Universita degli
Studi di Pavia

Deep Learning
O4-Deep Neural Networks

Marco Piastra

This presentation can be downloaded at:
http://vision.unipv.it/DL

Deep Learning : O4-Deep Neural Networks

[1]

http://vision.unipv.it/DL

Feed-Forward Neural Network

» Approximating a target function
y=[f(x), xcR’

Universal approximator: feed-forward neural network

j=w -gWax+b)+b WeR"™ wbecR"'becR

output layer
h = g(WZC + b)) A h4 hidden layer

input layer

Deep Learning : O4-Deep Neural Networks [2]

Feed-Forward Neural Network

» Approximating a target function
y=[f(x), xcR’

Universal approximator: feed-forward neural network

j=w -gWax+b)+b WeR"™ wbecR"'becR

Popular choices for the non-linear function: this is somewhat specidl..
1
o) =o() == gle)=tanh(a) g(x) = max(0,z)
09r 08 | ar
f
A i |
Sigmoid Hyperbolic Tangent RelLU

Deep Learning : O4-Deep Neural Networks [3]

Training Feed-Forward Neural Networks

= Stochastic Gradient Descent (SGD)

1. Assign initialvaluestothefourparameters WO pO) 0 3O

2. Pick up a data item (9, 4D) from D with uniform probability
and update the four parameters (with n < 1.0, n — 0 as iterations progress)

s, . 9 .

AW = —n ——L(§"», y® Ab = — (@ @
0 .) N

Aw = —n — L(§®, y¥ — o (5@ @)
w U (g) Ab n 8bL(y ,y'*’)

3. Unless complete, return to step 2.

Deep Learning : O4-Deep Neural Networks [4]

The Quest for
Deeper Networks

Deep Learning : O4-Deep Neural Networks [5]

Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth

A feed-forward neural network with one hidden layer

j=w-gWllz 4+ bt 4+

Deep Learning : O4-Deep Neural Networks [6]

Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth

A feed-forward neural network with two hidden layers

j=w-gWgwWlg + by +) +p

Deep Learning : O4-Deep Neural Networks [7]

Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth

A feed-forward neural network with three hidden layers

j=w-gWEgWklgwlle 4 bl 4 b2 + b3y 44

Deep Learning : O4-Deep Neural Networks [8]

Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth
A feed-forward neural network with three hidden layers

j=w-gWEgWklgwlle 4 bl 4 b2 + b3y 44

OK, but what is there to gain from
such increase in depth?

After all, the universal approximation theorem
says that one layer is enough...

...and each layer brings in some extra
complexity and further parameters.

Deep Learning : O4-Deep Neural Networks [9]

Parity Circuits

XOR
A logical circuit whose output Q 0 0 0
is T whenever the number 0 : :
of 1sin input is odd
1 0 1
1 1 0
For instance:

x=10,1,1,0] =y =0
x=1[1,1,0,1] -y=1

This is an implementation using XOR | | | |
components L1) T3 T4

Deep Learning : O4-Deep Neural Networks [10]

Parity Circuits

An implementation of the same parity
circuit using AND, OR and NOT OR NOT Y

ey Sk

(k1 A —z2) V (mx1 Axo)) A=((x3 A —xyq) V (maz3 Ad)))
\Y (—l((l‘l AN —'392) V (—l.GCl A\ 332)) A ((583 AN —ICC4) \Y (—ICC3 A\ d)))

2

Note that, discounting NOTs, the depth
of this circuitis 4

Deep Learning : O4-Deep Neural Networks [11]

Parity Circuits

= Disjunctive Normal Form (DNF)

Any logical formula
can be expressed
as an OR of ANDs
of the inputs

and their negations

This circuit is equivalent
to the previous ones

(1 Axog ANxg A—xy) V (z) Ao ATy A xy)
V(ry Axg A—-x3 Axg)V (mx1 Axe Az Axy)
V (581 N\ —xo N\ g N —|:1:4) V (—-;1:1 N xo N\ 3 N —l$4)
V (=21 A —xo Axg A —xy) V (mx1 A -2 A a3 A Tyh)

'

RYER

Note that this circuit
has depth 2

Deep Learning : O4-Deep Neural Networks

[12]

Parity Circuits

Any logical circuit can be re-implemented in shallow mode (i.e. with depth 2)

= Question

Which way is better?
(deep vs. shallow)

'

Deep Learning : O4-Deep Neural Networks [13]

Parity Circuits

Any logical circuit can be re-implemented in shallow mode (i.e. with depth 2)

= | ower Bound (Hastad, 1986)

For the implementation of parity circuits
the number of AND, OR components required is

1 d isthe number of bits in input
Q) (exp (dk—l))

k is the maximum depth allowed

The above quantity becomes polynomial for
B log(d — 1)
~ loglog(d — 1) + O(1)

k

In English: there exists a threshold kmin (d) beyond which
an exponential number of components w.r.t. d isno longer required

Deep Leam/'ng : O4~Deep Neural Networks [14]

Depth and piecewise linear functions

Example: a zig-zag target function:

“ 7*(z)
y A
/ /

Intuitively, the accuracy of the approximation depends on input space partitioning: unless we have a
sufficient number of 'pieces’ (i.e. regions in the partition)
the approximation will be inaccurate

Assume we want to use a deep neural network with ReLU

J = w - max(0, wlkl .. - max(0, wlitle 4+ b[l]) e b["“]) 4 b

Deep Learning : O4-Deep Neural Networks

[15]

Depth and piecewise linear functions

Construct two scalar functions using ReLU and parameters

AFl = w!* . max (0, hlF)

U= [y By

h[ll] = max(0, z)

h[Ql] :
Bl

max(0,2(x — 1))

max (0, z) — max(0,2(z — 1))

hP = [h By

h[lz] := max(0, 2x)

K2

Deep Learning : O4-Deep Neural Networks

V= max(0,4(z — 1/2))
A= max(0, 22) — max(0,4(z — 1/2))

h™ .= max(0, Wz + plkl)

[16]

Depth and piecewise linear functions

Construct two scalar functions using ReLU plus parameters

A= wl*l . max(0, AF 1) h!* .= max (0, W*lz 4 pl*])

By nesting the two scalar functions:

A

o — number of ‘pieces’

p=2
i p=2°
AP (R () /\
0 1 9 I

2RI () p=2"

0 1 2
R (RE(RPL(RM (2)))) /\
0 1 2

Deep Leam/'ng : O4~Deep Neural Networks [17]

Depth and piecewise linear functions

Deeper networks can make more 'pieces’ with the same number of units

= A lower bound that grows with depth [Montufar et al. 2014]

For a network with one hidden layer of ReLU units of size h
the max number of pieces for the piecewise linear approximator is

d h input dimension

d —

Pmax — E (Z) < h
1=0

For a network with k£ hidden layers of ReLU units, each of size h,
the max number of such pieces is

h (k—1)d
Pmax — O(Qk)a Pmax — Q ((d) hd)

Moral: p,... grows polynomially with layer size h but exponentially with depth k

Deep Learning : O4-Deep Neural Networks

[18]

Layerwise differentiation

Deep Leam/'ng : O4~Deep Neural Networks [19]

Generalizing Deep Feed-Fomard Neural Networks

» A feed-forward neural network with three hidden layers
j=w- gWBgwWlgwlle 4+ b + b2y + 6B 4+

Deep Leam/'ng : O4~Deep Neural Networks [20]

Generalizing Deep Feed-Fomard Neural Networks

» A feed-forward neural network with three hidden layers
j=w- gWBgwWlgwlle 4+ b + b2y + 6B 4+

Deep Learning : O4-Deep Neural Networks [21]

Generalizing Deep Feed-Fomard Neural Networks

» A feed-forward neural network with three hidden layers
j=w- gWBgwWlgwlle 4+ b + b2y + 6B 4+

Deep Learning : O4-Deep Neural Networks [22]

Generalizing Deep Feed-Fomard Neural Networks

» A feed-forward neural network with three hidden layers

Deep Learning : O4-Deep Neural Networks [23]

Generalizing Deep Feed-Fomard Neural Networks

= Computing gradient (layerwise)

L(i,y) = (5 —y)° ag[:&] (7 —vy)*=2(7—vy) 8?;[7@]
G(hl3) 1) 8?9%]
hBl(RE 9B
hi2 (Rl 92
i (x, 9!

Deep Leam/'ng : O4~Deep Neural Networks [24]

Generalizing Deep Feed-Fomard Neural Networks

= Computing gradient (layerwise)

o .

993l (y — y)Q — 2(y - y)
0y 0y Ohlb

098l 9Ohl3l 993l

Oh 3]

093]

%
oY

Deep Learning : O4-Deep Neural Networks

[25]

Generalizing Deep Feed-Fomard Neural Networks

= Computing gradient (layerwise)

ag[g] (g o 9)2 - 2(:‘7 o y)
0y 0y Ohlb

092 — 9hlBl 992

Ohl3! ohBl on 2]

992 — okl 9yl

Ohl2

02

9y
o912

Deep Learning : O4-Deep Neural Networks

[26]

Generalizing Deep Feed-Fomard Neural Networks

= Computing gradient (layerwise)
. . 0 0y

= — & 1] — - — 1] —
Lwy) =0 —-y)" 550 —y)" =20 -y) 555

Ohl]
uvAd
Ohlil ohll opli—1]
90Ul — oRli—1 HY9ul

R (pli=1l gl L =1

,)<t

Deep Learning : O4-Deep Neural Networks

[27]

Generalizing Deep Feed-Fomard Neural Networks

= Computing gradient (layerwise)

Rl (h[i—l] 7 ,9[%'])

O]

0

~ 2 ~
(y o y) — 2(y y) 319[3]

Rl ——

P 10]

Ohl
o9l —

Ohl?

PRli—1

Ohli—1]

O]

dy

Each layer

‘needs to know'
) = 1 / just these two derivatives

,)<t

Deep Learning : O4-Deep Neural Networks

Function approximation (3.k.3. regression)
vs. classification

Deep Learning : O4-Deep Neural Networks [29]

Classification: Softmax

* Function approximation (a.k.a. regression)
y = f*(x), xeR?
Feed-forward neural network

g=w-gWx+0b)+1b

Deep Learning : O4-Deep Neural Networks [301]

Classification: Softmax

= Classification

y= f*(x), xR ye{class;},

Feed-forward neural network with a Softmax layer

exp('w@- . g(WCL' —+ b) —+ bz)
S exp(w; - g(Wa +b) + b))

P(y = class; |x) :=

From now on
P(y = class; | x)

will be written as h

P(y=i|x)

Deep Leam/'ng : O4~Deep Neural Networks [31]

Classification: Softmax

= Classification

y= f*(x), xR ye{class;},

The Softmax layer can be rewritten as:
exp(wi - h -+ bz)
k
Zj:l exp(w; - b+ b;)

P(y = class; | h) :=

where, in thiscase: h := g(Wx + b)

(yet, more in general, h. can be anything)

Deep Learning : O4-Deep Neural Networks [32]

Classification: Softmax

= Softmax as a layer

The entire Softmax layer can be rewritten as:

N N . eXp(WSh + bs)
P((g=1)y|h):=
Y > exp(Wgsh + bg)
Probability distribution . Sum of all components
(a vector)
where: — wy — by
Wgq = bg :=

Thevector Wgh + bg is sometimes referred to as the logit

Deep Learning : O4-Deep Neural Networks [33]

Classification: Softmax

= Cross-entropy in general
P and () are probability distributions on a discrete random variable y € {1, SR k}

k
H(Q.P) = —ZQ(y = j)log P(§ = j)

= As aloss function for Softmax

Q in this case is the 'true' classification, i.e. the one in the dataset
Qly=17j) =90y =j)

while P is the output of the Softmax layer

T Kronecker delta

P(Zj — j | h) 10 Log Loss when true label =1

Hence, the loss is:

k
LR,y) == 6(y" = j)log PG = jln") 1.
j=1 |
= —log P(jj =y |h1") \

1 1 1 1 L 1
0.0 0.2 0.4 0.6 0.8 1.0
predicted probability

Deep Learning : O4-Deep Neural Networks

[34]

Classification: Softmax

= Cross-entropy for Softmax

k
L(hD y@D) = => "6y = j)log P(§ = j|n?)
71=1
Expressing the loss function in vector form:
yl 1 |
yi=|:],y=0y=1) pi=|:|,p=Py=jlh)
Yk _ 'one hot' representation | Pk_

L(R), y @) = -y - log(p))

which implies that also the dataset has to be transformed in the 'one hot' representation

D:={(=®, yO}y, = = {(«", y)},

=1

Deep Leam/'ng : O4~Deep Neural Networks [35]

Classification: Softmax

* Gradient of Softmax (layerwise)

L(D Z L(hD, 4@y =
1=1

8
819

0V

o & o
:_ﬂz L(h® 4@y = _

Zyw log(p®)

N
=30 g5 0 1og(p®)

log(p)

/ This is a matrix

8191 log(p1) ... %log(pl)'

55— log(pk) .. 79- log(pk)]

o L |
552y log(p!)
=1

2 log(p1)

2 log(p,)

Deep Learning : O4-Deep Neural Networks

[36]

Classification: Softmax

* Gradient of Softmax (layerwise)

9, 1,
59 108(pj) = F5log P(y=j|h)
—ilog exp(w; - h + bj)

0d lel exp(w; - h + by)

k
3((:1)9 (log exp(w; - h +b;) — log lz; exp(w; - h + bl))

0

logZeXp('wl h+ b))
=1

59

Deep Leam/'ng : O4~Deep Neural Networks [37]

Classification: Softmax

* Gradient of Softmax (layerwise)
0 0 0

1
55 105(0)) = 55w bt by) = o bg;e}{p wi b+)
[4]
Casel: 9 =w, or 9=b, ah'
oVl
ohl
Case 2: h(1) ie. 1isageneric parameter on which h depends 819[']’ J < i
J

Let's compute the two contributions separately

0
—(’UJj h‘l‘b)
0

99 logZexp w; - h+ b))

=1

Deep Leam/'ng : O4~Deep Neural Networks [38]

Classification: Softmax

* Gradient of Softmax (layerwise)

0
5g Wi R+ b))

Casel: 9 =w, or J=0,

0 (0 if r
~h+b;) =<

ow,. (w, ;) \h otherwise

0 ifr=#£j
1 otherwise

;

0
a—br(wj-h—l-bj):<

\.
Case2: h(19) ie. 1 isageneric parameter on which h depends

0 0

Deep Learning : O4-Deep Neural Networks [39]

Classification: Softmax

* Gradient of Softmax (layerwise)

0

99 logZexp w; - h+ b))

=1

Casel: 9=w, or 9=0,

Deep Legrning : O4-Deep Neural Networks [40]

Classification: Softmax

* Gradient of Softmax (layerwise)

0

99 logZexp w; - h+ b))

=1
Casel: 9=w, or 9=0,

0
0b,

k
log Zexp(fwl -h+b) =
=1 k

1 G,
S explu bt by) O > exp(w ot b)

1
exp(w; - h +b
Zz | exp(wy - h+bl)z . !

_ exp(w, - h +b;)
S exp(w; - b+ by)

0
Ob, (

w; - h+ b))

= Pr

Deep Leam/'ng : O4~Deep Neural Networks [41]

Classification: Softmax

* Gradient of Softmax (layerwise)

0

99 logZexp w; - h+ b))

=1

Case2: h(19) ie. 1) isageneric parameter on which h depends

0

99 logZexp w;-h+b)=

=1

Deep Legrning : O4-Deep Neural Networks [42]

