

Consider the pseudo-graph mo ! /E'
The flow is bottom-up, in this example X; j : N Y; j N _—ma1

. Thepseudo-node E represents
B everything that stands above

X
Y
Another subgraph stands below
(not represented)
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Convolutional Layer Gradient

= Gradient of convolutional layer
Y =(WxX)

m—1m—1

Yij =) > WarX(iva)(ih)

a=0 b=0
Case 1:
%, i.e. the 'end of the chain'

——=E(Y)

oW
’—‘—E-ii‘)
TR

Y
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Convolutional Layer Gradient

= Gradient of convolutional layer X
Y =(WxX) > Y
m—1m—-1 —
| +
Yij =) > WarX(ivayi+v) w s
a=0 b=0 = : |
| =
Case 1: o /E'
0 By i.e. the 'end of the chain’ |
aw P Xij N Y N _mi1
N—m N—m
R 3W5k 0Y; 5Wzk
Y \1, 0 5=0
° by applying the chain rule
in extended version (see also Episode 1)
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Convolutional Layer Gradient

= Gradient of convolutional layer X
Y =(WxX) > Y
m—1m—1 —
: +
Yij =) > WarX(ivayi+v) w s
a=0 b=0 S ; |
Case 1: Tl - /‘Z'
0 oy i.e. the 'end of the chain' E
aw P i N Yij N—ml
N—m N—m
Y 8Wlk an 8Wlk
Y 1=0 75=0
OE(Y) dY;
) OB = =g T~ L)
i.e. the backpropagation ’
component across Y, 9 N—m N—m
oW, E(Y) = Z Z OLij X (i) (j+k)
i=0 ;=0
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Convolutional Layer Gradient

= Gradient of convolutional layer X
Y =(WxX) > Y
m—1m—1 —
| +
Yij =) > WarX(ivayi+v) w s
a=0 b=0 S ' Zl

Case 2: i
9 v #% W is a generic parameter m i

3—19 E(Y) on which X depends Xij :
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Convolutional Layer Gradient

= Gradient of convolutional layer X
Y =(WxX) > Y
m—1m—-1 —
: -
Yij =) > WarX(ivayi+v) w s
a=0 b=0 = ; |
Case 2: | | o “ /‘Z'
v #% W is a generic parameter :
0 E(Y) on which X depends :

oV N N-m+1
9 N—m N—m
-p e ¥)= 2. 2 OBy 819
A =0 7=0
Y N—m N—m m—1m—1
(*) = > ) 0E; > ) Wa aﬁX(z—l—a)(j—kb
i=0 j=0 a=0 b=0 /

This is inconvenient: the same X components
appear multiple times - let's re-factor ....
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Convolutional Layer Gradient

= Gradient of convolutional layer X
Y =(WxX) >
m—1m—1
Yig =3 > WarXiita)gn) W
a=0 b=0 = |
Case 2: 9 v #% W is a generic parameter m i
on which X depends :
X (Y) Xij N
9 N—m N—m
P PSR S pr
A 1=0 7=0
Y N—m N—m m—1m-—1
< = > ) 0E; > Wa aﬁX(z—l—a)(j—kb
i=0 j=0 a=0 b=0
—1N—-1 m—1m—1 . .
8 (z—a),(g—b)EO
= — Z Wha OE (i —a)(j—b) 4
619 _
=0 j5=0 a=0 b=0 "\ note the inversion of indexes
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Convolutional Layer Gradient

» Gradient of ReLU (see also Episode 1)

Y = ReLU(X) e
(ReLU has no parameters of its own)
0 ReLU(xz) 0 max(x,0) &~ step(r) :
_— = —_— X ~ 03}
Ox Ox ’ P o

So the gradient of ReLU acts like a 'switch'
Whenis it open? Backpropagation alone ‘does not know'
:\':E t/‘;
"

<
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Convolutional Layer Gradient

» Gradient of ReLU (see also Episode 1)

Y = ReLU(X) e
(ReLU has no parameters of its own)
éReLU(a:) _9 max(zx,0) ~ step(z) ol
Ox - Oz »©) 7 SEP o

So the gradient of ReLU acts like a 'switch'

Whenis it open? Backpropagation alone ‘does not know'
"::E t:" 0 This is the gradient as we have to apply it 0 (4)
99 E(Y) we want to compute to each specific dataitem \ H9 EY) ) (XM)

CRetu >

Moral: we need to perform one forward pass (i.e. activation)

to decide which component Y;j is open (i.e. = 1) and which is not (i.e. = 0)
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» Gradient of Max Pooling

Max Pooling Gradient

Single depth slice

111 4
max pool with 2x2 filters
51 6 8 and stride 2
3 | 2 0
(152 4

The gradient of max pooling acts as multiplexer

As with ReLU, one forward pass is required to determine which channel is selected
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Max Pooling Gradient

» Gradient of Max Pooling

Backpropagation

. . ‘enters' here
Single depth slice

8E10 8E11
1112 | 4 P

max pool with 2x2 filters \‘ o1

SamoN 7 | 8 and stride 2 6 | 8
3 | 2 IRED i 3|4
1| 2 BSHIEE

OFEy OF 1

The gradient of max pooling acts as multiplexer

As with ReLU, one forward pass is required to determine which channel is selected
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Max Pooling Gradient

» Gradient of Max Pooling

Backpropagation
0Xo1 ‘enters' here
dE10 0Xo1 Single depth slice 9F11 9
v \ 11112 | 4 / 00 0Ly
—— - max pool with 2x2 fiters N\ "
SamoN 7 | 8 and stride 2 6 | 8
Backpropagation 3121110 i 3 s
‘exits' from /
the corresponding channel 1| 2 BSHIEE
P J / \\ 8E00 0 E01
0X 10 0X 01
OF OFE
00 9 01 9

The gradient of max pooling acts as multiplexer

As with ReLU, one forward pass is required to determine which channel is selected
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LRN Gradient

» Gradient of Local Response Normalization
Xiji

B
(a + QD peNbr(l) (Xijk)2)

where @, O, ,8 are fixed hyperparameters

Yiji =

This formula is quite inconvenient:
let's simplify....
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LRN Gradient

» Gradient of Local Response Normalization

i.e. plain, cross-map normalization

Yij =

(simplified formula)
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LRN Gradient

» Gradient of Local Response Normalization

X .
l/,,; Gl = A ! i.e. plain, cross-map normalization
k=1 Xij K i.e. the backpropagation
component across Y,
0 Y1 OE(Y)
8—19E(Y) — ZZaEijla—g where QF; ;= oY
1,7 1
0 X?, l
= OF;j; .
; ; 709 3% Xiji
“E 0 (s e L 6
B Zk 1gk 819 (Zk zjk) L 819
10X; Yii 0X;;
@ B Z Z OE; ;i ( 2 _ le 81931@) where
C = Z Xg;j.k;
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LRN Gradient

» Gradient of Local Response Normalization

Yiji =

i.e. plain, cross-map normalization

5, B (10X Y 0Xijk
ME(Y)_ZZaE”Z(c 09 c & 819)

\ This is inconvenient: the same X components
appear multiple times - let's re-factor ....

OF;; OF;; 00X,
- (2 ()| 2
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ImageNet Challenge

= The ImageNet Large Scale Visual Recognition Challenge
NP % SF‘ [EII Inl !ﬁl ﬂl‘w
Iil LS mll QAR WS - W= FaSe

mammal —— placental —— carnivore canine —»worklngdog — husky

vehicle craft — watercraft —— sailing vessel sailboat trimaran

1,461,406 full resolution images

Complex and multiple textual annotation,
hierarchy of 1000 object classes along several dimensions

The image classification challenge is run annually since 2010

[figures from www.nvidia.com]
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A/@XN@f (Krizhevsky, Sutskever & Hinton, 2012)

"The Mother of all DCNNs"

5 Convolutional Layers 1000 ways

£ ol l oy SN < Softmax

M E= T hs dense | [(den ]
0

192 128 Max

" 2 y
pooling 4 /‘ /
lyy /
S

3 Fully-Connected
Layers

Trained with batch gradient descent
* the final supervised training set contained 15M images
« training was performed on two NVIDIA GTX 580 GPUs for six days

[image from https://world4jason.gitbooks.io/research-log/content/deepLearning/CNN/Model%20&%20ImgNet/alexnet/alexnet.html]
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Deep Convolutional Neural Networks (DCNN)

= AlexNet
Why ReLU and not another non-linearity?

Because it is much faster to train.

y = max(0, x)

|

- M W B o o N ® @

RelLU

Image from [Krizhevsky, Sutskever & Hinton, 2012]
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Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLUs consis-
tently learn several times faster than equivalents
with saturating neurons.
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