Universita degli
Studi di Pavia

Deep Learning

O2-Artificial Neural Networks
Basic Ideas, Notations and all that

Marco Piastra

This presentation can be downloaded at:
http://vision.unipv.it/DL

Deep Learning : O2-Artificial Neural Networks

[1]

http://vision.unipv.it/DL

Function gpproximation:
Linear Combination

Deep Learning : O2-Artificial Neural Networks [2]

Function Approximation: linear combination

» Approximating a target function
y=[f(x), xcR’

a.k.a. "single layer perceptron”

A first approximator: linear combination
j=w-x+b wecRLHeR

\ i.e. this is a vector of dimension d

Note that, when the input is scalar, the approximator becomes
y=wx+b

i.e. a straight line

Deep Learning : O2-Artificial Neural Networks [3]

Function Approximation: linear combination

» Approximating a target function
y=[f(x), xcR’

A first approximator: linear combination
j=w-x+b wecRLHeR

dataset
A set of actual inputs and outputs is all we know about the target function

D :={(z", y}HL,, ¢y =f @), vi

Deep Learning : O2-Artificial Neural Networks [4]

Function Approximation: linear combination

» Approximating a target function
y=[f(x), xcR’

A first approximator: linear combination

j=w-x+b wecRLHeR

dataset
A set of actual inputs and outputs is all we know about the target function

D :={(z", y}HL,, ¢y =f @), vi

Three other fundamental aspects to be considered:

* representation: which parametric approximator for a given target function?

 evaluation: how do you tell that some parameter values are better than others?

* optimization: how can we learn optimal values for the parameters?

Deep Learning : O2-Artificial Neural Networks [5]

Function Approximation: linear combination
= Example: XOR

X1 L2 T1 D To
y = XOR(z), x € {0,1}? . 2 L
0 1 1
Approximator: linear combination 1 0 1
j=w-x+b wecRLbeR 1 1 0
Dataset: this is our datasé (N =4)
D= {(z\, y)},

Deep Learning : O2-Artificial Neural Networks [6]

Function Approximation: linear combination
= Example: XOR

1 L2 T1 D T
y = XOR(z), x € {0,1}? . 2 L
0 1 1
Approximator: linear combination 1 0 1
j=w-x+b, weRLbeR 1 1 0
Dataset: this is our datasé (N =4)
D= {(z\, y)},

Loss function (evaluation):

Lz, y') = (g(z')) —)

~___— Squared Error

1 i i ~___—— Mean Squared Error (MSE)
L) =5 Y La®y?)
() ,y(D)eD

Deep Learning : O2-Artificial Neural Networks [7]

Function Approximation: linear combination

= Example: XOR T1 o T1 D xo
y = XOR(z), x € {0,1}? L L g
0 1 1
Approximator: linear combination 1 0 1
j=w-x+b weRLbeR 1 1 0
Dataset: this is our datasé (N =4)
D := {(«", y" O},

Optimization problem:

We need to find i.e. the set of parameter values that minimizes loss w.r.t. to the dataset

(w,b)" = argmin L(D)
(w,b)

Deep Learning : O2-Artificial Neural Networks [8]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR

Loss function:

1 & N
L(D) := ZL(&:(""), y()
N . .
Z (G(xV) = y©)?
— % Z (w-x® +b) — y))?

Can we express this summation by using linear algebra?

As we will see later on, matrix representation may lead to a better parallelization of computations

Deep Learning : O2-Artificial Neural Networks

[9]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR

Loss function:
[D _ 1 (2) ()
(= Nz§1: w- T +b))

define;

X .)) ____— Inputdata in matrix form (item index first)

Deep Learning : O2-Artificial Neural Networks [10]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR

Loss function:

N
1

_ () (%)

L(D) = il w -z 4 b) —yV))?

define: -
_il?gl) e xgil) 1) w1 [y]
Xe=| 0 0 o=] |
| | .

The loss function becomes:

. 0 loss function in matrix form
L (D) - X0 — y) ~— This s a positive-definite quadratic form

1
T

Deep Learning : O2-Artificial Neural Networks [11]

Function Approximation: linear combination

= | .oss minimization
Approximator: linear combination
j=w-x+b wecRLHeR

Loss function:

|
— WZ (w -z +b) — yD)
1=1
define: -
20 a:((jl) 1 ufl Ty]
X=| N y=1 :
w
E U i Ly

The loss function becomes:

. 0 loss function in matrix form
L (D) - X0 — y) ~— This s a positive-definite quadratic form

1
T

Deep Learning : O2-Artificial Neural Networks [12]

Function Approximation: linear combination

= | .oss minimization XOR
Approximator: linear combination
j=w-x+b wecRLHeR

Loss function:

1 “
L(D) = — (X9 — vy)?
(D) = (X9 —y)
For XOR:
0 0 1] y
X 0 1 1 1
X=17 0 1 '9_{“22}
1 1 1

1 X2 T D o
0 0 0
0 1 1
1 0 1
1 1 0
this is ourdatasé(N =4)

O == O

Deep Learning : 02-Artificial Neural Networks

[13]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
y=w- T+ b, w € Rd, beR representation

Loss function:

L(D) — ()A{rﬁ — y)2 evaluation

=

Optimization:

%,
59

optimization

D)=0
the loss function is convex:

by solving this equation we can find 9"
i.e. the optimal parameter values

Deep Learning : O2-Artificial Neural Networks [14]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR

Optimization:
0

SSL(D) =

pd>
SA
|

&

1o
N 09
(ﬁTXTX'ﬁ — ﬁTXTy — yTX'L? + yTy)

h all these terms are scalars

(X0 —y)" (X9 —y) = (T XT —yT) (X9 —y)

|
S e R e
glo gle g gl

WTXTXY9 - 29T XTy +yTy)

2XTX9 —2XTy)

Deep Learning : 02-Artificial Neural Networks

[15]

Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR

Optimization:
a]_ A A ~
— L(D)= —(2XTXxX9 —2X7T
55 L(D) = 5 (2XTX9 —2XTy)
s, o)
59 LD)=0 = 2XTX9—-2XTy=0

XTX0=XTy

v = (XTX)_ley this is what we need

this matrix is SQUARE
and, typically, with actual datasets,
is invertible (i.e. full rank)

Deep Learning : O2-Artificial Neural Networks [16]

Function Approximation: linear combination

" Loss minimization XOR 1 o T1 B To
Approximator: linear combination 0 0 0
j=w-x+b wecRLHeR 0 1 1
For XOR: 1 0 1
S) 1 1 0
9= (XTX)"' X1y
0 0 1] ” 0]
; 0 1 1 ! 1
Xi=1 ¢ 1] U= “l’f v¥—=h
1 1 1 0]
2121 1 0 05 o 0
X'X=1|1 2 2| X*TX)'=|0 1 05 (X'X) ' XTy=10
2 2 1 0.5 0.5 0.75 0.5

Deep Learning : O2-Artificial Neural Networks [17]

Function Approximation: linear combination

= Loss minimization XOR 1 o T1 P xo
Approximator: linear combination 0 0 0
j=w-x+b wecRLHeR 0 1 :
For XOR: 1 0 1
1 1 0

hence the XOR linear approximator becomes:

j=0.5

What 2?2

Deep Learning : O2-Artificial Neural Networks [18]

Function approximation:
Feed-Formvard Neural Network

Deep Learning : O2-Artificial Neural Networks [19]

Feed-Forward Neural Network

» Approximating a target function
y=f"(z), zeR
Second attempt: (shallow) feed-forward neural network
j=w -gWax+b)+b WeR"™ wbecR"'becR

\ i.e. this is a matrix of dimensions h X d
this is a non-linear scalar function, applied elementwise

Deep Learning : O2-Artificial Neural Networks [20]

Feed-Forward Neural Network

» Approximating a target function
y=[f(x), xcR’

Second attempt: (shallow) feed-forward neural network

j=w -gWax+b)+b WeR"™ wbecR"'becR

Popular choices for the non-linear function:

1
g(x) =o(x) = = 11 g(x) = tanh(x) g(x) = max(0, x)
|
Sigmoid Hyperbolic Tangent RelLU

Deep Learning : O2-Artificial Neural Networks [21]

Feed-Forward Neural Network

» Approximating a target function
y=[f(x), xcR’

Second attempt: (shallow) feed-forward neural network

j=w -gWax+b)+b WeR"™ wbecR"'becR

Popular choices for the non-linear function: this is somewhat specidl..
1
g(x) =o(x) = 7 1+ 1 g(x) = tanh(x) g(x) = max(0, z)
09r 08 | 9
f
L . |
Sigmoid Hyperbolic Tangent RelLU

Deep Learning : O2-Artificial Neural Networks [22]

Feed-Forward Neural Network

» Approximating a target function
y=[f(x), xcR’

Second attempt: (shallow) feed-forward neural network

j=w -gWax+b)+b WeR"™ wbecR"'becR

output layer

h4 hidden layer

input layer

Deep Learning : O2-Artificial Neural Networks [23]

Feed-Forward Neural Network

» Approximating a target function
y=[f(x), xcR’

Second attempt: (shallow) feed-forward neural network

j=w -gWax+b)+b WeR"™ wbecR"'becR

NOTE: biases b and b are NOT represented in the graph

Deep Learning : O2-Artificial Neural Networks [24]

Universality of FF Neural Networks

* Universal approximation theorem (cybenko, 1989; Hornik, 1991; Leshno et al. 1991)

For any target function

Yy = f* (:jl‘,')7 €T & Rd (which is continuous and Borel measurable)

andany € > 0 there exists parameters

heZT W eRMY wbeRbeR

N\ this is the dimension of the hidden layer: it is a parameter in the theorem
such that the (shallow) feed-forward neural network

g=w- -gWx+b)+1b

approximates the target function by less than €

sup | (@) = (w-g(Waz +b) +)| <e

(on any compact subset of RY)

This theorem holds with any of the non-linear functions seen before

Deep Learning : O2-Artificial Neural Networks [25]

Universality of FF Neural Networks

* Universal approximation theorem (cybenko, 1989; Hornik, 1991; Leshno et al. 1991)

Intuitive rationale

Any continuous target function
Y= f* ('CU)) reR
can be approximated arbitrarily well by a stepwise function

+ () this is the largest difference

AR /sipu*(w)—(w-g(Ww+b>+b)|

Y
/ \\ e
N A

v

for simplicity, assume x is scalar (hence W is vector)

g=w- -gWx+b)+1b

Deep Learning : O2-Artificial Neural Networks [26]

Universality of FF Neural Networks

* Universal approximation theorem (cybenko, 1989; Hornik, 1991; Leshno et al. 1991)

Intuitive rationale

Consider the step function as the non-linearity

g=w- step(Wx+b)+b
then, by expanding the approximator

g = wy step(Wyx + by) + - - + wp step(Wpx + bp,) + b
where each step occurs at

Wi-z4+b=0 = W,-z=-b — zr=-——

Consider pairs of steps ¢ and j and impose yt

b; b,
_Wi < _Wjj’ Wi,Wj >0, w; = —W;

g(x) = step(x)

— wistep(W?;x + b@')
— sztep(Wj:c + bz)

in this way we can construct such fungtlon steps

v

b; bj xZ

Deep Learning : 02-Artificial Neural Networks

[27]

Learning
Feed-Forward Neural Networks

Deep Learning : O2-Artificial Neural Networks [28]

Learning with FF Neural Networks

» Approximating a target function
y=[f(x), xcR’

Second attempt: (shallow) feed-forward neural network

j=w -gWax+b)+b WeR"™ wbecR"'becR

Optimization problem (learning)
Givenadataset D := {(x@ ¢y, 4@ = f(x®) v

/ the dimension of the hidden layer is pre-defined

we want to find parameter values W € R"*4 w. beR" b e R

1 . .
that minimize the loss function L(D) := ~ Z (7 — ¢(9))2
D

where: 59 .= w - g(Waz'D +b) +b

Deep Learning : O2-Artificial Neural Networks [29]

Learning with FF Neural Networks

» Approximating a target function
y=[f(x), xcR’

Second attempt: (shallow) feed-forward neural network

j=w -gWax+b)+b WeR"™ wbecR"'becR

Difficulty
In general, minimizing the loss function
1 i i
L(D) = > ((w-g(Wz') +b) +b) —)2
D
cannot be done directly since I this loss function is not convex, in general
0
—L(D)=0
59 (D)

cannot be solved analytically Ve need to find anoth
e need 1o 1ind anotner way...

Deep Learning : O2-Artificial Neural Networks [301]

Gradient Descent (GP): intuition

= Optimization problem
¥* ;= argming L(D,9)
/

Just making the dependence explicit
= Minimizing a generic function
Ly \ tangent lines

with slope
given by

gradient
at 9\

Follow the opposite of the gradient!

Deep Learning : O2-Artificial Neural Networks [31]

Gradient Descent (GP): intuition

= Optimization problem
¥* := argming L(D, 1) =11l
/

Just making the dependence explicit

= [terative methOd/ Step in the method

1. Initialize 9@ at random

2. Update 9 — 9(t=1) _ a%L(Djﬁ(t—l))
3. Unless some termination criterion has been met, go back to step 2.
where
0 1 0 N
—L(D,9) ==Y —L({H?Y,yD 9
s L >\N LDy, 9)
D
The gradient of the loss over the dataset D is the average of gradients over each data item
n <1

A learning rate, it is arbitrary (i.e., an hyperparameter)

Deep Learning : O2-Artificial Neural Networks [32]

Gradient Descent (GD): convergence

= Convergence

When L(D,) is convex, derivable, and its gradient is Lipschitz continuous, that is

||—L (D.9,) — 2 L(D, 9,)

< v — 9
25 <C s, C>0

the gradient descent method converges to the optimal 9" for £ — oo
provided that n < 1/C

When L(D,) is derivable but not convex, and its gradient is Lipschitz continuous,

the gradient descent method converges to a local minimum of L (D,)
under the same conditions

Deep Learning : 02-Artificial Neural Networks

[33]

Gradient Descent (GD): practicalities

= Convergence in practice
The choice of the learning rate 71 is crucial

Cost . Cost . . .
learning rate too low learning rate too high (i.e. no convergence)

b, 1

Cost
A learning rate just right

Learning step

Minimum

. >
Random 8
initial value A

Images from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Deep Learning : O2-Artificial Neural Networks [34]

Gradient Descent (GD): practicalities

= Convergence in practice
When L(D,) is not convex, the initial estimate 9% is crucial

Cost
A

1
50 | PO

. Global
Local minimum 7 .
minimum

Plateau X

The outcome of the method will depend on which 19(0) is picked

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Deep Learning : O2-Artificial Neural Networks [35]

Learning
Feed-Forward Neural Networks
(contd.)

Deep Learning : O2-Artificial Neural Networks [36]

Gradient Descent for FF Neural Networks

Recall that the item-wise loss for a specific data item in the dataset is
L(G",y) == (5 — y)?
then

ZL 7004y 0)

and the gradient of the loss function is

8
TRIRTON
8'19 819 N Z Ly

1 9 iy
_ 150 0 0
_NZ PR

D

Moral: we must be capable to compute the gradient on each data item

Deep Learning : O2-Artificial Neural Networks [37]

Gradient Descent for FF Neural Networks

Suppose we can compute the four item-wise gradients, w.r.t. to the parameters:

9, 0 - 0 . 0
——L(§D, y@ — L(§D, y@ — L(§D, 4
oW (y) ob (y) ow () ob
we can then apply a gradient descent method
» Gradient Descent
1. Assign initial values to the four parameters WO pO) (0 p(0)
2. Update the four parameters by adding
1 0 .
AW = —n — —— L(§D, y® (z) (z)
"N ow (v) Z 9"
Aw = —n i Z iL(g(iJ y(i)) Z (z)
N < Ow ’ (% 'y

3. Unless complete, return to step 2.

—L(3 (@) ('i))

Deep Learning : 02-Artificial Neural Networks

[38]

Computing Gradients

All we need to apply the descent method is computing the item-wise gradients

For instance:
9, . O .
_9 @ 0 G — ()2
L0 y) = s (0 =)
o

aw((“’ gWax'D +b) +b) — y®)2

(similar expressions hold for the other three gradients)

Assume '

g(x) = ReLU(z) := max(0, x)

i.e., the non-linearity is ReLU
Easy, huh?

Deep Learning : O2-Artificial Neural Networks [39]

Function Approximation: FF Neural Networks

" Loss minimization XOR 1

1) T D o
Approximator: 0 0 0
(shallow) feed-forward neural network 0 1 1
g=w- -ReLUWx + b) + b 1 0
1 1 0

Optimal values for XORand h =2 :

dimension of the hidden layer

el em) el

Deep Learning : O2-Artificial Neural Networks [40]

Stochastic gnd Mini-Batch
Gradient Descent

Deep Learning : O2-Artificial Neural Networks [41]

Function Approximation: FF Neural Networks

= |Loss minimization XOR

21 L2 T1 D To
Approximator: 0 0 0
(shallow) feed-forward neural network 0 1 1
g=w- -ReLUWx + b) + b 1 0 1
1 1 0
In this case our dataset was tiny... () N =4 /

this is our dataset

What if the dataset was very large?

Deep Learning : O2-Artificial Neural Networks [42]

Stochastic Gradient Descent (SGD): intuition

= Objective
Y* := argming L(D,19)

= [terative method
1. Initialize 99 at random

2. Pick a dataitem (:I:(i), y(i)) € D with uniform probability
0

3. Update 91 — 9t—1) _ n(t) %L(g(i)’y(i)’ﬁ(t—l))

4. Unless some termination criterion has been met, go back to step 2.

n(t) <1

Note that the learning rate may vary across iterations...

Deep Learning : O2-Artificial Neural Networks [43]

Stochastic Gradient Descent for FF Neura] Networks

With very large datasets, the sum in:
1 0

Aﬁ——n 819

—L(§ (@) (i))

may take very long to compute (and this must be repeated at each iteration)

= Stochastic Gradient Descent (SGD) (e "you don't actually need to sum up them all")
1. Assign initial values to the four parameters W) p(0) 4,0 p(0)

2. Pickupadataitem (¥,y") from D with uniform probability
and update the four parameters (with n < 1.0, 7 — 0 as iterations progress)

0 0

AW = —p ——L(5", y® Ab = —n —L(§", y®
o | o o

Aw = —n —L(§®, y¥ Ab = —1 — L% 4,
N 5o L) b=—n = L5, y™")

3. Unless complete, return to step 2.

Deep Learning : 02-Artificial Neural Networks

[44]

Stochastic Gradient Descent (SGD): convergence

= Convergence

When L(D,) is convex, derivable, and its gradient is Lipschitz continuous, that is

||—L (D,9,) — iL(D 95)

< v -V
= <C 91— o, C>0

the stochastic gradient descent method converges to the optimal ¥ for t — 0o
provided that |

(t) < — Note that n(t) — 0 for t — 00
- ('

When L(D, 19) is derivable, and its gradient is Lipschitz continuous but not convex
the stochastic gradient descent method converges to a local minimum of L(D, 1)
under the same conditions

Deep Learning : O2-Artificial Neural Networks [45]

Speed of Convergence

Perhaps surprisingly, stochastic gradient descent shares the same properties
and could be faster than GD ...

Consider a generic loss function L(ff}) which is convex in the parameter 19

Define accuracy as an upper bound:

optimal value
/ y current parameter estimate

L(97) — L(9)] < p

N size of the dataset

[from Bottou & Bousquet, 2008] " q number of (scalar) parameters in 1}
Algorithm Cost per Iterations to reach Time to reach
iteration accuracy p accuracy p
Gradient descent 1 1
(GD) O(N q) @ (log —) O (N qlog —)
P P
Stochastic gradient 1 1
descent (SGD) O(q) O (_) O (q_)
P P

Deep Learning : O2-Artificial Neural Networks [46]

Qualitative comparison of GP methods

Typical traces (| == Stochastic
of the three methods 3.6| — Mini-batch

(batch = GD)

3.4} | ==e Batch

91 3.2+
3.0

2.8}
26}

2.4+
2.5 3.0 3.5 4.0 4.5

In general:

* GDis more regular but slower (with large datasets)
« SGD is faster (with large datasets) but noisy
 MBGD is often the right compromise in practice...

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Deep Learning : O2-Artificial Neural Networks [47]

Mini-batch Gradient Descent (MBGD): intuition

= Objective
Y* := argming L(D,19)

= [terative method

1. Initialize 89 at random

2. Pickaminibatch B C D with uniform probability

0
3. Update 9 =gt-b _p® — (B 9t
Pee 09 ()

4. Unless some termination criterion has been met, go back to step 2.

0
—LBﬁ %) ('6)19

This method has the same convergence properties of SGD

Deep Learning : O2-Artificial Neural Networks [48]

Mini-batch Gradient Descent for FF Neural Networks

= Mini-batch Gradient Descent (MBGD)

1. Assign initial values to the four parameters W (9 p(0) 4,(0) p(0)

2. Pickamini-batch B C D with uniform probability
and update the four parameters (with n < 1.0, n — 0 as iterations progress)

1 0 N 1 0 N

AW = - — 3" 15", y) Ab=—p =3 —L(F?,y®
1 0 : . 1 O . .

Aw = —n — — L ~(1) , (2) Ab=—p — iy ~(2) , (%)
“ ”|B|ZB Fuw) "|B|ZB a5 v)

3. Unless complete, return to step 2.

This method has the same convergence properties of SGD

Deep Learning : O2-Artificial Neural Networks [49]

