

Deep Learning

13 - AlphaZero

Marco Piastra & Andrea Pedrini(*)

(*) Dipartimento di Matematica F. Casorati

This presentation can be downloaded at: http://vision.unipv.it/DL

Playing Games with Trees

Tree representation

Game Tree:

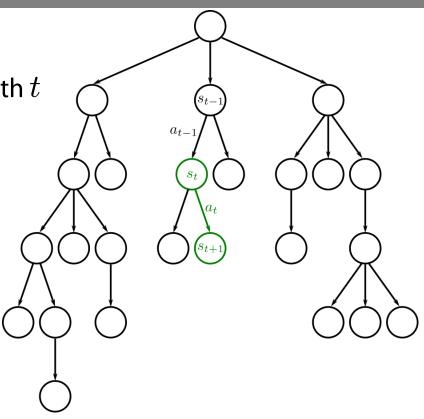
The $\underline{\textit{current state}}\ s_t$ at time t is a $\pmb{\textit{node}}$ with depth t

Any admissible <u>action</u> a_t is an **edge** of the tree

(<u>branching factor</u> = number of admissible actions in a state)

State s_{t+1} obtained from s_t after executing a_t is determined by a $\underline{transition\ function}$

$$\tau: (s_t, a_t) \mapsto s_{t+1}$$



Tree representation

Game Tree:

The $\underline{\textit{current state}}\ s_t$ at time t is a $\pmb{\textit{node}}$ with depth t

Any admissible $\underline{action} \ a_t$ is an $\underline{\textit{edge}}$ of the tree

(<u>branching factor</u> = number of admissible actions in a state)

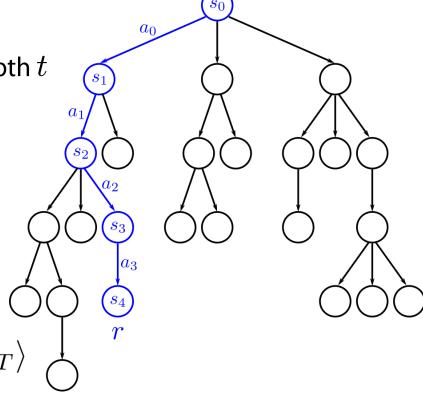
State s_{t+1} obtained from s_t after executing a_t is determined by a $\underline{transition\ function}$

$$\tau: (s_t, a_t) \mapsto s_{t+1}$$

A <u>playout</u> is a **path** $\langle s_0, a_0, s_1, \dots, a_{T-1}, s_T \rangle$ from the initial state s_0 to a terminal state s_T

A <u>reward</u> r is the outcome of a playout

A <u>policy</u> is a map $\pi: s \mapsto a$ which selects action a to be executed in state s



Policy optimization

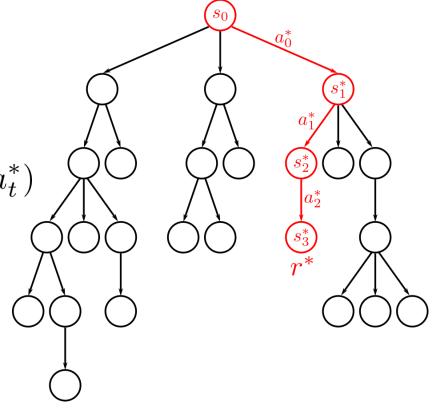
• Goal: finding the *best policy* π^*

such that the reward r^* of playout

$$\langle s_0, a_0^*, s_1^*, \dots, a_{T-1}^*, s_T^* \rangle$$

with $a_{t+1}^* := \pi^*(s_t^*)$ and $s_{t+1}^* := \tau(s_t^*, a_t^*)$

is maximal



"Brute Force": a simple (bad) policy optimization

• Goal: finding the *best policy* π^*

"Brute Force":

- 1. explore the entire tree by following **all** possible paths
- 2. select the path(s) with the best outcome (and randomly choose one of them)
- 3. play by following the policy associated with that path

Problems:

Huge game tree with infeasible full exploration (branching factor in Go is around 200)

Infinitely many admissible actions

Intrinsic stochasticity and uncertainty after playing an action

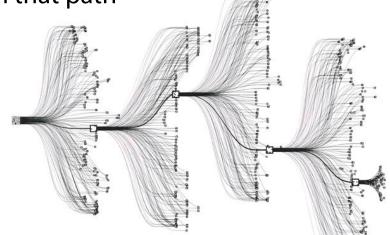


Image from https://thenewstack.io/google-ai-beats-human-champion-complex-game-ever-invented/

Stochasticity and Uncertainty: examples

Multi-armed bandits

/ i.e. which arm to play

The reward after each action is stochastic

random variable probability of reward
$$r$$
 for action a $Q(s,a) := \mathbb{E}[R \mid s,a] = \sum_r r P(r \mid s,a)$

Q-value (expected reward of action a performed in state s)

Games with two players (White and Black):

White plays action a_t in state s_t

but her next state s_{t+1} depends on Black's next action

<u>Uncertainty</u> of execution:

nondeterministic
$$\tau:(s_t,a_t)\mapsto s_{t+1}$$
 with $P(s_{t+1}\mid s_t,a_t)$

transition function

probability transition distribution

Stochasticity and Uncertainty: tree representation

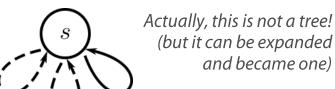
Simplest case scenario

- deterministic transition
- deterministic reward

s_t a_t s_{t+1}

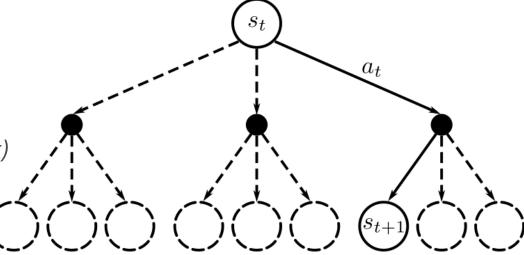
Multi-armed bandits

- deterministic transition
- stochastic reward



• Uncertainty of execution:

- stochastic transition
- either deterministic (White vs Black) or stochastic reward



Monte Carlo method: step by step simulations

Monte Carlo (MC) step

- Goal: finding the <u>best policy</u> π^* (avoiding brute-force approach) It can be done iteratively, by focusing on the single best action $a^* =: \pi^*(s)$ in the current state s
- Monte Carlo (MC) step: [Abramson 1990]

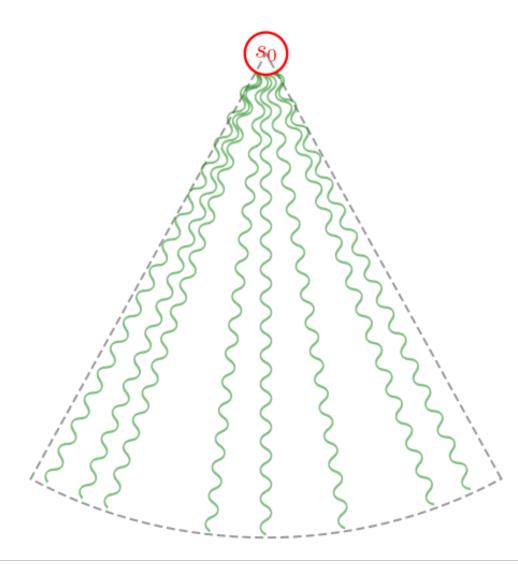
- repeat $n ext{ times}$ 1) play a <u>pseudo-random playout</u> from current state s 2) compute and save the reward s obtained at the end of the playout
 - 3) for each admissible action a in state s compute the mean of the rewards

estimates
$$\hat{Q}(s,a) := \frac{1}{N(s,a)} \sum_{i=1}^{N(s,a)} r_{a,i}$$
 number of playouts with first action a

4) $a^* := \operatorname{argmax}_a \hat{Q}(s,a)$ is the action with the highest mean

Monte Carlo episode:

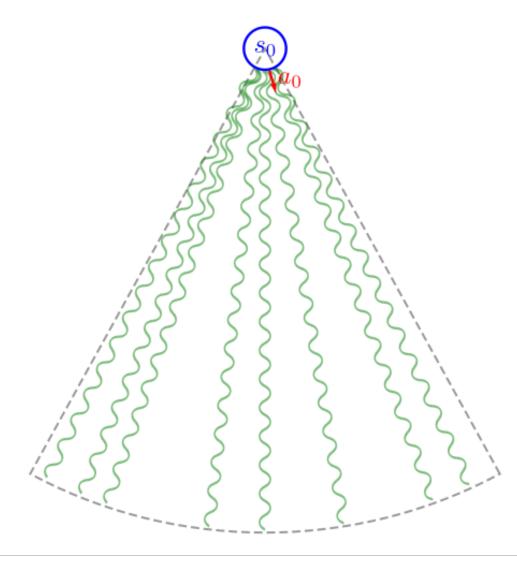
- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MC step to decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2) to 5) until end game



Deep Learning: 13-AlphaZero [11]

Monte Carlo episode:

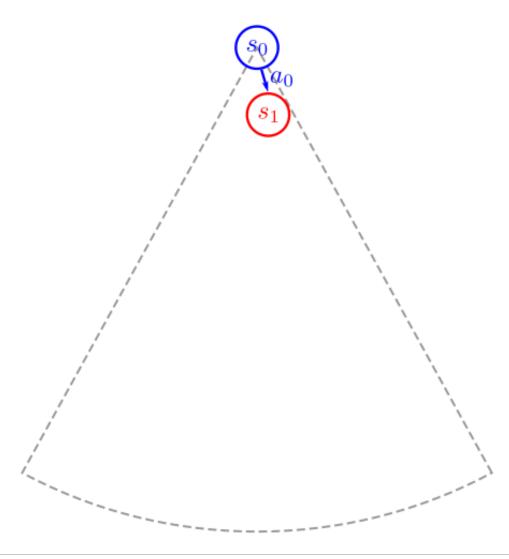
- 1) set t := 0
- 2) current state $s := s_t$
- 3) use *MC step* to decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2) to 5) until end game



Deep Learning: 13-AlphaZero [12]

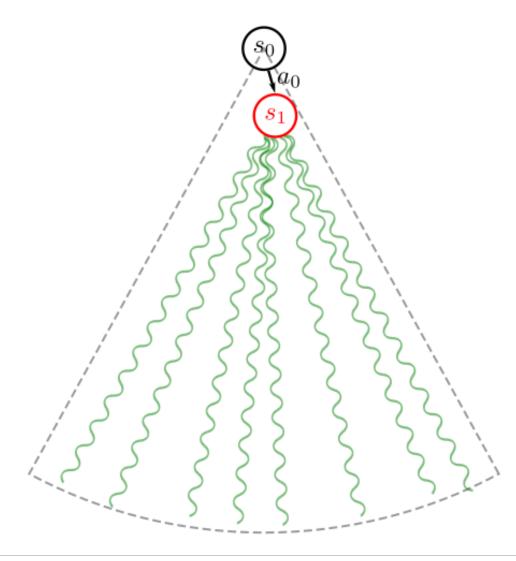
Monte Carlo episode:

- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MC step to decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2) to 5) until end game



Monte Carlo episode:

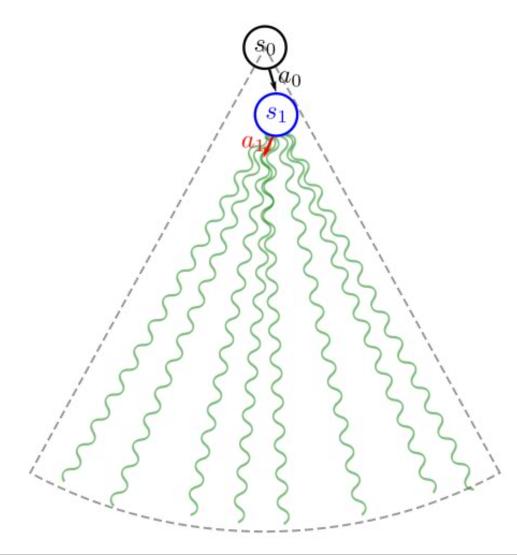
- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MC step to decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2) to 5) until end game



Deep Learning: 13-AlphaZero [14]

Monte Carlo episode:

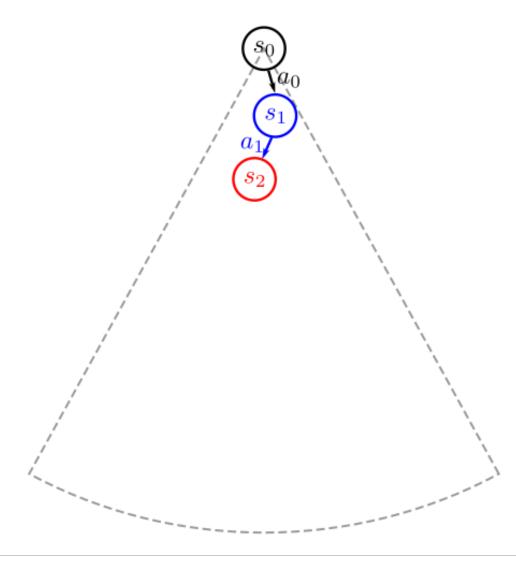
- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MC step to decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2) to 5) until end game



Deep Learning: 13-AlphaZero [15]

Monte Carlo episode:

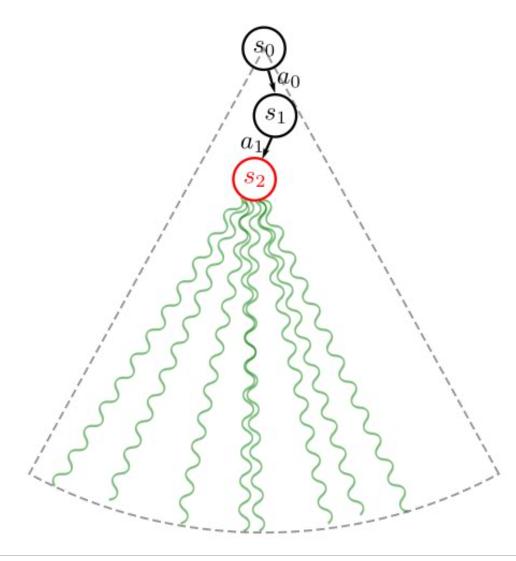
- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MC step to decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2) to 5) until end game



Deep Learning: 13-AlphaZero [16]

Monte Carlo episode:

- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MC step to decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2) to 5) until end game



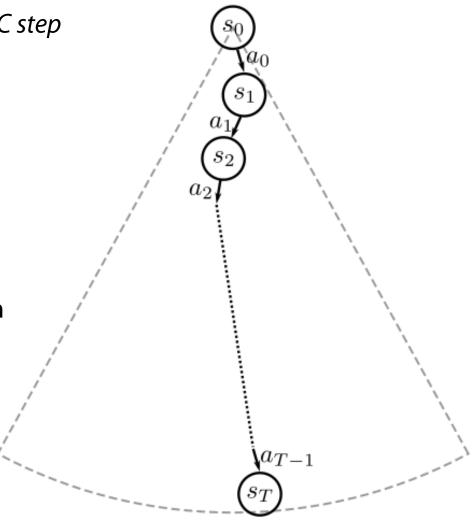
Deep Learning: 13-AlphaZero [17]

Monte Carlo method

■ **Monte Carlo** method:

• <u>no memory</u> of past playouts in a single MC step (only the reward is saved)

- no transfer knowledge between MC steps
- *no construction* of game subtree
- optimal policy only <u>partially</u> defined (on actually computed states)
- <u>intrinsically stochastic</u> policy optimization (the same initial state can give rise to different optimizations)
- no knowledge transfer between MC episodes



Deep Learning: 13-AlphaZero [18]

Monte Carlo Tree Search (MCTS): simulation + partial expansion

Deep Learning: 13-AlphaZero [19]

MCTS episode: basic idea

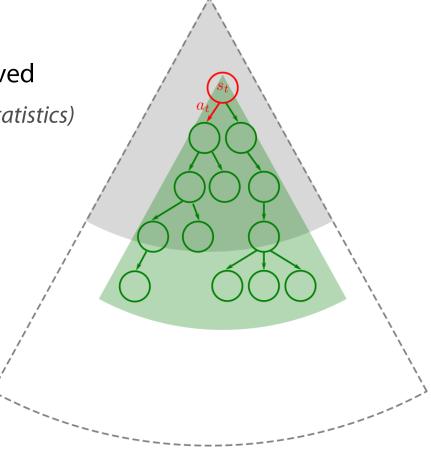
• At each step (with current state s_t):

• a $\underline{subgraph} G_t$ with root S_t is created

<u>statistics</u> (number of visits and estimate outcomes)
 for states and actions in the subgraph are saved

• best action a_t is decided (accordingly to those statistics)

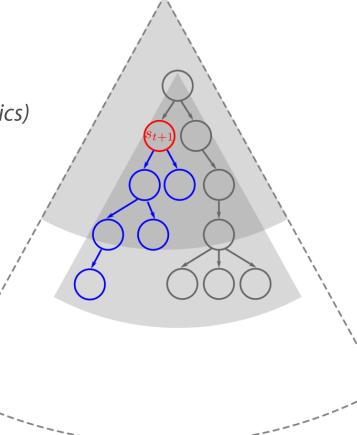
• next state $s_{t+1} := \tau(s_t, a_t)$ is computed



Deep Learning: 13-AlphaZero [20]

MCTS episode: basic idea

- At each step (with current state s_t):
 - a $\underline{subgraph} G_t$ with root s_t is created
 - <u>statistics</u> (number of visits and estimate outcomes)
 for states and actions in the subgraph are saved
 - best action a_t is decided (accordingly to those statistics)
 - next state $s_{t+1} := \tau(s_t, a_t)$ is computed
- In the next step (with current state s_{t+1}):
 - the subgraph of G_t with root s_{t+1} is <u>expanded</u> to create G_{t+1}
 - the statistics are <u>updated</u> and saved
 - best action a_{t+1} is decided
 - next state $s_{t+1} := \tau(s_t, a_t)$ is computed



Deep Learning: 13-AlphaZero [21]

MCTS episode: basic idea

• At each step (with current state s_t):

• a $\underline{subgraph} G_t$ with root S_t is created

<u>statistics</u> (number of visits and estimate outcomes)
 for states and actions in the subgraph are saved

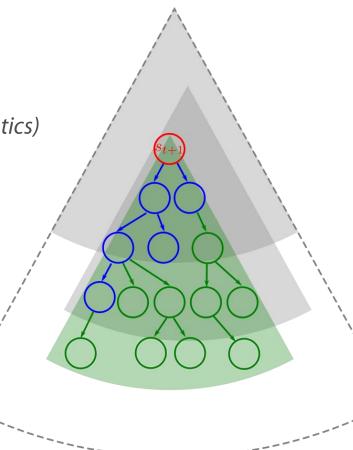
• best action a_t is decided (accordingly to those statistics)

• next state $s_{t+1} := \tau(s_t, a_t)$ is computed

• In the next step (with current state s_{t+1}):

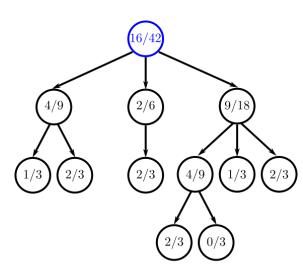
• the subgraph of G_t with root s_{t+1} is <u>expanded</u> to create G_{t+1}

- the statistics are <u>updated</u> and saved
- best action a_{t+1} is decided
- next state $s_{t+1} := \tau(s_t, a_t)$ is computed



Deep Learning: 13-AlphaZero [22]

- Monte Carlo Tree Search (MCTS) step: [Coulom 2006]
 - 1) start from current state s (and the –possibly empty– stored tree with root s)

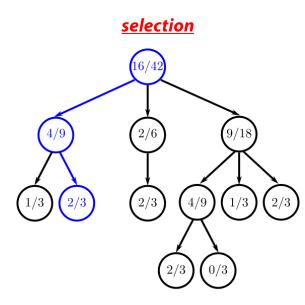


Deep Learning: 13-AlphaZero [23]

- Monte Carlo Tree Search (MCTS) step: [Coulom 2006]
 - 1) start from current state s (and the –possibly empty– stored tree with root s)
 - 2) traverse the tree by following the *selection policy*

$$\pi^{\mathrm{sel}}: s_t \mapsto a_t$$

until encountering a *leaf node* s_L (i.e. a state not stored in the tree)



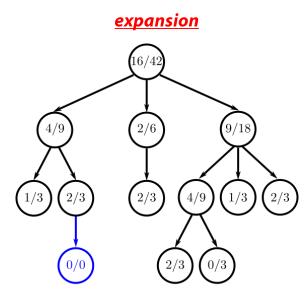
Deep Learning: 13-AlphaZero [24]

- Monte Carlo Tree Search (MCTS) step: [Coulom 2006]
 - 1) start from current state $oldsymbol{s}$ (and the –possibly empty– stored tree with root $oldsymbol{s}$)
 - 2) traverse the tree by following the *selection policy*

$$\pi^{\mathrm{sel}}: s_t \mapsto a_t$$

until encountering a *leaf node* s_L (i.e. a state not stored in the tree)

3) $\underline{\textit{expand}}$ the tree by adding s_L



Deep Learning: 13-AlphaZero [25]

- Monte Carlo Tree Search (MCTS) step: [Coulom 2006]
 - 1) start from current state s (and the –possibly empty– stored tree with root s)
 - 2) traverse the tree by following the *selection policy*

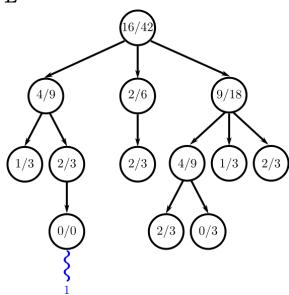
$$\pi^{\mathrm{sel}}: s_t \mapsto a_t$$

until encountering a *leaf node* s_L (i.e. a state not stored in the tree)

- 3) expand the tree by adding s_L
- 4) play one pseudo-random playout from state s_L by following the <u>simulation policy</u>

$$\pi^{\mathrm{sym}}: s_t \mapsto a_t$$

and obtain the reward r



simulation

Deep Learning: 13-AlphaZero [26]

- Monte Carlo Tree Search (MCTS) step: [Coulom 2006]
 - 1) start from current state $oldsymbol{s}$ (and the –possibly empty– stored tree with root $oldsymbol{s}$)
 - 2) traverse the tree by following the *selection policy*

$$\pi^{\mathrm{sel}}: s_t \mapsto a_t$$

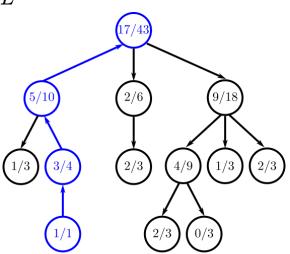
until encountering a *leaf node* s_L (i.e. a state not stored in the tree)

- 3) $\underline{\textit{expand}}$ the tree by adding s_L
- 4) play one pseudo-random playout from state s_L by following the $\underline{simulation\ policy}$

$$\pi^{\mathrm{sym}}: s_t \mapsto a_t$$

and obtain the reward r

5) <u>backpropagate</u> r (and update the statistics of each encountered state and action)



backpropagation

Deep Learning: 13-AlphaZero [27]

Monte Carlo Tree Search (MCTS) step: [Coulom 2006]

- 1) start from current state s (and the –possibly empty– stored tree with root s)
- 2) traverse the tree by following the selection policy

$$\pi^{\mathrm{sel}}: s_t \mapsto a_t$$

until encountering a *leaf node* s_L (i.e. a state not stored in the tree)

- 3) \underline{expand} the tree by adding s_L
- (4) play one pseudo-random playout from state s_L by following the <u>simulation policy</u>

$$\pi^{\text{sym}}: s_t \mapsto a_t$$

and obtain the reward r

<u>backpropagate</u> r (and update the statistics of each encountered state and action)

m times

repea

Monte Carlo Tree Search (MCTS) step: [Coulom 2006]

- 1) start from current state s (and the -possibly empty- stored tree with root s)
- 2) traverse the tree by following the *selection policy*

$$\pi^{\mathrm{sel}}: s_t \mapsto a_t$$

until encountering a *leaf node* s_L (i.e. a state not stored in the tree)

- 3) $\underline{\textit{expand}}$ the tree by adding s_L
- 4) play one pseudo-random playout from state s_L by following the <u>simulation policy</u>

$$\pi^{\text{sym}}: s_t \mapsto a_t$$

and obtain the reward r

- 5) backpropagate r (and update the statistics of each encountered state and action)
- 6) decide the *best* action to be performed in s with the *greedy policy*

$$\pi^{\mathrm{gre}}: s \mapsto a$$

repeat m times

repeat

MCTS statistics: expansion and backpropagation

• **MCTS** statistics for state s and action a:

N(s) = total number of times state s has been visited

N(s, a) = number of times action a has been selected in state s

 $\hat{Q}(s,a)$ = estimated outcome of action a when selected in state s

- Expansion initialization: N(s) := 0, N(s,a) := 0, $\hat{Q}(s,a) := 0$
- Backpropagation update after a single playout with reward r:

$$N(s) := N(s) + 1$$

 $N(s, a) := N(s, a) + 1$
 $\hat{Q}(s, a) := \hat{Q}(s, a) + \frac{r - \hat{Q}(s, a)}{N(s, a)}$

Deep Learning: 13-AlphaZero [30]

MCTS: greedy, selection and simulation policies

• Greedy policy:

$$\pi^{\operatorname{gre}}(s) := \underset{N(s,a)>0}{\operatorname{argmax}} \hat{Q}(s,a)$$

Selection policy: Upper Confidence Bound applied to Trees (UCT)

$$\pi^{\text{sel}}(s) := \pi^{\text{UCT}}(s) := \underset{N(s,a)>0}{\operatorname{argmax}} \left\{ \hat{Q}(s,a) + c\sqrt{\frac{2\log N(s)}{N(s,a)}} \right\}$$

exploitation

of actions that look currently the best

exploration

of currently suboptimal-looking actions (no good alternatives are missed because of early estimation errors)

Convergence [Kocsis 2006]: for the first state s of a single MCTS episode

$$\pi^{\text{UCT}}(s) \to a^* := \pi^*(s) \quad \text{for } n \to +\infty$$

Deep Learning: 13-AlphaZero [31]

MCTS: greedy, selection and simulation policies

• Greedy policy:

$$\pi^{\operatorname{gre}}(s) := \underset{N(s,a)>0}{\operatorname{argmax}} \hat{Q}(s,a)$$

Selection policy: Upper Confidence Bound applied to Trees (UCT)

$$\pi^{\text{sel}}(s) := \pi^{\text{UCT}}(s) := \underset{N(s,a)>0}{\operatorname{argmax}} \left\{ \hat{Q}(s,a) + c\sqrt{\frac{2\log N(s)}{N(s,a)}} \right\}$$

Simulation policy: Random Uniform Policy

$$\pi^{\text{sym}}(s) := a \quad \text{with } P(s, a) = \frac{1}{|\mathcal{A}(s)|}$$

set of admissible actions in state s

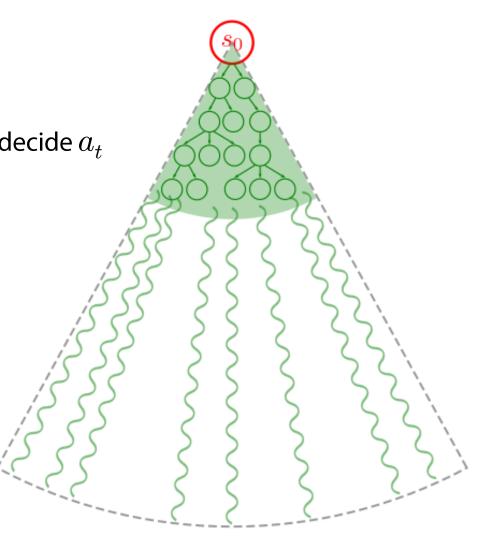
Deep Learning: 13-AlphaZero [32]

```
Algorithm 2 UCT
    procedure UCTSEARCH(s_0)
        while time remaining do
            \{s_0, ..., s_T\}, R = SIMULATE(s_0)
                                                             procedure UCB1(s)
                                                                a^* = \operatorname{argmax} Q(s, a) + c\sqrt{\frac{2 \log N(s)}{N(s, a)}}
            BACKUP(\{s_0, ..., s_T\}, R)
        end while
                                                                 return a^*
        return argmax Q(s_0, a)
                                                             end procedure
    end procedure
                                                             procedure BACKUP(\{s_0, ..., s_T\}, R)
    procedure SIMULATE(s_0)
                                                                 for t = 0 to T - 1 do
        t = 0
                                                                     N(s_t) += 1
        R=0
                                                                     N(s_t, a_t) += 1
        repeat
                                                                     Q(s_t, a_t) += \frac{R - Q(s_t, a_t)}{N(s_t, a_t)}
            if s_t \in \mathcal{T} then
                                                                 end for
                a = \text{UCB1}(s_t)
                                                             end procedure
            else
                NewNode(s_t)
                                                             procedure NEWNODE(s)
                a_t = \text{DEFAULTPOLICY}(s_t)
                                                                 N(s) = 0
            end if
                                                                 for all a \in \mathcal{A} do
            s_{t+1} = \text{SAMPLETRANSITION}(s_t, a_t)
                                                                     N(s,a) = 0
            r_{t+1} = SAMPLEREWARD(s_t, a_t, s_{t+1})
                                                                     Q(s,a) = \infty
            R = R + r_{t+1}
                                                                 end for
            t += 1
                                                                 T.Insert(s)
        until Terminal(s_t)
                                                             end procedure
        return \{s_0, ..., s_t\}, R
    end procedure
```

MCTS episode

Monte Carlo Tree Search episode:

- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MCTS step to expand the tree and decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2-5 until end game

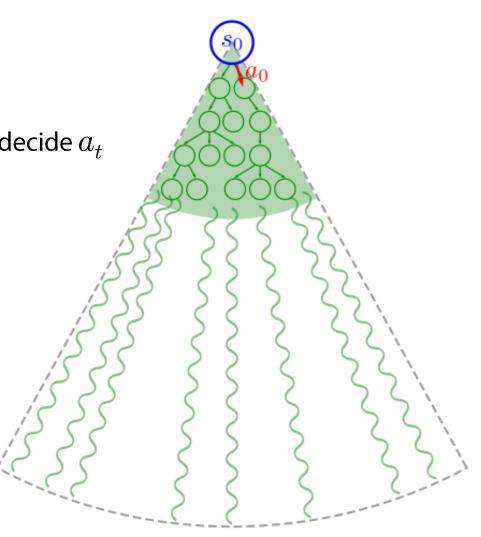


[34]

MCTS episode

Monte Carlo Tree Search episode:

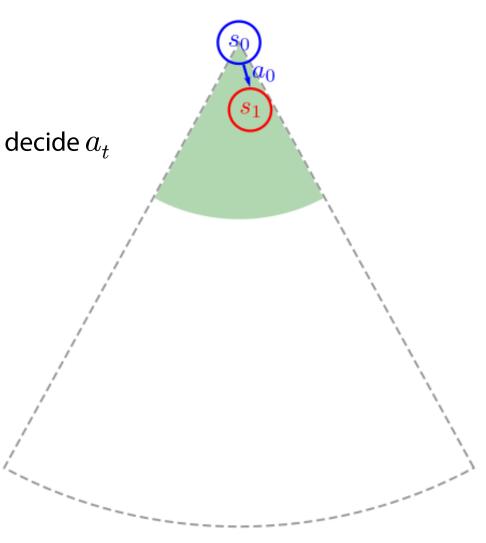
- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MCTS step to expand the tree and decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2-5 until end game



MCTS episode

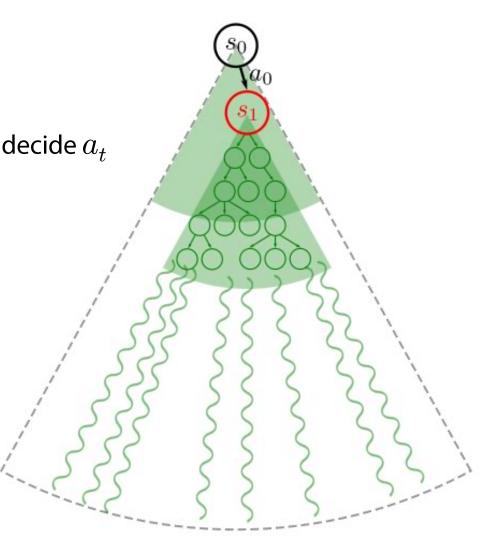
Monte Carlo Tree Search episode:

- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MCTS step to expand the tree and decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2-5 until end game



Monte Carlo Tree Search episode:

- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MCTS step to expand the tree and decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2-5 until end game



Deep Learning : 13-AlphaZero

Monte Carlo Tree Search episode:

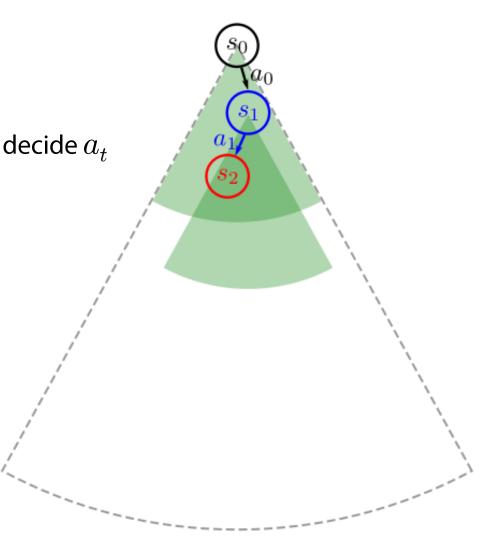
- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MCTS step to expand the tree and decide a_{t}
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2-5 until end game



Deep Learning: 13-AlphaZero

Monte Carlo Tree Search episode:

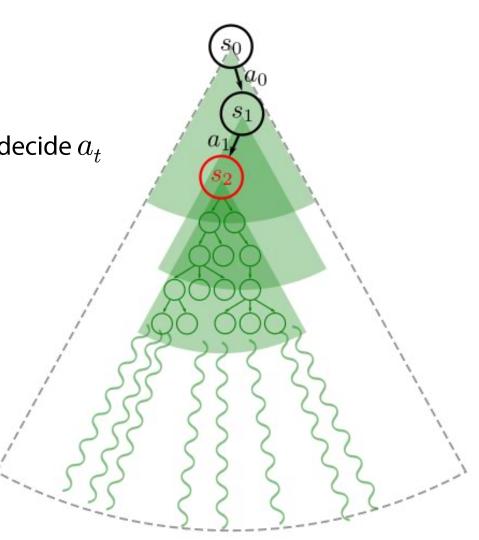
- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MCTS step to expand the tree and decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2-5 until end game



Deep Learning : 13-AlphaZero

Monte Carlo Tree Search episode:

- 1) set t := 0
- 2) current state $s := s_t$
- 3) use MCTS step to expand the tree and decide a_t
- 4) compute $s_{t+1} := \tau(s_t, a_t)$
- 5) set t := t + 1
- 6) repeat 2-5 until end game



[40]

Deep Learning : 13-AlphaZero

Monte Carlo Tree Search (MCTS) method

Monte Carlo Tree Search method:

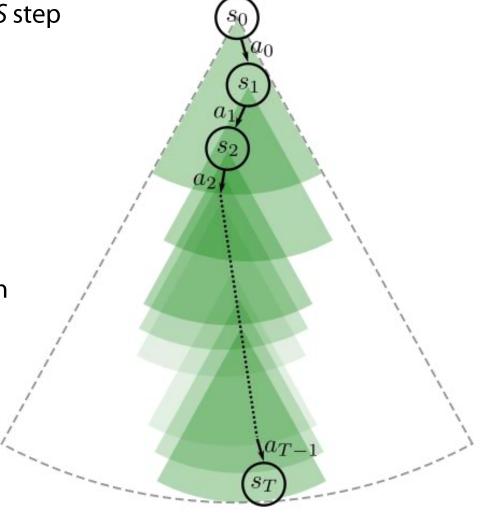
 memory of past playouts in a single MCTS step (collected in the tree statistics)

 knowledge transfer between MCTS steps (by reusing subtrees already explored)

 optimal policy only <u>partially</u> defined (on actually computed states)

• <u>intrinsically stochastic</u> policy optimization (the same initial state can give rise to different optimizations)

• What about <u>knowledge transfer</u>
between MCTS episodes?
transferring the entire MCTS tree
would rapidly cause its explosive growth...



Deep Learning: 13-AlphaZero [41]

Dealing with Stochasticity and Uncertainty

Stochasticity and Uncertainty: general setting

Stochastic reward:

- immediate reward $r(s_t, a_t)$ is obtained when performing action a_t in state s_t
- delayed reward is obtained only at the end of the game

$$r(s_t) := \begin{cases} 0 & \text{if } s_t \text{ is not a terminal state} \\ r & \text{otherwise} \end{cases}$$

possibly with $P(r \mid s_t, a_t)$ or $P(r \mid s_t)$ respectively

Stochastic policy:

policy
$$\pi(s,a) := P(a \mid s)$$
 is a probability distribution

• Uncertainty of execution:

stochastic transition function
$$\tau:(s_t,a_t)\mapsto s_{t+1}$$
 with $P(s_{t+1}\mid s_t,a_t)$

Deep Learning: 13-AlphaZero [43]

Reinforcement Learning (RL)

Value function:

$$V^\pi(s) := \mathbb{E}_\pi[R \mid s_0 = s]$$
 mean over the trajectories following policy π

Optimal value:
$$V^*(s) := \max_{\pi} V^{\pi}(s) \ \forall s$$

• Action-value function:

$$Q^{\pi}(s_t, a) := \mathbb{E}_{\pi}[R \mid s_0 = s, a_0 = a]$$

Optimal action-value:
$$Q^*(s,a) := \max_{\pi} Q^{\pi}(s,a) \ \forall s,a$$

Optimal policy:
$$a^*(s) = \underset{a}{\operatorname{argmax}}[Q^{\pi}(s, a)]$$

Connection:
$$V^{\pi}(s) = \mathbb{E}_{\pi}[Q^{\pi}(s,a)]$$
 and $V^{*}(s) = \max_{a}[Q^{*}(s,a)]$

Deep Learning: 13-AlphaZero [44]

AlphaZero:

MCTS + DNN

Deep Learning: 13-AlphaZero [45]

Monte Carlo Tree Search (MCTS) method

MCTS method:

• <u>memory</u> of past playouts in a single MCTS step (collected in the tree statistics)

 knowledge transfer between MCTS steps (by reusing subtrees already explored)

 optimal policy only <u>partially</u> defined (on actually computed states)

• <u>intrinsically stochastic</u> policy optimization (the same initial state can give rise to different optimizations)

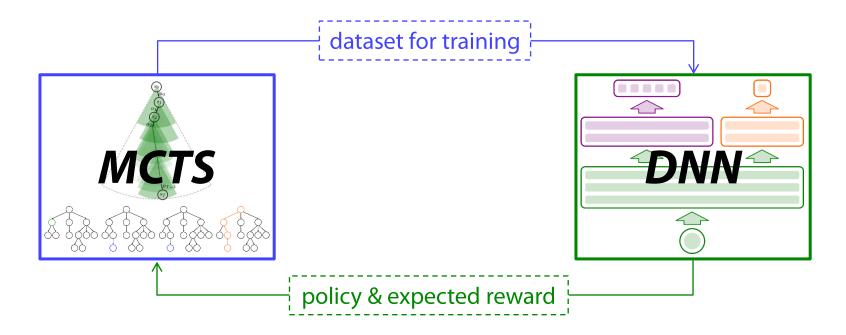
What about <u>knowledge transfer</u>
 between MCTS episodes?
 transferring the entire MCTS tree
 would rapidly cause its explosive growth...

 a_{T-1}

Deep Learning: 13-AlphaZero [46]

Knowledge transfer between MCTS episodes

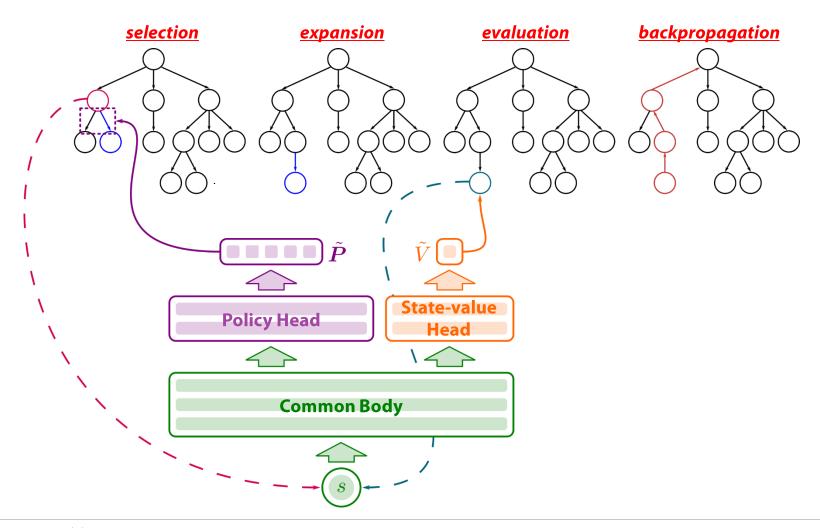
- **AlphaZero** [Silver et al. 2017]
 - Monte Carlo Tree Search (MCTS): improves the policy by focusing on the most promising actions
 - <u>Deep Neural Network (DNN):</u>
 learns the improved policy and transfers it between MCTS episodes



Deep Learning: 13-AlphaZero [47]

AlphaZero

AlphaZero = MCTS + DNN

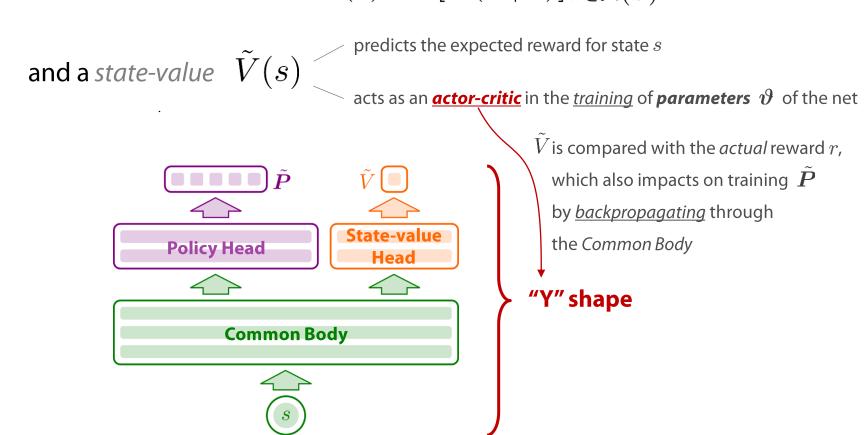


Deep Learning: 13-AlphaZero [48]

DNN in AlphaZero

DNN in AlphaZero

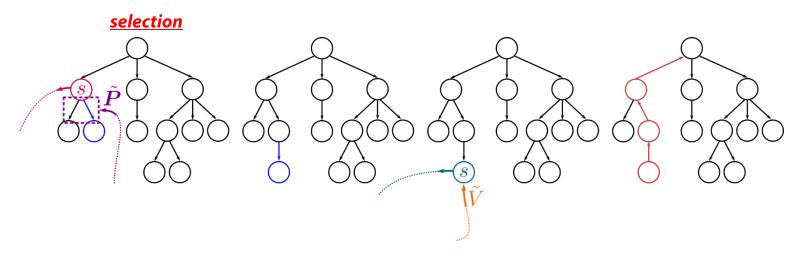
- <u>input:</u> a state s
- output: a probability distribution $\tilde{P}(s) := [\tilde{P}(a \mid s)]_{a \in \mathcal{A}(S)}$



stochastic policy (a vector of probabilities)

Deep Learning: 13-AlphaZero [49]

MCTS step in AlphaZero

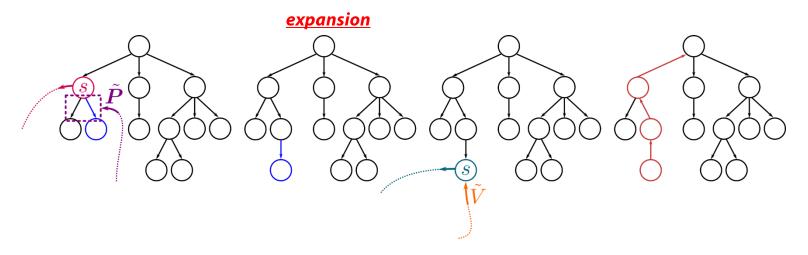


<u>selection</u>: UCT policy is replaced with **PUCT** ("Predictor" + UCT)

$$\pi^{\text{PUCT}}(s) := \underset{a}{\operatorname{argmax}} \left\{ \hat{Q}(s, a) \text{ for DNN policy} \atop \hat{Q}(s, a) + c(s) \tilde{P}(a \mid s) \underbrace{\sqrt{N(s)}}_{N(s, a) + 1} \right\}$$
 exploration rate $c(s) := \log \frac{1 + N(s) + c_{\text{base}}}{c_{\text{base}}} + c_{\text{init}}$ avoids division by 0 solution.

Deep Learning: 13-AlphaZero [50]

MCTS step in AlphaZero

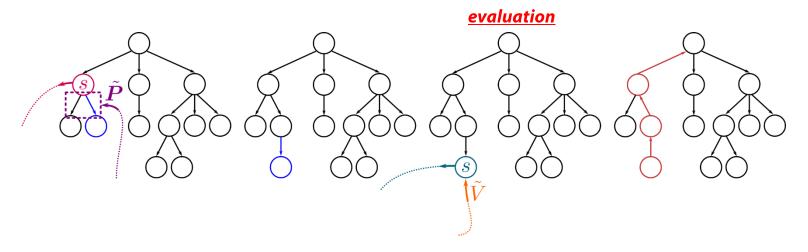


• <u>expansion</u>: initialization of the leaf new node s_L :

$$N(s_L):=0$$
 and $\forall\,a\in\mathcal{A}(s_L)$ $N(s_L,a_L):=0,$ $\hat{Q}(s_L,a_L):=+\infty$

Deep Learning: 13-AlphaZero [51]

MCTS step in AlphaZero



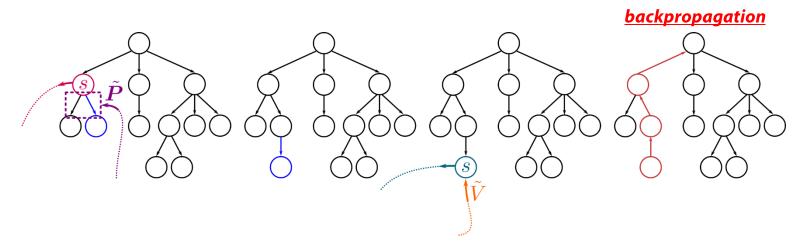
• <u>expansion</u>: initialization of the leaf new node s_L :

$$N(s_L) := 0$$
 and $\forall a \in \mathcal{A}(s_L)$ $N(s_L, a_L) := 0$, $\hat{Q}(s_L, a_L) := +\infty$

• <u>evaluation</u> (in place of <u>simulation</u>): expected reward is $\tilde{V}(s_L)$

Deep Learning: 13-AlphaZero [52]

MCTS step in AlphaZero



• <u>expansion</u>: initialization of the leaf new node s_L :

$$N(s_L) := 0$$
 and $\forall a \in \mathcal{A}(s_L)$ $N(s_L, a_L) := 0$, $\hat{Q}(s_L, a_L) := +\infty$

- <u>evaluation</u> (in place of <u>simulation</u>): expected reward is $\tilde{V}(s_L)$
- <u>backpropagation</u>: for each state s and action a visited in selection/expansion:

$$N(s) := N(s) + 1,$$

$$N(s,a) := N(s,a) + 1$$
 and
$$\hat{Q}(s,a) := \hat{Q}(s,a) + \underbrace{\tilde{V}(s_L) - \hat{Q}(s,a)}_{N(s,a)}$$

Deep Learning: 13-AlphaZero [53]

MCTS step in AlphaZero: policies

Selection policy: PUCT

$$\pi^{\text{sel}}(s) := \pi^{\text{PUCT}}(s) := \underset{a}{\operatorname{argmax}} \left\{ \hat{Q}(s, a) + c(s) \tilde{P}(a \mid s) \frac{\sqrt{N(s)}}{N(s, a) + 1} \right\}$$

Output policy:

$$\pi^{\text{out}}(s) \sim \left[\hat{P}(a \mid s) := \frac{N(s, a)}{N(s)}\right]_{a \in \mathcal{A}(s)}$$

taking frequencies as probabilities (in place of their argmax as output action) ensures <u>exploration</u>

(the <u>simulation</u> policy does not exist anymore)

Deep Learning: 13-AlphaZero [54]

DNN training in AlphaZero

Data items from a single MCTS episode:

After an MCTS episode $\mathcal{E}:=\langle s_0,a_0,s_1,\ldots,a_{T-1},s_T \rangle$ with actual reward $\hat{V}^{\mathcal{E}}:=r(s_T)$:

• for each $\underline{\textit{non-terminal}}$ state $\,s_i\,\,(i=0\ldots T-1)$ in $\,\mathcal{E}\,$

$$\hat{P}(s_i) := \left[\hat{P}(a \mid s_i) := rac{N(s_i, a)}{N(s_i)}
ight]_{a \in \mathcal{A}(s_i)}$$
 vector of frequencies

ullet the **output** of ${\mathcal E}$ is

$$D^{\mathcal{E}} := \left\{ \left\langle s_i, \hat{m{P}}(s_i), \hat{V}^{\mathcal{E}}
ight
angle
ight\}_{i=0...T-1}$$
data item

Deep Learning: 13-AlphaZero [55]

 a_{T-}

DNN training in AlphaZero

Iteration:

times 1) play one MCTS episode \mathcal{E}_j 2) collect data items $D^{\mathcal{E}_j}$

3) train the parameters of the DNN by using as dataset

$$D := \bigcup_{j=1}^K D^{\mathcal{E}_j}$$

• After <u>enough</u> iterations:

$$\pi^{\text{DNN}}(s) := \underset{a \in \mathcal{A}(s)}{\operatorname{argmax}} \tilde{P}(a \mid s) \to \pi^*(s) \quad \forall s$$

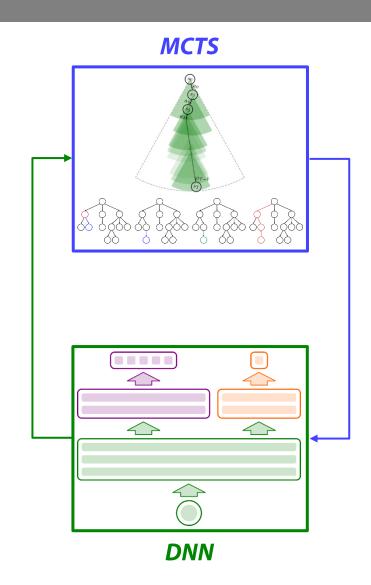
Deep Learning: 13-AlphaZero [56]

AlphaZero

• AlphaZero:

- <u>memory</u> of past playouts in a single MCTS step (collected in the tree statistics)
- <u>knowledge transfer</u> between MCTS steps (by reusing subtrees already explored)
- <u>knowledge transfer</u> between MCTS episodes (provided by DNN)
- $\frac{deterministic}{deterministic}$ policy optimization with policy defined for all states s:

$$\pi^{\mathrm{DNN}}(s) := \operatorname*{argmax}_{a \in \mathcal{A}(s)} \tilde{P}(a \mid s)$$



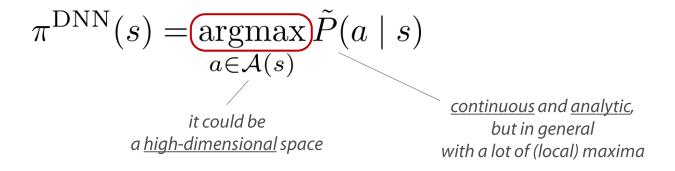
Deep Learning: 13-AlphaZero [57]

AlphąZero in Continuous Spąces

Deep Learning: 13-AlphaZero [58]

Continuous Action Spaces

- What happens when the space A(s) of admissible actions is continuous?
 - How to compute the deterministic <u>policy optimization</u> in practice?



• How to initialize (and deal with) a <u>new node</u> s in the MCTS <u>expansion</u> phase? Standard initialization requires:

$$\begin{array}{ccc} \forall \, a \in \mathcal{A}(s) & N(s,a) := 0, & \hat{Q}(s,a) := +\infty \\ & \underbrace{\text{\it each admissible action}}_{\text{\it is initialized}} & \underbrace{\text{\it each admissible action}}_{\text{\it will be evaluated at least once}} \end{array}$$

Deep Learning: 13-AlphaZero [59]

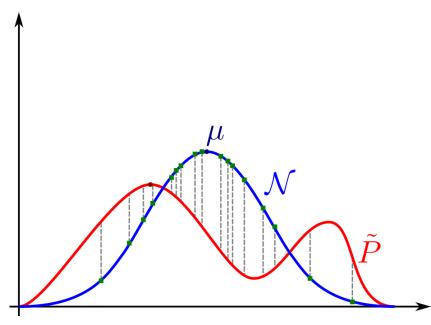
Cross-Entropy Maximization (CEM)

CEM Method:

- 1) choose <u>at random</u> initial values $\mu, \sigma \in \mathbb{R}^d$
- 2) <u>sample</u> m actions from

 $rac{normal}{normal}$ probability distribution $\sqrt{\frac{variances}{N(\mu, \mathrm{diag}(\sigma))}}$

3) evaluate $\left\{\tilde{P}(a_i \mid s)\right\}_{i=1}^m$



Deep Learning: 13-AlphaZero [60]

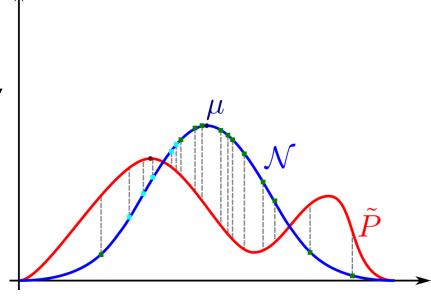
Cross-Entropy Maximization (CEM)

CEM Method:

- 1) choose <u>at random</u> initial values $\mu, \sigma \in \mathbb{R}^d$
- 2) <u>sample</u> m actions from

mean variances (diagonal matrix)
$$\mathcal{N}(\mu, \operatorname{diag}(\sigma))$$

- 3) evaluate $\left\{ \tilde{P}(a_i \mid s) \right\}_{i=1}^m$
- 4) select k < m actions with highest probability



Deep Learning: 13-AlphaZero [61]

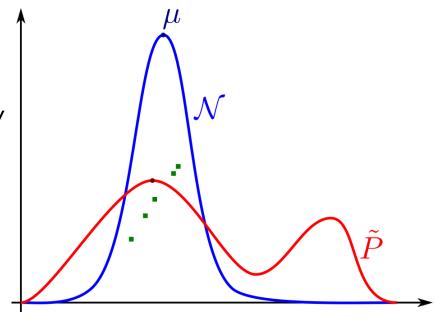
Cross-Entropy Maximization (CEM)

CEM Method:

- 1) choose <u>at random</u> initial values $\mu, \sigma \in \mathbb{R}^d$
- 2) <u>sample</u> m actions from

mean variances (diagonal matrix)
$$\mathcal{N}(\mu, \operatorname{diag}(\sigma))$$

- 3) evaluate $\left\{ \tilde{P}(a_i \mid s) \right\}_{i=1}^m$
- 4) select k < m actions with highest probability
- 5) fit new μ, σ
- 6) if terminated, return μ otherwise go to 2)



Deep Learning: 13-AlphaZero

Progressive Widening (PW)

- **Progressive Widening (PW)** of action space $\mathcal{A}(s)$ [Chaslot et al., 2007]:
 - ullet For any $\underline{new\ node}\ s$ created in the MCTS $\underline{expansion}$ phase
 - 1. initialize $A(s) := \{a_1, \dots, a_k\}$ with k admissible actions by **sampling** the **probability** $\tilde{P}(a \mid s)$ (given by the DNN)
 - 2. initialize the statistics for each action $a \in \mathcal{A}(s)$ as usual:

$$N(s,a) := 0, \quad \hat{Q}(s,a) := +\infty$$

Deep Learning: 13-AlphaZero [63]

Progressive Widening (PW)

- **Progressive Widening (PW)** of action space $\mathcal{A}(s)$ [Chaslot et al., 2007]:
 - ullet For any $\underline{new\ node}\ s$ created in the MCTS $\underline{expansion}$ phase
 - 1. initialize $A(s) := \{a_1, \dots, a_k\}$ with k admissible actions by **sampling** the **probability** $\tilde{P}(a \mid s)$ (given by the DNN)
 - 2. initialize the statistics for each action $a \in \mathcal{A}(s)$ as usual:

$$N(s,a) := 0, \quad \hat{Q}(s,a) := +\infty$$

- Before any <u>selection</u> phase in state s, compare number of actions $|\mathcal{A}(s)|$ and number of visits N(s):
 - 1. if $|\mathcal{A}(s)|^2 \leq N(s)$ add a new action a' by sampling the probability $\tilde{P}(a \mid s)$ not enough actions, a lot of visits a' will be the next selected action

$$\mathcal{A}(s) := \mathcal{A}(s) \cup \{a'\} \quad \text{with} \quad N(s,a') := 0, \quad \hat{Q}(s,a') := +\infty$$

2. proceed with the usual selection phase

Deep Learning: 13-AlphaZero [64]

Sampling DNN probability

- lacktriangle How to sample the DNN probability $ilde{P}(a \mid s)$?
 - Probability $\tilde{P}(a \mid s)$ could be the *normalization* of a function such as

$$p(a\,;s) = \boldsymbol{w} \cdot g(\boldsymbol{W}^{[\ell]}g(\cdots g(\boldsymbol{W}^{[1]}_s\boldsymbol{a} + \boldsymbol{b}^{[1]}_s) + \cdots) + \boldsymbol{b}^{[\ell]}) + b$$
 non-linear continuous function depending on state s

vector representing action a

• Probability $\tilde{P}(a \mid s)$ is computable given the state s and the action a

• What about sampling $\tilde{P}(a \mid s)$?

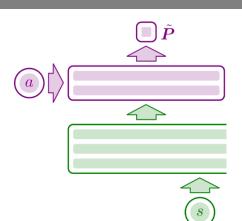
Deep Learning: 13-AlphaZero [65]

Advanced methods: Neural Importance Sampling

Deep Learning: 13-AlphaZero [66]

Neural Importance Sampling

■ How to sample the DNN probability $P(a \mid s)$? we can use the Importance Sampling!



Neural Importance Sampling

- 1) choose a suitable *bijector* ${\mathcal T}$
- 2) sample $oldsymbol{y} \in [0,1]^d$ with uniform probability distribution u
- 3) apply \mathcal{T} and compute the (vector representing the) action

$$a := \mathcal{T}(y \mid s)$$

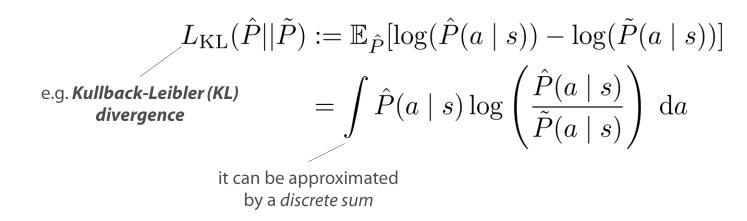
Then

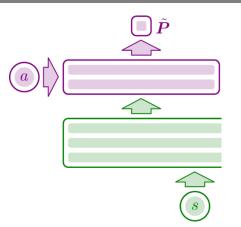
$$\tilde{P}(a \mid s) = \left| \det \left(\frac{\partial \mathcal{T}(y)}{\partial y} \Big|_{y = \mathcal{T}^{-1}(\boldsymbol{a} \mid s)} \right) \right|^{-1} u(\mathcal{T}^{-1}(\boldsymbol{a} \mid s))$$

Deep Learning: 13-AlphaZero [67]

Neural Importance Sampling

- Training:
 - minimize a suitable *loss*:





• over the *dataset*

$$D^f := \left\{ \langle a_j, s_i, \hat{P}(a_j \mid s_i) \rangle \right\}$$

Deep Learning: 13-AlphaZero [68]