Universita degli
Studi di Pavia

Deep Learning

13 - AlphaZero

Marco Piastra & Andrea Pedrini(*)

(*) Dipartimento di Matematica F. Casorati

This presentation can be downloaded at:

http://vision.unipv.it/DL

Deep Legrning : 13-AlphaZero

[1]

http://vision.unipv.it/DL

Playing Games with Trees

Deep Learning : 13-AlphaZero [2]

Tree representation

= Game Tree: (

The current state s, attimetisanode with depth ¢ ® 6 O

ag—1

Any admissible action a, is an edge of the tree

(branching factor = number of admissible actions in a state) . . e . ‘ .

y

State s, | obtained from s, afterexecutinga, (OOH(OOH() (O (O
is determined by a transition function

T: (St,a) — Spa1 OO O O
(O

Deep Learning : 13-AlphaZero [3]

Tree representation

* Game Tree: ” O
The current state s, attimetisanode with depth ¢)) O
Any admissible action a, is an edge of the tree “

(branching factor = number of admissible actions in a state) @ . . . ‘ .
as

State s, ; obtained from s, afterexecutinga, (NG OCO) (O
is determined by a transition function a

3
T: (St,a) — Spa1 OO @) O
-

A playout is a path <80, ag,S1,---,0a7_1, ST) o
from the initial state Sy to a terminal state St

A reward 7 is the outcome of a playout

A policyisamap 7 : S +—> a which selects action a to be executed in state s

Deep Learning : 13-AlphaZero [4]

Po//'cy optimization

= Goal: finding the best policy 7™ (20 a
such that the reward 7* of playout
* * * * . . a @
<309a’07817°"7a’T—178T> /
with a;; := 7 (s;)and s;, = T(s;,a;) (O QG *
2
is maximal OO0 OO (s3)
,r>l<
OO O

O

Deep Legrning : 13-AlphaZero

[5]

“Brute Force”: 3 simple (bad) policy optimization

= Goal: finding the best policy 7™

= “Brute Force”:
1. explore the entire tree by following all possible paths
2. select the path(s) with the best outcome (and randomly choose one of them)
3. play by following the policy associated with that path

* Problems:
Huge game tree with infeasible full exploration *

(branching factor in Go is around 200)

Infinitely many admissible actions

Intrinsic stochasticity and uncertainty after playing an action

Image from https://thenewstack.io/google-ai-beats-human-champion-complex-game-ever-invented/

Deep Learning : 13-AlphaZero [6]

Stochasticity and Uncertainty: examples

= Multi-armed bandits % i.e. which arm to play

The reward after each action is stochastic

random variable

\

—

probability of reward 7 for action a

Q(s,a) :=E[R| s,a] = Z rP(r|s,a)

/ .

Q-value (expected reward of action a performed in state s)

= Games with two players (White and Black):

White plays action a, in state s,

but her next state s, ; depends on Black’s next action

Uncertainty of execution:
nondeterministic 7 : (S¢, a¢) — S¢r1 with

/

transition function

P\(8t+1 | Staat)

probability transition distribution

Deep Legrning : 13-AlphaZero

[7]

Stochasticity and Uncertainty: tree representation

» Simplest case scenario
e deterministic transition

 deterministic reward

= Multi-armed bandits

Actually, this is not a tree!

e deterministic transition - R P
Ly and became one)
* stochastic reward ‘-~) a
A/

= Uncertainty of execution:
* stochastic transition

e either deterministic (White vs Black)
or stochastic reward ’

Deep Legrning : 13-AlphaZero

Monte Carlo method:
step by step simulations

Deep Learning : 13-AlphaZero [9]

Monte Carlo (MC) step

= Goal: finding the best policy ™ (avoiding brute-force approach)

It can be done iteratively, by focusing on the single best action a™ =: 7" ()
in the current state s

= Monte Carlo (MC) step: (abramson 1990]

repeat { 1) play a pseudo-random playout from current state s

ntimes | 2) compute and save the reward 7 obtained at the end of the playout

3) for each admissible action a in state s compute the mean of the rewards

estimates — A]_

Q(S,CL) Q(S a,) = r. -
9 . § a,t
N(s,a) ’
i=1
/ reward of 7t playout with first action a

number of playouts with first action a

A

4) a” := argmax,_, (s, a) isthe action with the highest mean

Deep Learning : 13-AlphaZero [10]

Monte Carlo episode

= Monte Carlo episode:

1) sett:=0 @

2) currentstate s:=s, 'f_,i'-)
4 .
)
3) use MCstep to decide a, ‘ 3,
W3
%
4) compute S¢11 = T(S¢,) , N
! b
%
5) sett:=t+1 s A
! !
[f '\
6) repeat 2)to 5) until end game /4 "\
') b
J'; ‘\
! A
Fl n
rf b
! %
f" \‘-
))
! A
f b
rf b
J""h. .-"L

—
—
—_— -—
— —
O o ———

Deep Learning : 13-AlphaZero [11]

Monte Carlo episode

= Monte Carlo episode:

1) sett:=0 @

™ .l_.:,".' 0
2) currentstate s:=s, r;)]
)
3) use MCstep to decide a, / 5,
!)
%
4) compute S¢11 = T(S¢,) , N
! h,
" L
5) sett:=t+1 s N\
! %
. ! %
6) repeat 2)to 5) until end game /4 Y
f; K\\
! \
f! ‘\.
! A
f" \‘ﬁ
! L
! %
" %
! %
J‘H _i_‘ﬁ.

—
o
- -—
- —
e —

Deep Learning : 13-AlphaZero [12]

Monte Carlo episode

= Monte Carlo episode:

1) sett:=0 Q
s \dp
2) currentstate s:=s, K

3) use MCstep to decide a, Y \
IIF \\'\
4) compute S¢11 = T(S¢,)) N
!;! \\‘
5) seti:=t+1 /! \
f A
. ! Y
6) repeat 2)to 5) until end game /; Y
-lflIFIIII \\\
! A
f! \\
! A
f" ‘\
/ \
4 \
! \
J \
.:'H _,‘1.

=
o
— p—
— —
I peep———

Deep Learning : 13-AlphaZero [13]

Monte Carlo episode

= Monte Carlo episode:

1) sett:=0 @

2) currentstate s:=8, i
3) use MC step to decide a, ;D) o
! - A
/ % \
P — ! ! \
4) compute S¢11 = T(S¢,) / "
i)
/!) \
5) sett:=t+1 / \
! b
! %
6) repeat2)to 5)until end game s \
h !
f; \\
; %
/! \\
1; \‘\
f.ﬂ‘; \\\
f ‘\
'H'-.‘_‘ .:L

- —
—
—_ —
i —

Deep Learning : 13-AlphaZero [14]

Monte Carlo episode

= Monte Carlo episode:

1) sett:=0

current state s:=s, J/ @
/ N
/ A\
o / n
3) use MCstep to decide a, A LR
4 ,// ‘ \\\
) compute S;11 = T(S¢,)) | Y
/, \\
5) sett:=t+1
/ \
. / \
6) repeat 2)to 5) until end game i \
/// \\\
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
A8 /\

-
- -
. -
— -
™ -
T - ———— -

Deep Learning : 13-AlphaZero [15]

Monte Carlo episode

= Monte Carlo episode:
1) sett:=0

2) currentstate s:=s,
3) use MCstep to decide a,
4) compute S¢11 = T(S¢,)

5) sett:=t+1

6) repeat 2)to 5) until end game

Deep Learning : 13-AlphaZero [16]

Monte Carlo episode

= Monte Carlo episode:

1) sett:=0
®,
2) 3

current state s:=s, / @
/ \
/ \
3) use MC step to decide a, "
o() N
y— /
4) compute S¢11 = T(S¢,)) s Y
P) \
\
5) sett:=t+1 N \
/ \
. / \
6) repeat2)to 5)until end game /; C \
/l/ \\\
/ \
/,) \\
/l ¢ \\
/ \
/ \
/ \
/ \
/ \
/ \

=~ -
"~ — -
-~ . . -

Deep Learning : 13-AlphaZero [17]

Monte Catlo method

= Monte Carlo method:

* nomemory of past playouts in a single MC step
(only the reward is saved)

* no transfer knowledge between MC steps

* no construction of game subtree

« optimal policy only partially defined

(on actually computed states)

* intrinsically stochastic policy optimization
(the same initial state ’
can give rise to different optimizations) /

* no knowledge transfer /
between MC episodes ’

Deep Learning : 13-AlphaZero [18]

Monte Carlo Tree Search (MCTS):

simulgtion + partial expansion

Deep Learning : 13-AlphaZero [19]

MCTS episode: basic idez

= Ateach step (with current state s,):

a subgraph G, with root s, is created

statistics (number of visits and estimate outcomes)
for states and actions in the subgraph are saved

best action a, is decided (accordingly to those statistics)

next state s;11 := 7(s¢, a;) is computed

S~a -
-~ -
- -
-~ —
- -
il ———

Deep Legrning : 13-AlphaZero

[20]

MCTS episode: basic ides

= Ateach step (with current state s,):

* asubgraph G, with root s, is created

e statistics (number of visits and estimate outcomes)
for states and actions in the subgraph are saved

* bestaction a, is decided (accordingly to those statistics)

e nextstate s;11 := 7(s¢,a;) is computed

= |n the next step (with current state s,):

» thesubgraph of G, with root s, , is expanded

to create G, /
» the statistics are updated and saved s
* bestaction a, ., is decided

* nextstate sy;11 := 7(S¢, a;) is computed

- -
= - -
=~ - -

—-—— -

—— e

Deep Legrning : 13-AlphaZero

[21]

MCTS episode: basic ides

= Ateach step (with current state s,):

* asubgraph G, with root s, is created

e statistics (number of visits and estimate outcomes)
for states and actions in the subgraph are saved

* bestaction a, is decided (accordingly to those statistics)

e nextstate s;11 := 7(s¢,a;) is computed

= |n the next step (with current state s,):

» thesubgraph of G, with root s, , is expanded

to create G,
» the statistics are updated and saved
* bestaction a, ., is decided

* nextstate sy;11 := 7(S¢, a;) is computed

-
~So -
-~ -
~ - wt
-~ -

- -

—~ -

T ————— -

Deep Legrning : 13-AlphaZero

[22]

Monte Carlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

1) start from current state S (and the —possibly empty—- stored tree with root s)

Deep Learning : 13-AlphaZero [23]

Monte Carlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

1) start from current state S (and the —possibly empty—- stored tree with root s)
2) traverse the tree by following the selection policy
ﬂ_sel . St =2 Ay
until encountering a leaf node s; (i.e. a state not stored in the tree)

selection

()
OO
O ONIVO®

() (@)

Deep Learning : 13-AlphaZero [24]

Monte Carlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

1) start from current state S (and the —possibly empty—- stored tree with root s)
2) traverse the tree by following the selection policy
7'('861 . St =2 Ay
until encountering a leaf node s; (i.e. a state not stored in the tree)

3) expand the tree by adding S

expansion

()
O OEND
O ONIVO®
(D W

Deep Learning : 13-AlphaZero [25]

Monte Carlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

1) start from current state S (and the —possibly empty—- stored tree with root s)
2) traverse the tree by following the selection policy
7'('861 . St =2 Ay
until encountering a leaf node s; (i.e. a state not stored in the tree)

3) expand the tree by adding S

4) play one pseudo-random playout from state s; simulation
by following the simulation policy @
oy St = Gy

and obtain the reward r @ @ @

O ONIVO®
(D W

1

Deep Learning : 13-AlphaZero [26]

Monte Catlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

1)
2)

3)
4)

5)

start from current state S (and the —possibly empty- stored tree with root s)
traverse the tree by following the selection policy
7'('861 . St =2 Ay

until encountering a leaf node s; (i.e. a state not stored in the tree)

expand the tree by adding s;

play one pseudo-random playout from state s; backpropagation
by following the simulation policy @
oy St > Q¢

and obtain the reward r @ @ @
backpropagate 1 (and update the statistics @ @ @ @ @ @

of each encountered state and action)

Deep Legrning : 13-AlphaZero

[27]

Monte Catlo Tree Search (MCTS) step

* Monte Carlo Tree Search (MCTS) step: (coulom 2006]

[1) start from current state S (and the —possibly empty- stored tree with root s)

2) traverse the tree by following the selection policy
7'('861 . St =2 Ay

until encountering a leaf node s; (i.e. a state not stored in the tree)

repeat_ 3) expand the tree by adding S

]

4) play one pseudo-random playout from state s;
by following the simulation policy

repeat] T s ay
n times

m times

and obtain the reward r

5) backpropagate r (and update the statistics
of each encountered state and action)

Deep Learning : 13-AlphaZero [28]

Monte Catlo Tree Search (MCTS) step

= Monte Carlo Tree Search (MCTS) step: (coulom 2006]

[1) start from current state S (and the —possibly empty- stored tree with root s)

2) traverse the tree by following the selection policy
sel .

7 . St =2 Ay
until encountering a leaf node S (i.e. a state not stored in the tree)
repeat_ 3) expand the tree by adding s
m times 4) play one pseudo-random playout from state St

by following the simulation policy

re.peat* oy - St > Q¢
n times .
and obtain the reward r

5) backpropagate r (and update the statistics
of each encountered state and action)

6) decide the best action to be performed in s with the greedy policy
T s a

Deep Learning : 13-AlphaZero [29]

MCTS statistics: expansion and backpropagation

= MCTS statistics for state s and action a:

N(s) = total number of times state s has been visited

N(s, a) = number of times action a has been selected in state s

A

Q(S, a) = estimated outcome of action a when selected in state s

A

= Expansion initialization: N(s) :=0, N(s,a):=0, Q(s,a):=0

» Backpropagation update after a single playout with reward 7
N(s):=N(s)+1
N(s,a):= N(s,a)+1

~

. o r—Q(s,a)
Q(S,CL) T Q(S,CL) + N(s,a)

Deep Learning : 13-AlphaZero [30]

MCTS: greedy, selection and simulation policies

m G d licy: ’
Greeday policy ﬂ_gre(s) .— argiax Q(Sﬂa)

N (s,a)>0

= Selection policy: Upper Confidence Bound applied to Trees (UCT)

parameter
(default=1)

Wsel(s) — WUCT(S) ;= argmax Q(S,a) —I—\C

2log N(s)

N(s,a)>0 / N(S,CL)
exploitation exploration
of actions of currently suboptimal-looking actions
that look currently the best (no good alternatives are missed

because of early estimation errors)

Convergence [Kocsis 2006]: for the first state s of a single MCTS episode

VT (s) = a* = 7*(s) for n = +o0

Deep Learning : 13-AlphaZero [31]

MCTS: greedy, selection and simulation policies

m G d licy: ’
Greeday policy ﬂ_gre(S) .— argiax Q(Sﬂa)

N (s,a)>0

= Selection policy: Upper Confidence Bound applied to Trees (UCT)

5 (s) := VT (s) := argmax {Q(s, a) + C\/ZlogN(s) }

N (s,a)>0 N(S,CL)

= Simulation policy: Random Uniform Policy
1
[A(s)

N

™ (s) :=a with P(s,a) =

set of admissible actions in state S

Deep Legrning : 13-AlphaZero

[32]

Monte Carlo Tree Search (MCTS) step

Algorithm 2 UCT

procedure UCTSEARCH(sq)
while time remaining do
{s0.....s7}, R = SIMULATE(s0)
BACKUP({sq,....s7},)
end while

return argmax ()(so, a)
acA
end procedure

procedure SIMULATE(sq)

t=20
R=0
repeat
if s; € 7 then
a=UCBI(s;)
else
NEWNODE(s;)
a; = DEFAULTPOLICY (s;)
end if

St41 = SAMPLETRANSITION(S;, ay)
rt41 = SAMPLEREWARD(s¢, a4, S¢41)
R = R + re+1
t+=1
until T'erminal(s;)
return {sq.....s:}. R
end procedure

procedure UCB I(s)

a* = argmax ()(s,a) + ¢
a
return a*

end procedure

2log N (s)
N (s.,a)

procedure BACKUP({so, ..., s7}, R)
fort =0to7 —1do

N(St) += 1
N(s¢,a¢) +=1
R— S¢,0¢
Q(se,at) += %
end for

end procedure

procedure NEWNODE(s)

N(s)=20

foralla € A do
N(s.a)=0
Q(s.a) =

end for

T Insert(s)

end procedure

From: D. Silver, Reinforcement Learning and Simulation-Based Search in Computer Go, PhD Thesis, 2009

Deep Legrning : 13-AlphaZero

[33]

MCTS episode

* Monte Carlo Tree Search episode:

1)
2)
3)
4)
5)
6)

sett:=0 @

current state s:=s; OO

, eloloN
use MCTS step to expand the tree and decide a, BO00 .
compute S¢i1 = T(S¢, at) H5Q0 OO0

sett:=t+1

repeat 2-5 until end game

—
—_
— -
e —

Deep Learning : 13-AlphaZero [34]

MCTS episode

* Monte Carlo Tree Search episode:

1)
2)
3)
4)
5)
6)

set t:=0 @

current state s:=s, Foloy

, OO0
use MCTS step to expand the tree and decide a, B000
compute S¢i1 = T(S¢, at) FeloNolole

sett:=t+1

repeat 2-5 until end game

=
—
- -—
T i

Deep Learning : 13-AlphaZero [35]

MCTS episode

* Monte Carlo Tree Search episode:

1)
2)
3)
4)
5)
6)

sett:=0 @

o
current state S:=5, y
£ el’
f n
use MCTS step to expand the tree and decide a, y h
!.l' \'l-,
el — £ %
compute S¢i1 = T(S¢, at) / S
.F! N\
sett:=t+1 f;' N\
f A
. ! %
repeat 2-5 until end game /; Y
! %
-ff \'\
! A
-f! \\.
! A
f" \\
! L
/ %
£ %
! L
! \

—
—
—_— —
— —
e —

Deep Learning : 13-AlphaZero [36]

MCTS episode

* Monte Carlo Tree Search episode:

1)
2)
3)
4)
5)
6)

sett:=0

current state s:=s, ’
use MCTS step to expand the tree and decide a,
compute S¢i1 = T(S¢, at)

sett:=t+1

repeat 2-5 until end game

Deep Learning : 13-AlphaZero [37]

MCTS episode

* Monte Carlo Tree Search episode:

1)
2)
3)
4)
5)
6)

sett:=0

current state s:=s, ’
use MCTS step to expand the tree and decide a,
compute S¢i1 = T(S¢, at)

sett:=t+1

repeat 2-5 until end game

Deep Learning : 13-AlphaZero [38]

MCTS episode

* Monte Carlo Tree Search episode:

1)
2)
3)
4)
5)
6)

sett:=0
current state s:=s;

use MCTS step to expand the tree and decide a,

IH;
compute S¢i1 = T(S¢, at) A
£
F)
sett:=t+1 /
!
. f
repeat 2-5 until end game J/
!
f.f
!
s
!
!
#
;f
!
"
! %
7 %

—
—
—_— —
— —
e —

Deep Learning : 13-AlphaZero [39]

MCTS episode

* Monte Carlo Tree Search episode:

1)
2)
3)
4)
5)
6)

sett:=0

current state s:=s,
use MCTS step to expand the tree and decide a,
compute S¢i1 = T(S¢, at)

sett:=t+1

repeat 2-5 until end game ;

-
-~
—
-~ —

-
-
-
—— —————-—

Deep Learning : 13-AlphaZero [40]

Monte Carlo Tree Search (MCTS) method

= Monte Carlo Tree Search method:

* memory of past playouts in a single MCTS step
(collected in the tree statistics)

* knowledge transfer between MCTS steps
(by reusing subtrees already explored)

« optimal policy only partially defined

(on actually computed states)

* intrinsically stochastic policy optimization

(the same initial state
can give rise to different optimizations) //
/ \
« What about knowledge transfer I i
. / \
between MCTS episodes? /! X
transferring the entire MCTS tree S e

would rapidly cause its explosive growth...

Deep Learning : 13-AlphaZero [41]

Dealing with
Stochasticity and Uncertainty

Deep Learning : 13-AlphaZero [42]

Stochasticity and Uncertainty: general setting

= Stochastic reward:

« immediate reward r(S;, a,) is obtained when performing action a, in state s,

* delayed reward is obtained only at the end of the game

(51) 0 1if s; is not a terminal state
r(st) :=
! r otherwise

possibly with P(r | s,a,) or P(r | s;) respectively

= Stochastic policy:
policy m(s,a):= P(a | s) isaprobability distribution

* Uncertainty of execution:

stochastic transition function T (St, at) > St+1 with P(St_|_1 | St, at)

Deep Legrning : 13-AlphaZero

[43]

Reinforcement Learning (RL)

= Value function:
VT(s):=E,;[R | sg = 3]

N mean over the trajectories following policy m

Optimal value: V*(s) := max V™ (s) Vs
T

= Action-value function:
Q" (s¢,a) :=E;[R | sog = s,a9 = al

Optimal action-value: Q™ (s,a) := max Q" (s,a) Vs, a
T

Optimal policy: a™(s) = argmax|[Q" (s, a)]
a

Connection: V™ (s) = E,[Q"(s,a)] and V7*(s) = max[Q(s,a)]

a

Deep Learning : 13-AlphaZero [44]

A/;?baZero:
MCTS + DNN

Deep Learning : 13-AlphaZero [45]

Monte Carlo Tree Search (MCTS) method

= MCTS method:

* memory of past playouts in a single MCTS step
(collected in the tree statistics)

* knowledge transfer between MCTS steps
(by reusing subtrees already explored)

» optimal policy only partially defined

(on actually computed states)

* intrinsically stochastic policy optimization

(the same initial state
can give rise to different optimizations) //
/
* What about knowledge transfer)
. /
between MCTS episodes? /!
transferring the entire MCTS tree S

would rapidly cause its explosive growth...

Deep Learning : 13-AlphaZero [46]

Knowledge transfer between MCTS episodes

* AlphaZero siveretal.2017]

* Monte Carlo Tree Search (MCTS):
improves the policy by focusing on the most promising actions

» Deep Neural Network (DNN):
learns the improved policy and transfers it between MCTS episodes

SR iind)
/]\ ______________________________

Deep Learning : 13-AlphaZero [47]

AlphaZero
= AlphaZero=MCTS + DNN

selection expansion evaluation backpropagation

s
| /
| Pl v
\ O Vo
\ (; State-value |
\ k Policy Head] { Head
\ < \
\ f
N\ Common Body
N
N T
~

~
- /
- @ _

Deep Learning : 13-AlphaZero [48]

DNN in AlphaZero

= DNN in AlphaZero
* ijnput: astate s

stochastic policy (a vector of probabilities)

/

 output: a probability distribution 15(8) = [15 (a | S)]a,G.A(S)

~ - predicts the expected reward for state s
and a state-value V' (s)

T acts as an actor-critic in the training of parameters 19 of the net

V'is compared with the actual reward r,

[] P 1% D A which also impacts on training P
<> < by backpropagating through
Policy Head] Statezvalue the Common Body
L Head)
- N > “Y" shape
Common Body
<

Deep Learning : 13-AlphaZero [49]

MCTS step in AlphaZero

= MCTS step in AlphaZero

selection

* selection: UCT policy is replaced with PUCT (“Predictor” + UCT)

MCTS estimation of S. a) for DNN polic
Q(s,a) polcy DNN policy

PUCT) N o
~PUC (s) := argmax {QWC(S)P(G | S)N(Saa)@}

a

1+ N
exploration rate c(s) := log T NV(s) + Chase + Cinit

(slowly grows with search time) Chase

avoids division by 0

Deep Learning : 13-AlphaZero [50]

MCTS step in AlphaZero

= MCTS step in AlphaZero

expansion

* expansion: initialization of the leaf new node s;:
N(sp):=0 and Vae€ A(sp) N(sp,ar) =0, Q(sp,ar):=4o0

Deep Learning : 13-AlphaZero [51]

MCTS step in AlphaZero

= MCTS step in AlphaZero

evaluation

* expansion: initialization of the leaf new node s;:
N(sp):=0 and Vae€ A(sp) N(sp,ar) =0, Q(sp,ar):=4o0

« evaluation (in place of simulation): expected rewardis V(s

Deep Learning : 13-AlphaZero [52]

MCTS step in AlphaZero

= MCTS step in AlphaZero

backpropagation

&O

* expansion: initialization of the leaf new node s;:
N(sp):=0 and Vae€ A(sy) N(sp,ar) =0, Q(sp,ar):=4o0

O

« evaluation (in place of simulation): expected rewardis V(s

 backpropagation: for each state s and action a visited in selection/expansion:

N(s):= N(s)+1, - A . | 8L| Qsa)
N(s,a) := N(s,a)+1 d Qls,a):=Qfs,a)+ ,a)

Deep Learning : 13-AlphaZero [53]

MCTS step in AlphaZero: policies

= Selection policy: PUCT

5 (s) := "V (5) := argmax {Q(s, a) + c(s)P(a | s) N(s) }

a

= Qutput policy:
SRR N(s, a)

N(s)

O (s) ~ [P(a | 5) =

acA(s)

taking frequencies as probabilities
(in place of their argmax as output action)
ensures exploration

(the simulation policy does not exist anymore)

Deep Learning : 13-AlphaZero [54]

DNN training in AlphaZero

* Data items from a single MCTS episode:
After an MCTS episode £ := <80, agp,S1s--.,a7-_1, ST>
with actual reward V¢ = r(srt):

» for each non-terminal state s; (i =0...7T —1)in &
N(S’ia CL)} Y
N(S"/) acA(s;)

Ps) = Pla]s) =

vector of frequencies

* the output of & is

data item

Deep Learning : 13-AlphaZero [55]

DNN training in AlphaZero

= [teration:
K | 1) play one MCTS episode &
times | 2) collect data items D%

3) train the parameters of the DNN by using as dataset

K
D:UD%
j=1

= After enough iterations:

mPNN(s) := argmax P(a | s) — 7*(s) Vs
acA(s)

Deep Learning : 13-AlphaZero [56]

* AlphaZero: MCTS

* memory of past playouts in a single MCTS step

(collected in the tree statistics)

» knowledge transfer between MCTS steps
(by reusing subtrees already explored)

* knowledge transfer between MCTS episodes
(provided by DNN)

* deterministic policy optimization
with policy defined for all states s

A

PN () := argmax P(a | 5)
a€A(s)

DNN

Deep Learning : 13-AlphaZero [57]

AlphaZero

in Continuous Spaces

Deep Learning : 13-AlphaZero [58]

Continuous Action Spaces

= What happens when the space A(s) of admissible actions is continuous?

* How to compute the deterministic policy optimization in practice?

mPNN(5) =(argmax)P(a | 5)
aE/A(s)

it could be
a high-dimensional space

continuous and analytic,
butin general
with a lot of (local) maxima

* How to initialize (and deal with) a new node s in the MCTS expansion phase?

Standard initialization requires:

(Va € A(SD N(s,a):=0, Q(s,a):=+o0

/ AN

each admissible action each admissible action
is initialized will be evaluated at least once

Deep Learning : 13-AlphaZero [59]

Cross-Entropy Maximization (CEM)

= CEM Method:

1) choose at random initial values i, o € R?

2) sample m actions from

mean
/ variances (diagonal matrix)

- N(p, diag(o))

normal probability distribution

m

3) evaluate {P(a,,; | 3)},_1

Deep Learning : 13-AlphaZero [60]

Cross-Entropy Maximization (CEM)

= CEM Method:

1) choose at random initial values i, o € R?

2) sample m actions from

mean

/ P variances (diagonal matrix)
normal probability distribution - .
N (1, diag(o))
A
- m
3) evaluate {P(a,,; | s) }
=1

4) select k < m actions with highest probability

Deep Learning : 13-AlphaZero [61]

Cross-Entropy Maximization (CEM)

= CEM Method:

1) choose at random initial values i, o € R?

2) sample m actions from

mean
variances (diagonal matrix)

normal probability distribution /

N (u, diag(o))

3) evaluate {15(031: | 8)}m

1=1

4) select k < m actions with highest probability
5) fitnew p, o0

6) if terminated, return ¢ otherwise go to 2)

Deep Learning : 13-AlphaZero [62]

Progressive Widening (PW)

» Progressive Widening (PW) of action space A(s) [Chaslot etal, 2007]:

* For any new node s created in the MCTS expansion phase

1. initialize A(s) :={a1,...,ar} with k& admissible actions
by sampling the probability P(a |s) (given by the DNN)
2. initialize the statistics for each action a € A(s) as usual:

A

N(s,a) =0, Q(s,a):=+00

Deep Learning : 13-AlphaZero [63]

Progressive Widening (PW)

» Progressive Widening (PW) of action space A(s) [Chaslot etal, 2007]:

* For any new node s created in the MCTS expansion phase

1. initialize A(s) :={a1,...,ar} with k& admissible actions
by sampling the probability P(a |s) (given by the DNN)
2. initialize the statistics for each action a € A(s) as usual:

N(s,a):=0, Q(s,a):=+o0
* Before any selection phase in state s,
compare number of actions |A(s)| and number of visits N (s):
1. if |A(s)]> < N(s) add anew action o’ by sampling the probability P(a | s)
/

not enough actions, a lot of visits a’ will be the next selected action

A

/
A(s) := A(s)U{ad'} with N(s,a'):=0, Q(s,a’):=+oo

2. proceed with the usual selection phase

Deep Learning : 13-AlphaZero [64]

Sampling DNN probability

» How to sample the DNN probability P(a | s) ?

» Probability P(a | s) could be the normalization of a function such as

vector representing action a

/
pla;s) =w-g(WHg(-- g(Wla +b) +) + bl + 4
— | |

non-linear continuous function \
depending on state s

@F: v ()
» Probability P(a | s) is computable < iy
given the state s and the action a @D[] []
< i
« What about sampling P(a | s) ? []
<>

®

Deep Learning : 13-AlphaZero [65]

Advanced methods:
Neural Importance Sampling

Deep Learning : 13-AlphaZero [66]

Neural Importance Sampling

= How to sample the DNN probability P (a|s)? gp
we can use the Importance Sampling! @DL —)
* Neural Importance Sampling L >

1) choose a suitable bijector T
2) sample y € [0,1]% with uniform probability distribution u

3) apply 7T andcompute the (vector representing the) action

a:=Ty]|s)

Then

Pla|s) =

Deep Learning : 13-AlphaZero [67]

Neural Importance Sampling

* [raining: gﬁ
* minimize a suitable /oss: @D]

i
Liw(P||P) := Es[log(P(a| 5)) — log (P(a ‘ =
e . ®

e.g. Kullback-Leibler (KL) . 1 P
divergence - / (a’ ‘ S) 108 (15)
/

it can be approximated
by a discrete sum

* over the dataset

D/ = {(aj,si,f)(aj | Sz»}

Deep Learning : 13-AlphaZero [68]

