

Deep Learning

10 -Reinforcement Learning

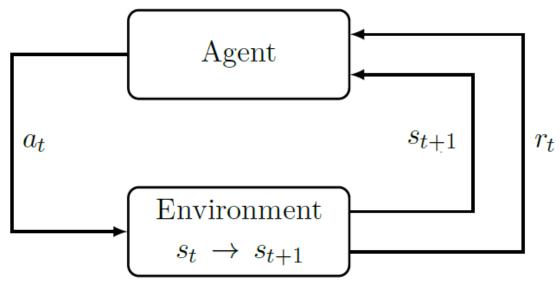
Marco Piastra & Andrea Pedrini(*)

(*) Dipartimento di Matematica F. Casorati

This presentation can be downloaded at: http://vision.unipv.it/DL

Basic assumptions

[image from: https://arxiv.org/pdf/1811.12560.pdf]



The **Environment**: is in *state* s_t — time

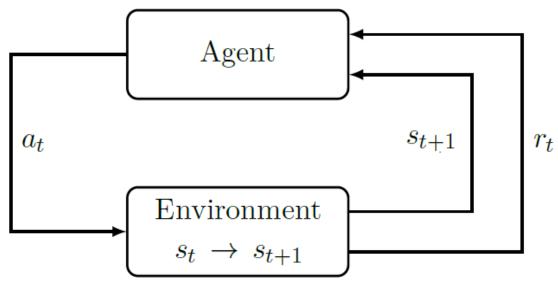
An **Agent** observes *state* s_t and performs *action* a_t

The **Environment** state transitions from $s_t \rightarrow s_{t+1}$

The **Agent** receives reward r_t

Basic assumptions

[image from: https://arxiv.org/pdf/1811.12560.pdf]



The **Environment**: is in *state* s_t ———— time

An **Agent** observes *state* s_t and performs *action* a_t

The **Environment** state transitions from $s_t \rightarrow s_{t+1}$

The **Agent** receives reward r_t

Cumulative reward:
$$R := \sum_{t=0}^{\infty} r_t$$

An example: gridworld

The <u>state</u> of the agent is the position on the grid: e.g. (1,1), (3,4), (2,3)

At each time step, the agent can <u>move</u> one box in the directions $\leftarrow \uparrow \downarrow \rightarrow$ with probability 0.8

The effect of each move is somewhat stochastic, however: for example, a move \(^\) has a slight probability of producing a different (and perhaps unwanted) effect

Entering each state yields the <u>reward</u> shown in each box above

There are two <u>absorbing states</u>: entering either the green or the red box means exiting the *gridworld* and completing the game

■ What is the best (i.e. maximally rewarding) movement policy?

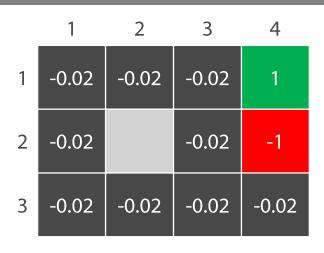
the agent will end up here

but with probability 0.2

it might end up here

0.8

Markov Decision Process (MDP)



Formalization and abstraction of the gridworld example

Markov Decision Process: $\langle S, A, r, P, \gamma \rangle$

A set of *states*: $S = \{s_1, s_2, \dots\}$

A set of <u>actions</u>: $A = \{a_1, a_2, \dots\}$

A <u>reward function</u>: $r: \mathcal{S} \to \mathbb{R}$

A <u>transition probability distribution</u>: $P(S_{t+1} \mid S_t, A_t)$ (also called a <u>model</u>)

Markov property: the transition probability depends only on the previous state and action

$$P(S_{t+1} \mid S_t, A_t) = P(S_{t+1} \mid S_t, A_t, S_{t-1}, A_{t-1}, S_{t-2}, A_{t-2}, \dots)$$

A <u>discount factor</u>: $0 \le \gamma < 1$

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a *deterministic policy*: $\pi: \mathcal{S} \to \mathcal{A}$ In other words, the agent always chooses its *action* depending on the *state* alone

Given a policy π , the **state value function** is defined, for each state s as:

$$V^{\pi}(s) := \mathbb{E}[r(S_t) + \gamma r(S_{t+1}) + \gamma^2 r(S_{t+2}) + \dots \mid \pi, S_t = s]$$

Note the role of the discount factor: a value $\,\gamma < 1\,$ means that that future rewards could be weighted less (by the agent) than immediate ones

Note also that all states $\,S_t\,$ must be described by $\it random\ \it variables$: i.e. the policy is deterministic but the state transition is not

Note also that when the reward is *bounded*, i.e. $r(S) \le r_{\text{max}}$

$$\sum_{t=0}^{\infty} \gamma^t \ r(S_t) \le r_{\max} \sum_{t=0}^{\infty} \gamma^t = r_{\max} \, rac{1}{1-\gamma}$$
 for $\gamma < 1$ this is the geometric series

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a *deterministic policy*: $\pi: \mathcal{S} \to \mathcal{A}$ In other words, the agent always chooses its *action* depending on the *state* alone

Given a policy π , the **state value function** is defined, for each state s as:

$$V^{\pi}(s) := \mathbb{E}[r(S_t) + \gamma r(S_{t+1}) + \gamma^2 r(S_{t+2}) + \dots \mid \pi, S_t = s]$$

Note the role of the *discount factor*: a value $\gamma < 1$ means that that future rewards could be weighted less (by the agent) than immediate ones

Note also that all states S_t must be described by *random variables*:

i.e. the policy is deterministic but the state transition is not

In the *gridworld* example:

- The set of states is finite
- The set of actions is finite
- For every policy, each entire story is <u>finite</u>
 Sooner or later the agent will fall into one of the absorbing states

Bellman equations

By working on the definition of value function:

$$V^{\pi}(s) := \mathbb{E}[r(S_t) + \gamma r(S_{t+1}) + \gamma^2 r(S_{t+2}) + \dots \mid \pi, S_t = s]$$

$$= \mathbb{E}[r(S_t) + \gamma (r(S_{t+1}) + \gamma r(S_{t+2}) + \dots) \mid \pi, S_t = s]$$

$$= r(s) + \gamma \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \dots \mid \pi, S_t = s]$$

$$= r(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) \cdot \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \dots \mid \pi, S_{t+1} = s']$$

$$= r(s) + \gamma \sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{\pi}(S_{t+1})$$

This means that in a Markov Decision Process:

$$V^{\pi}(s) = r(s) + \gamma \sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{\pi}(S_{t+1})$$

This is true for any state, so there is one such equation for each of those If the set of states is <u>finite</u>, there are exactly |S| (linear) Bellman equations for |S| variables: in general, for any <u>deterministic</u> policy, V^{π} <u>can</u> be computed analytically

Optimal policy - Optimal value function

Basic definitions

$$V^*(s) := \max_{\pi} V^{\pi}(s), \ \forall s \in S$$
$$\pi^*(s) := \operatorname{argmax}_{\pi} V^{\pi}(s), \ \forall s \in S$$

Property: for every MDP, there exists such an optimal deterministic policy (possibly non-unique)

With Bellman Equations:

$$\max_{\pi} V^{\pi}(s) = r(s) + \gamma \max_{\pi} \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{\pi}(S_{t+1}) \right)$$
$$V^{*}(s) = r(s) + \gamma \max_{\pi} \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, \pi(s)) \cdot V^{*}(S_{t+1}) \right)$$
$$= r(s) + \gamma \max_{a} \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot V^{*}(S_{t+1}) \right)$$

Therefore:

$$\pi^*(s) = \operatorname{argmax}_a \left(\sum_{S_{t+1}} P(S_{t+1} \mid s, a) V^*(S_{t+1}) \right)$$

Computing V^* directly from these equations is unfeasible, however There are in fact $|A|^{|S|}$ possible strategies

However, once V^* has been determined, π^* can be determined as well

Optimal value function: value iteration

Value iteration algorithm

Initialize: $V(s) := r(s), \ \forall s \in S$ Repeat:

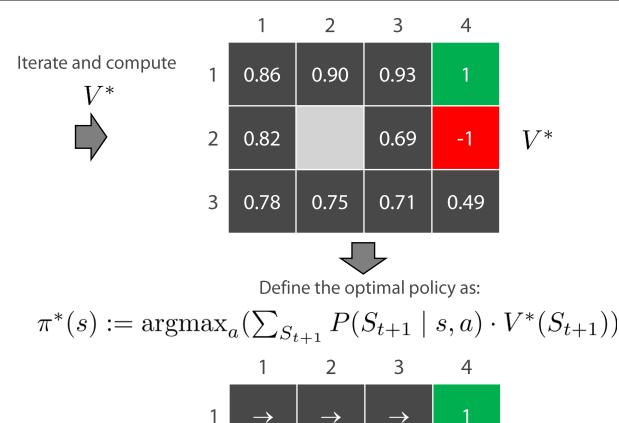
Note that there is no policy: all actions must be explored

1) For every state, update:
$$V(s) := r(s) + \gamma \max_{a} \sum_{s'} P(s' \mid s, a) V(s')$$

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in S, this algorithm converges to V^{st}

Value iteration and optimal policy

Initialize states (e.g. using rewards as initial values)



3

-1

 \leftarrow

Optimal policy: policy iteration

Policy iteration algorithm

Initialize $\pi(s), \forall s \in S$ at random *Repeat*:

This step is computationally expensive: either solve the equations or use value iteration (with fixed policy π)

- 1) For each state, compute: $V(s) := V^{\pi}(s)$
- 2) For each state, define: $\pi(s) := \operatorname{argmax}_a \sum_{s'} P(s' \mid s, a) V(s')$

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in S , this algorithm converges to π^*

As with the value iteration algorithm, this algorithm uses partial estimates to compute new estimates.

It is also greedy, in the sense that it exploits its current estimate $V^\pi(s)$

Policy iteration converges with very few number of iterations, but every iteration takes much longer time than that of value iteration

The tradeoff with value iteration is the <u>action space</u>: when action space is large and state space is small, policy iteration could be better

Offline vs. Online learning

Value iteration and policy iteration are offline algorithms

The \underline{model} , i.e. the Markov Decision Process is known What needs to be learn is the optimal policy π^*

In the algorithms, visiting states just means considering: there is no agent actually playing the game.

Different conditions: learning by doing ...

Suppose the <u>model</u> (i.e. the MDP) is NOT known, or perhaps known only in part Then the agent must learn by doing...

Action value function

An analogous of the value function $\,V^{\pi}$

Given a policy π , the *action value function* is defined, for each pair (s,a) as:

$$Q^{\pi}(s, a) := \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot V^{\pi}(S_{t+1})$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot \mathbb{E}[r(S_{t+1}) + \gamma r(S_{t+2}) + \dots \mid \pi, S_{t+1}]$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \mathbb{E}[\gamma r(S_{t+2}) + \dots \mid \pi, S_{t+1}]]$$

$$= \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \gamma Q^{\pi}(S_{t+1}, \pi(S_{t+1}))]$$

In other words, $Q^{\pi}(s,a)$ is the expected value of the reward in S_{t+1} by taking action a in state s and then following policy π from that point on

Following a similar line of reasoning, the *optimal* action value function is

$$Q^*(s, a) = \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \gamma \max_{a'} Q^*(S_{t+1}, a')]$$

Q-Learning

• Q-learning algorithm (ε -greedy version)

Initialize $\hat{Q}(s,a)$ at random, put the agent is in a random state s Repeat:

- 1) Select the action $\arg\max_a \hat{Q}(s,a)$ with probability $(1-\varepsilon)$ otherwise, select a at random
- 2) The agent is now in state s^\prime and has received the reward r
- 3) Update $\hat{Q}(s,a)$ by

$$\Delta \hat{Q}(s,a) = \alpha[r + \gamma \max_{a'} \hat{Q}(s',a') - \hat{Q}(s,a)]$$
 Exponential Moving Average (see later ...)

 \mathcal{A}

Q-Learning

Q-learning algorithm

Theorem (Watkins, 1989): in the limit of that each action is played infinitely often and each state is visited infinitely often and $\alpha \to 0$ as experience progresses, then

$$\hat{Q}(s,a) \to Q^*(s,a)$$

with probability 1

The Q-learning algorithm bypasses the MDP entirely, in the sense that the optimal strategy is learnt without learning the model $P(S_{t+1} \mid S_t, A_t)$

An aside: moving averages

Following non-stationary phenomena

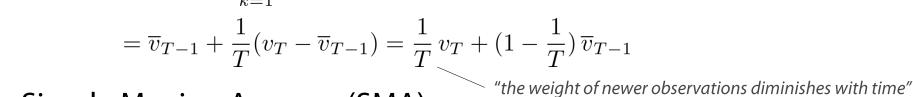
Average

Definition:
$$\overline{v}_T := \frac{1}{T} \sum_{k=1}^{T} v_k$$

Running implementation:

$$\overline{v}_T = \frac{1}{T}(v_T + \sum_{k=1}^{T-1} v_k) = \frac{1}{T}(v_T + (T-1)\overline{v}_{T-1})$$

$$= \overline{v}_{T-1} + \frac{1}{T}(v_T - \overline{v}_{T-1}) = \frac{1}{T}v_T + (1 - \frac{1}{T})\overline{v}_{T-1}$$

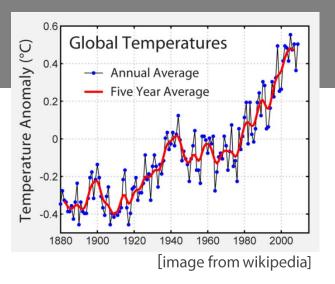


Simple Moving Average (SMA)

$$\overline{v}_{T,n} := \frac{1}{n} \sum_{k=T-n}^{T} v_k$$

Exponential Moving Average (EMA)

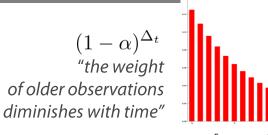
$$\overline{v}_{T,lpha}:=lpha\,v_T+(1-lpha)\,\overline{v}_{T-1,lpha},\ \ lpha\in[0,1]$$
 "the weight of newer observations remains constant"



An aside: moving averages

Exponential Moving Average (EMA)

$$\overline{v}_{T,\alpha} := \alpha v_T + (1-\alpha) \overline{v}_{T-1,\alpha}, \ \alpha \in [0,1]$$



[image from wikipedia]

Expanding:

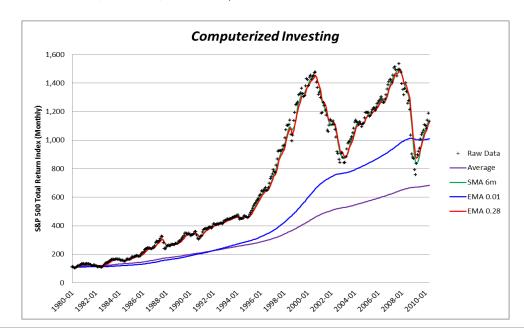
$$\overline{v}_{t,\alpha} = \alpha \, v_t + (1 - \alpha) \, \overline{v}_{t-1,\alpha}
= \alpha \, v_t + (1 - \alpha) (\alpha \, v_{t-1} + (1 - \alpha) \overline{v}_{t-2,\alpha})
= \alpha \, v_t + (1 - \alpha) (\alpha \, v_{t-1} + (1 - \alpha) (\alpha \, v_{t-2} + (1 - \alpha) \overline{v}_{t-3,\alpha}))
= \alpha \, (v_t + (1 - \alpha) \, v_{t-1} + (1 - \alpha)^2 \, v_{t-2}) + (1 - \alpha)^3 \, \overline{v}_{t-3,\alpha}$$

The weight of past contributions decays as

$$(1-\alpha)^{\Delta_t}$$

A SMA with n previous values is approximately equal to an EMA with

$$\alpha = \frac{2}{n+1}$$



Q-Learning revisited

• Q-learning algorithm (ε -greedy version)

off-policy

Initialize $\hat{Q}(s,a)$ at random, put the agent is in a random state s Repeat:

- 1) Select the action $a=\mathrm{argmax}_a\hat{Q}(s,a)$ with probability $(1-\varepsilon)$ otherwise, select a at random
- 2) The agent is now in state s^\prime and has received the reward r
- 3) Update $\hat{Q}(s,a)$ by

$$\Delta \hat{Q}(s, a) = \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]$$

By rewriting step 3)

$$\hat{Q}(s, a) = \hat{Q}(s, a) + \Delta \hat{Q}(s, a) = \hat{Q}(s, a) + \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]$$

$$= \alpha [r + \gamma \max_{a'} \hat{Q}(s', a')] + (1 - \alpha) \hat{Q}(s, a)$$

Exponential Moving Average

compare with (see before):

$$Q^*(s, a) = \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot [r(S_{t+1}) + \gamma \max_{a'} Q^*(S_{t+1}, a')]$$

Expectation

SARSA

• SARSA algorithm (ε -greedy version)

on-policy

Initialize $\hat{Q}(s,a)$ at random, put the agent is in a random state s Repeat:

- 1) Select the action $a=\mathrm{argmax}_a\hat{Q}(s,a)$ with probability $(1-\varepsilon)$ otherwise, select a at random
- 2) The agent is now in state s^\prime and has received the reward r
- 3) Select the action $a'=\mathrm{argmax}_a\hat{Q}(s',a)$ with probability $(1-\varepsilon)$ otherwise, select a' at random
- 4) Update $\hat{Q}(s,a)$ by

$$\Delta \hat{Q}(s,a) = \alpha [r + \gamma \hat{Q}(s',a') - \hat{Q}(s,a)]$$
 No more 'max' here

Q-learning is a an *off-policy* algorithm: each update involves $\max_{a'} \hat{Q}(s',a')$ (i.e. *exploration* is not taken into account)

SARSA is a an *on-policy* algorithm: each update involves $\hat{Q}(s',a')$ (which involves the next policy action, *exploration* included)

SARSA vs Q-Learning

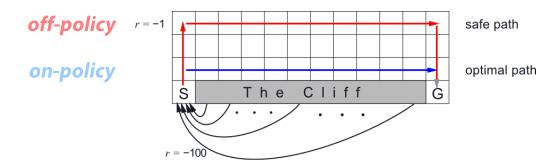
Cliff World

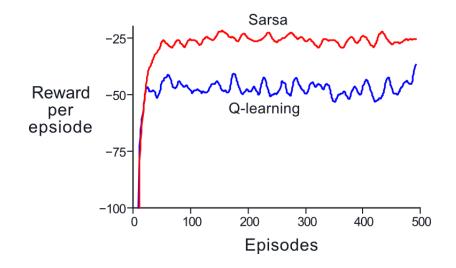
'S' is the start 'G' is the goal Each white box has $\,r=-1\,$ 'The Cliff' region has $\,r=-100\,$ and entails going back to 'S'

Experimental Results

SARSA finds a sub-optimal but safer path since its learning takes into account the ε risk of going off the cliff

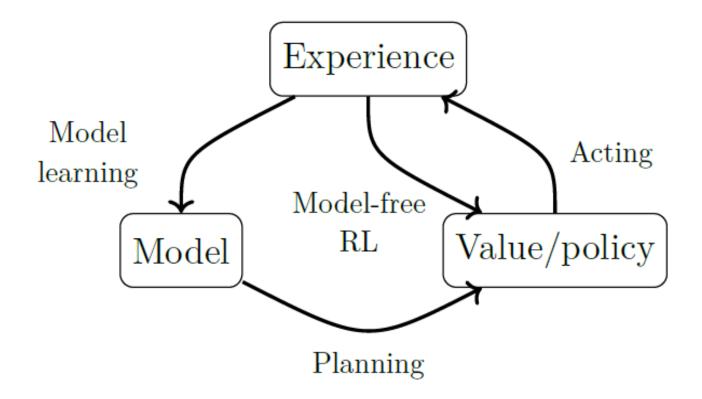
Q-learning finds the optimal path but, occasionally, it falls off the cliff during learning due to the \mathcal{E} -greedy strategy





Reinforcement Learning Methods

[image from: https://arxiv.org/pdf/1811.12560.pdf]



Deep Reinforcement Learning

Game Playing with DRL

Playing Atari with Deep Reinforcement Learning

A software system only

Runs on virtually any Linux-based system, it contains optional provisions for GPU

It's open source

https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner

Sophisticated machine-learning techniques

Uses deep reinforcement learning

in combination with convolutional neural networks (CNN)

Same configuration, multiple games

Same configuration applied to arcade games

It learned to play 7 (2013) or 49 (2015) different games

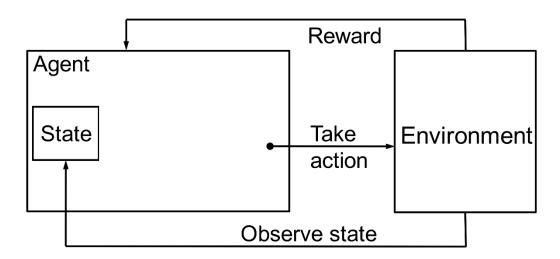
It is autonomous

It learns by itself, it receives no human expertise as input In many cases, it outperforms human players

(from GitHub)

Deep Reinforcement Learning (DRL)

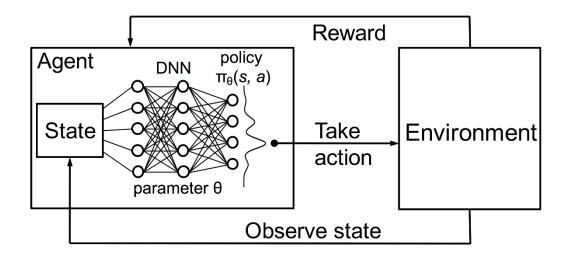
Reinforcement Learning



Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning

Using a deep neural network as the approximator $\hat{Q}(s,a)$



The optimal policy is learnt incrementally by using a deep neural network

Deep Reinforcement Learning

Q-Learning Algorithm

Initialize $\hat{Q}(s,a)$ at random, put the agent in a random state s Repeat:

- 1) Select the action $rgmax_a\hat{Q}(s,a)$ with probability (1-arepsilon) otherwise, select a at random
- 2) The agent is now in state s^\prime and has received the reward r
- 3) Update $\hat{Q}(s,a)$ by

$$\Delta \hat{Q}(s, a) = \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]$$

Fundamental Idea:

use a deep neural network to learn the approximator $\hat{Q}(s,a)$ from the examples collected while **exploring** - **exploiting**