Universita degli
Studi di Pavia

Deep Learning

O3- Flow Grap hs
& Aaz‘oma tic Differentiation

Marco Piastra

This presentation can be downloaded at:
http://vision.unipv.it/DL

Deep Learning : O3-Flow Graphs & Automatic Differentiation

[1]

http://vision.unipv.it/DL

Flow Grap/75

Deep Learning : O3-Flow Graphs & Automatic Differentiation [2]

An aside: Flow Grap

xr

L(j,y) = (w-ReLUWx 4+ b) + b — y)?

Item-wise loss function, FF neural network with ReLU as non-linearity

The above expression translates into this flow graph

Deep Learning : O3-Flow Graphs & Automatic Differentiation [3]

An aside: Flow Grap

xr

L(@,y) = (w-ReLUWx 4+ b) + b —)°

@ Item-wise loss function, FF neural network with ReLU as non-linearity

ReLU(z) := max(0, x)

7])@ ReLU(.cc):%(:chcD

(equivalent expression)

Deep Learning : O3-Flow Graphs & Automatic Differentiation [4]

An aside: Flow Grap

xr

L(j,y) = (w-ReLUWx 4+ b) + b — y)?

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning : O3-Flow Graphs & Automatic Differentiation [5]

An aside: Flow Grap

W] T

L(j,y) = (w-ReLUWx 4+ b) + b — y)?

@ P Item-wise loss function, FF neural network with ReLU as non-linearity
arameters

Constants

Deep Learning : O3-Flow Graphs & Automatic Differentiation [6]

An aside: Flow Grap

W T

L(j,y) = (w-ReLUWx 4+ b) + b — y)?

@ P Item-wise loss function, FF neural network with ReLU as non-linearity
arameters

Constants
Input values

Deep Learning : O3-Flow Graphs & Automatic Differentiation [7]

An aside: Flow Grap

W T

= Computing the Flow Graph

Temporary value: L(g, y) = (w . ReLU(W.’L' -+ b) + b — y)2
a vector
Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning : O3-Flow Graphs & Automatic Differentiation [8]

An aside: Flow Grap

W T

= Computing the Flow Graph

This is no longer
necessary

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning : O3-Flow Graphs & Automatic Differentiation [9]

An aside: Flow Grap

- = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning : O3-Flow Graphs & Automatic Differentiation [10]

An aside: Flow Grap

- = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning : O3-Flow Graphs & Automatic Differentiation [11]

An aside: Flow Grap

- = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning : O3-Flow Graphs & Automatic Differentiation [12]

An aside: Flow Grap

- = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning : O3-Flow Graphs & Automatic Differentiation [13]

An aside: Flow Grap

- = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning : O3-Flow Graphs & Automatic Differentiation [14]

An aside: Flow Grap

- = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning : O3-Flow Graphs & Automatic Differentiation [15]

An aside: Flow Grap

w [= = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Temporary value:
a scalar

Deep Learning : O3-Flow Graphs & Automatic Differentiation [16]

An aside: Flow Grap

w [= = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

@ | Temporary value:

ascalar

Deep Learning : O3-Flow Graphs & Automatic Differentiation [17]

An aside: Flow Grap

- = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning : O3-Flow Graphs & Automatic Differentiation [18]

An aside: Flow Grap

w [= = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

(Simplified)

Deep Learning : O3-Flow Graphs & Automatic Differentiation [19]

An aside: Flow Grap

w [= = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

(Simplified)

Deep Learning : O3-Flow Graphs & Automatic Differentiation [20]

An aside: Flow Grap

w [= = Computing the Flow Graph

L(@,y) = (w-ReLUWx 4+ b) + b —)°

Item-wise loss function, FF neural network with ReLU as non-linearity

(Simplified)

Deep Learning : O3-Flow Graphs & Automatic Differentiation [21]

Autodiff
Automatic Differentiztion
of Flow Graphs

Deep Learning : O3-Flow Graphs & Automatic Differentiation [22]

Computing Gradients

= Computing one gradient of the flow graph

%(w -ReLUW <z +b) +b — y)*

This is the gradient we want to compute
(remember this is just one of the four)

Deep Learning : O3-Flow Graphs & Automatic Differentiation [23]

Computing Gradients

= Computing one gradient of the flow graph
0

GW(

w - ReLU(Wz + b) + b — y)?

This is the gradient we want to compute
(remember this is just one of the four)

Chain rule for derivatives (single argument)

2 1@() = 50 1(0(0)) o g(9)

J (19)

Chain rule for derivatives (multiple arguments)

0
=51 (9(9),1(9)) =

5ot 0): M) 550(0) + 5 F(9(0). h(®) 55 (D)

Deep Learning : O3-Flow Graphs & Automatic Differentiation [24]

Computing Gradients

—(w-ReLU(Wx + b) + b — y)*

All nodes depending on W are marked in blue

Let's start from here (i.e. backpropagation, a.k.a. reverse accumulation)

Deep Learning : O3-Flow Graphs & Automatic Differentiation [25]

Computing Gradients

—(w-ReLU(Wx + b) + b — y)*

Apply the chain rule to the sqr node

|] 0 B
----- a—Wf(W)z =

0 , 0
8f(W)f(W) W

0
o FW)

(W)

=2 f(W)

| L| |gradL|

Deep Learning : O3-Flow Graphs & Automatic Differentiation [26]

Computing Gradients

—(w-ReLU(Wx + b) + b — y)*

Apply the chain rule to the sqr node

|] 0 B
----- a—Wf(W)z =

0 , 0
8f(W)f(W) W

0
o FW)

(W)

=2 f(W)

| L| |gradL|

Deep Learning : O3-Flow Graphs & Automatic Differentiation [27]

Computing Gradients

—(w-ReLU(Wx + b) + b — y)*

Apply the chain rule to the sqr node

0 , 0
_8f(W)f(W) W

= DU o (W)

(W)

| L| |gradL|

Deep Learning : O3-Flow Graphs & Automatic Differentiation [28]

Computing Gradients

—(w-ReLU(Wx + b) + b — y)*

Apply the chain rule to the sqr node

0 , 0
_8f(W)f(W) W

=2 (W) - o (W)

(W)

| L| |gradL|

Deep Learning : O3-Flow Graphs & Automatic Differentiation [29]

Computing Gradients

—_— . — 2
R (w-ReLUWx +b) +b—y)
o 0
——(f(W) —y) = 57 W) (f(W) — y)a—Wf(W)
0
=1 6—Wf(W)

| L| |gradL|

Deep Learning : O3-Flow Graphs & Automatic Differentiation [30]

Computing Gradients

- . - 2
R (w-ReLU(Wx +b) +b—y)
O W)+ b) = — T (f W)+ b= (W)
oW af (W) oW
=1 W)

| L| |gradL|

Deep Learning : O3-Flow Graphs & Automatic Differentiation [31]

Computing Gradients

0 2
W(w -ReLU(W=x +b) +b—y)
b 0 0 0
o (0 (W) = 5o (W) 7o (W)
0

Yy sum 1 dot —w- 8—Wf(W)

sub 2 1 mul

sqr mul

L] lgrad L]

Deep Learning : O3-Flow Graphs & Automatic Differentiation [32]

Computing Gradients

2] lgrad L]

Deep Learning : O3-Flow Graphs & Automatic Differentiation [33]

Computing Gradients

| L] grad L |
Deep Learning : O3-Flow Graphs & Automatic Differentiation [34]

Computing Gradients

3, 0
— 7) g F W)
_fw) 0
= o aw ! W)

Clearly, this term is not defined forany W;; = 0

(Typically, this is a protected division % =1)

Y

| L] grad L |
Deep Learning : O3-Flow Graphs & Automatic Differentiation [35]

Computing Gradients

| L] grad L |
Deep Learning : O3-Flow Graphs & Automatic Differentiation [36]

Computing Gradients

I

Zr
1

Well, this is tricky....

| L| |gradL|

Deep Learning : O3-Flow Graphs & Automatic Differentiation [37]

Computing Graq’/en 1‘5

v (W - @)

This is a third-order tensor

/
(oW) =50 w.a
oW ijk Wy '
/ \
Its 1 k-th component Note the inversion of indices

2] lgrad L]

Deep Learning : O3-Flow Graphs & Automatic Differentiation [38]

Computing Graq’/en 1‘5

v (W - @)

This is a third-order tensor

/
(?;V(W CU)) ~ 9 (W - x)
J ijk Wy '
/ \
Its 1 k-th component Note the inversion of indices
0

The 1-th linein the matrix

| L| |gradL|

Deep Learning : O3-Flow Graphs & Automatic Differentiation [39]

Computing Gradients

I

Zr
1

Putting it all together...
% (0 k#i
(3W(Wm)) _{a:j k=i

This 'thing'is a cube having copies of @&
on one diagonal 'plane' and zeros elsewhere

k

| L| |gradL|

Deep Learning : O3-Flow Graphs & Automatic Differentiation [40]

Computing Gradients

—(w-ReLU(Wx + b) + b — y)*

2] lgrad L]

Deep Learning : O3-Flow Graphs & Automatic Differentiation [41]

Computing Gradients

The representation of this can be optimized too

aiw(’w - ReLU(Wz + b) + b — y)*

Still lots of useless operations

| L| |gradL|

Deep Learning : O3-Flow Graphs & Automatic Differentiation [42]

Computing Gradients

144 x k, ;
ON
Csom) Caiv) 9
(oot} 8—W(w-ReLU(W:c+b) +b—y)?

0] Cou) (sam)
@ @ Same graph, after some pruning
v] Com) Cao)
(o)

| L] grad L |
Deep Learning : O3-Flow Graphs & Automatic Differentiation [43]

Computing Gradients

\ %,
\\ - . L _ 2
Caot) . 8W(w ReLUWx +b) +b—y)

N
\
\\
DEED Csim) |
N In forward accumulation mode
@ @ we would have started from here

vl Coum) (o
o

@ This is autodiff with reverse accumulation:
@ @ ,,,,,,,, we started from here and we proceeded in reverse
L|*" gra L’ B

Deep Learning : O3-Flow Graphs & Automatic Differentiation [44]

(Mini) Batches
in Matrix Form

Deep Learning : O3-Flow Graphs & Automatic Differentiation [45]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function
1

= — . (2) o (1))2
L(D) = N;((w gWa® +b) +b) — y)
Let's focus first on W
[(1) (1)]
by defining Ty T, | | | o |
X = : . : ____— inputdata in matrix form (item index first)
E)
Then we can write
| |

Deep Learning : O3-Flow Graphs & Automatic Differentiation [46]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function
1

_ - , (%) _ (02
L(D) = ;(('w g(Wa' +b)+b) —y*")
Consider then (Wx + b)
[(1) (1)]
by defining) T g 1) |
X — - : W .= W b
ng) :cglN) 1 |
Then we could write
| | — Matrix X
WXT - |l wa® 4 b Wa®™ + b includes two parameters: W and b

| | this may be inconvenient for autodiff...

Deep Learning : O3-Flow Graphs & Automatic Differentiation [47]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function

1 : .
L(D) = — : () _ (92
(D) NZD:(('w g(Wa +b) +b) — y'")
Consider then (Wx + b) 0 0
and let’s keep the definition L1 e 2y
X =
EI

It could be convenient to redefine the operator + such that is interpreted as

| | | |
WX +b:= [(Wwz® .. W™ | +|b ... b

— Ntimes—

Deep Learning : O3-Flow Graphs & Automatic Differentiation [48]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function
1

L(D) = — : () _ (92
(D) NZD:(('w g(Wa +b) +b) — y'")
Consider then (Wx + b) 0 0
and let’s keep the definition L1 e 2y
X =
EI

It could be convenient to redefine the operator + such that is interpreted as

| | | |
WX +b:= [(Wwz® .. W™ | +|b ... b

— Ntimes—

\ This is called broadcasting

Deep Learning : O3-Flow Graphs & Automatic Differentiation [49]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function
1

L(D) = 5 > ((w-g(Wa' +b) +b) —y1)?

Using broadcasting operators, we can express the above as

1
L(D) = +-((w- g(WXT +b) +1) ~ y)°
where
_LL'gl) ZL‘((il)] -y(l)-
X = : SR vy=1
ng) .. x((iN) _y(N)_

Deep Learning : O3-Flow Graphs & Automatic Differentiation [50]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function
1

L(D) = 5 > ((w-g(Wa' +b) +b) —y1)?

Using broadcasting operators, we can express the above as

L(D) = —((w - g(WXT 1+ b) +b) — y)?

T
Thisis amatrix g(W X1 +b) € RV
(Note the broadcast with +)

Deep Learning : O3-Flow Graphs & Automatic Differentiation [51]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function

L(D) = = 3" ((w - g(Wa) +b) +b) — y®)?

D

Using broadcasting operators, we can express the above as

L(D) = 1 ((w - g(WXT +b) +1) -y

/

This is a row vector
w-gWXT +b)=w g WX +b) c RY

(The 'dot' operator transposes vectors automatically, as required)

NOTE: automatic transposition applies to vectors only!
For any tensor beyond dimension 1, you need to do that on your own

Deep Learning : O3-Flow Graphs & Automatic Differentiation [52]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function

L(D) = % > ((w-g(Wa' +b) +b) —y'))?

Using broadcasting operators, we can express the above as

L(D) = +((w - g(WXT 1+ b) +1) — y)

/

This is also a row vector € RN , after a broadcast on b

Deep Learning : O3-Flow Graphs & Automatic Differentiation [53]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function
1 . .
L(D) ==Y ((w-gWaz® +b)+0b)—y)

N
D

Using broadcasting operators, we can express the above as

L(D) = +((w - g(WXT +b) +1) -y

\ . .
/ ... whereas this is a column vector € RY
This is also a row vector € R , after a broadcast on b

Deep Learning : O3-Flow Graphs & Automatic Differentiation [54]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function

L(D) = = 3" ((w - g(Wa) +b) +b) — y®)?

D
Using broadcasting operators, we can express the above as
1
L(D) = +((w - g(WX" 4 b) +b) =)’

\ . .
/ ... whereas this is a column vector € RY
This is also a row vector € R , after a broadcast on b

(Also, the — operator transposes vectors automatically, as required)

Deep Learning : O3-Flow Graphs & Automatic Differentiation [55]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function

L(D) = = 3" ((w - g(Wa) +b) +b) — y®)?

D
Using broadcasting operators, we can express the above as
1
L(D) = +((w - g(WX" 4 b) +b) =)’

\ . .
/ ... whereas this is a column vector € RY
This is also a row vector € RY , after a broadcast on b

(Also, the — operator transposes vectors automatically, as required)
A similar behavior of operators is standard in

B, T

TensorFlow

Deep Learning : O3-Flow Graphs & Automatic Differentiation [56]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function

L(D) = % > ((w-g(Wa' +b) +b) —y'))?

Using broadcasting operators, we can express the above as

L(D) = —((w - g(WXT +b) +b) — y)?

Y
Thisis amatrix W X1 € RPN

AN

Quch! No item index first . ..

Deep Learning : O3-Flow Graphs & Automatic Differentiation [57]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function

L(D) = % > ((w-g(Wa' +b) +b) —y'))?

Using broadcasting operators, we can express the above as

L(D) = —((g(XWT +b)-w +b) — y)?

Y
This is a matrix X WT ¢ RN *h

AN

Item index first!

Deep Learning : O3-Flow Graphs & Automatic Differentiation [58]

More on Matrix Forms

Say it with matrices. ..

We may want to get rid of the summation when computing the loss function

L(D) = % > ((w-g(Wa' +b) +b) —y'))?

Using broadcasting operators, we can express the above as

1
L(D) = +(((XWT +b) w+b)—y)?
\ . .
/ This is a column vector € R"
Thisis a matrix X WL ¢ RNxh (it will be transposed automatically)

Item index first!

Deep Learning : O3-Flow Graphs & Automatic Differentiation [59]

