Universita degli
Studi di Pavia

Deep Legrning

08-A Few Relevant Asides

Marco Piastra & Andrea Pedrini(*)
(thanks are due to Mirto Musci and Gianluca Gerard as well)

(*) Dipartimento di Matematica F. Casorati

This presentation can be downloaded at:
http://vision.unipv.it/DL

Deep Legring : 08-A Few Relevant Asides

[1]


http://vision.unipv.it/DL

Hardware for Deep Learning

Deep Legring : 08-A Few Relevant Asides [2]



GPU vs. CPUV

* The GPU resides on a separate board

Almost an independent computer

Model
IS here

Data is here

[image http://cs231n.stanford.edu/slides/2021/lecture_6.pdf]

Deep Legring : 08-A Few Relevant Asides [3]



GPU vs. CPUV

= Different hardware architectures

For different computing paradigms

i

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES

[images from http://www.nvidia.com/docs/]

ALU ALU
ALU  ALU

DRAM

Control

CPU

Deep Legring : 08-A Few Relevant Asides [4]




GPU vs. CPU

= Different hardware architectures

For different computing paradigms

Cores Clock Memor | Price Speed
Speed |y

CPU 10 4.3 GHz System $385 ~640 GFLOPs FP32
(Intel Core RAM
i7-7700k)
GPU 10496 16GHz 24GB  $1499 ~35.6 TFLOPs FP32
(NVIDIA GDDR
RTX 3090) 6X
GPU 6912 CUDA, 1.5GHz 40/80 $3/hr ~9.7 TFLOPs FP64
(Data Center) 432 Tensor GB (GCP) ~20 TFLOPs FP32
NVIDIA A100 HBM2 ~312 TFLOPs FP16
TPU 2 Matrix Units | ? 128 GB  $8/hr ~420 TFLOPs
Google Cloud (MXUs) per HBM (GCP) (non-standard FP)
TPUvV3 core, 4 cores

[image http://cs231n.stanford.edu/slides/2021/lecture_6.pdf]

Deep Legring : 08-A Few Relevant Asides

[5]



SIMT Parallelism

= Single Instruction, Multiple Data (SIMD)

Execution is parallel

All cores are executing the same instruction, in sync

Each core works on specific data

Vector A

Vector B

Vector C

[images from https://www.sciencedirect.com/topics/computer-science/single-instruction-multiple-data]

Deep Legring : 08-A Few Relevant Asides [6]



SIMT Parallelisrm

» Single Instruction, Multiple Threads (SIMT)

Execution is parallel

All active cores are executing

the same instruction, in sync \\\\\\\\

Each core works on specific data

. if (condition <= 0) { diverge
The control system activates and A;
deactivates cores on each (B:f
execution branch else { ’
X; X;
Y; Y;
}

Z converge

Moral: any computation might
be performed, but divergent ones \\\\R\\\ .
will be sequentialized ’

[images from https://www.sciencedirect.com/topics/computer-science/single-instruction-multiple-data]

Time <

Deep Legring : 08-A Few Relevant Asides [7]



Selective parallelization

Not all parts of a program are worth executing in parallel...

Application Code

Compute-intensive Functions
e | Rest of Sequential

CPU Code

[images from http://www.nvidia.com/docs/]

Deep Legring : 08-A Few Relevant Asides [8]



TensorFlow and GPUs

= TF computations are optimized to be run on GPUs
For the programmer, these implementation details are (mostly) transparent

TF can also run on the CPU only, but with lower performance.
» TF automatically manages memory transfers to/from GPUs

Memory transfers are very costly, due to low bandwidth PCle

PCle SWITCH

PCle CONMECTION

low bandwidth

low bandwidth

HIGH BANDWIDTH e HIGH BANDWIDTH AL TE MEDIUM
GRAPHICS MEMORY BANDWIDTH LARGE GRAPHICS MEMORY GRAPHICS MEMORY BANDWIDTH LARGE
SYSTEM MEMORY SYSTEM MEMORY
[NVIDIA.com]

Deep Legring : 08-A Few Relevant Asides [9]



Tensor transformations:
slicing

Deep Legring : 08-A Few Relevant Asides [10]



Slicing

= Atensoris an n-dimensional array

You can even use the .numpy() method to return a numpy version of the tensor

= To access a single cell you need to specify n indices
rank O (scalar): no indices are necessary (it is already a single number)
rank 1 (vector): passing a single index allows you to access a number
my _scalar = my_vector[2]
rank 2 or higher: passing two or more numbers returns a scalar

my _scalar = my _matrix[1, 2]

= Asingle number returns a subtensor
The example below is for a matrix (a 2-D tensor)

my_row_vector = my matrix[2]

The : notation means "leave this

my column_vector = my matrix[:, 3] dimension as is"

Deep Legring : 08-A Few Relevant Asides

[11]



TensorFlow slicing and NumPy slicing

» The[]notation overloads Tensor.getitem
This operation extracts the specified region from the tensor

Very similar behavior w.r.t. numpy

* Interesting Examples
foo = tf.constant([ [1,2,3],
[4,5,6],
[7,8,9] 1)
# skip every row and reverse every column
tf.print(foo[::2,::-1]) # => [[3,2,1], [9,8,7]]
# Insert another dimension
tf.print(foo[:, tf.newaxis, :]) # => [[[1,2,3]], [[4,5,6]], [[7,8,9]]]
# Ellipses (the following lines are equivalent)
tf.print(foo[tf.newaxis, ...]) # => [[[1,2,3], [4,5,6], [7,8,9]]]
tf.print(foo[tf.newaxis]) # => [[[1,2,3], [4,5,6], [7,8,9]]]

Deep Legring : 08-A Few Relevant Asides [12]



Tensor transtormations:
broadcasting

Deep Legring : 08-A Few Relevant Asides [13]



Broadcasting: an example with TensorFlow

# Create a three-element vector (1-D tensor).

a = tf.constant([1, 2, 3], dtype=tf.int32, name=¢‘a’)
# Create a constant scalar with value 2.

b = tf.constant(2, dtype=tf.int32, name=‘b’)

# Multiply the two tensors element-wise.
result = tf.multiply(a, b)

tf.print(result)
af b resuk 3
1]2]3 T2 = (2146
—_—
sireich

= Vector ais multiplied, element-wise, with scalar b
= Before multiplying, scalar b is stretched to get the same shape as vector a
» The final result is a vector with the same shape as vector a

Deep Legring : 08-A Few Relevant Asides [14]



The General Broadcasting Rules

» TensorFlow adopts the general broadcasting rules of NumPy
When operating on two arrays, NumPy compares their shapes element-wise

It starts with the trailing dimensions, and works its way forward

» Two dimensions are compatible when
1. theyare equal, or
2. oneofthemis

» The size of the resulting array is the maximum size along each dimension of the
input arrays

= When a tensor is broadcast, its entries are conceptually copied

Broadcasting is a performance optimization, thus,
for performance reasons, no actual copying occurs

Deep Legring : 08-A Few Relevant Asides [15]



Applying the General Broadcasting Rule

A (2d
B (1d
Result (2d
A (3d
B (2d
Result (3d
A (4d
B (3d
Result (4d

array):
array):
array):

array):
array):
array):

array):
array):
array):

Deep Legring : 08-A Few Relevant Asides

[16]



Broadcasting: another example

* Each channel of an RGB image can be scaled by multiplying the image
by a 1-D array (vector) with 3 values.

Image (3d array): 4 x 4 x 3
Scale (1d array): 3
Result (3d array): 4 x 4 x 3

0.5 0.3 0.2 oo

o

Q)

o

05 05 05 05 03 03 03 03 02 02 02 0.2 a)

Q

05 05 05 05 03 03 03 03 02 02 02 0.2 ,‘f,.

05 05 05 05 03 03 03 03 02 02 02 0.2 Lg
05 05 05 05 03 03 03 03 02 02 02 0.2

Deep Legring : 08-A Few Relevant Asides [17]



Tensor transtormations:
reshaping

Deep Legring : 08-A Few Relevant Asides [18]



Reshaping: examples

* |n the previous example, to create the matrix 4 we wrote
a = tf.transpose(tf.constant([[0.0,1.0,2.0,3.0]]))

We could have written instead:

a = tf.reshape(tensor = [0.0,1.0,2.0,3.0],

shape = [-1,1])

The second instruction reshapes the original 1-D Tensor with 4 values into a 2-D Tensor still

with the same 4 values

We used the special value -1 for shape so that we didn’t have to specify how many values

tensor has

» Another example: flatten a 2-D Tensor
a = tf.ones([4,3])
b = tf.reshape(tf.range(1.0,5.0),[-1,1])
t = a*b (and NOT tf.matmul(a,b))
t 1d = tf.reshape(t,[-1])
tf.print(t_1d)

# A 2-D (4,3) tensor
# A 2-D (4,1) tensor
# A 2-D (4,3) tensor
# A 1-D (12) tensor

Deep Legring : 08-A Few Relevant Asides

[19]



Tensors reshaping

= As we just saw, the function to reshape a tensor is the following
tf.reshape(tensor, shape, name=None)

» The operation returns a tensor with shape shape, filled with the values of the
original tensor

The number of elements implied by shape must be the same as the number of
elements in tensor

e.g. shape [4,3] must be reshaped in something with a total shape of 12

» |f one component of shape is the special value -1, the size of that dimension is
computed so that the total size remains the same

A shape of [-1] flattens into 1-D; at most one component of shape can be -1

Reshaping is often used to flatten the
output of the last convolutional layer of a
CNN so that it can be used as the input of
the first dense layer

Deep Legring : 08-A Few Relevant Asides [20]



Tensor transtormations:
stacking

Deep Legring : 08-A Few Relevant Asides [21]



Stacking

» Tensors can be stacked together by using the function

tf.stack([tensor@, tensorl, ..], axis=0, name='stack’)

It packs the list of tensors, along the axis dimension,
into a tensor with rank one higher than each tensor in the list

= Example:
x = tf.constant([1,
y = tf.constant([2,
z = tf.constant([3,
tf.stack([x, vy, z],
tf.stack([x, vy, z],

41) # Shape
5]) # Shape
6]) # Shape

axis=0) # Shape
axis=1) # Shape

(2,)

(2,)

(2,)

(3,2): [[1,4],[2,5],[3,6]]
(2,3): [[1,2,3],[4,5,6]]

= Given a list of n tensors of shapes|[(a, b, ¢), ..., (a, b, d)l:

 ifaxis == 0 then the output tensor will have the shape (n, a, b, ¢)

« ifaxis == 1 then the output tensor will have the shape (a, n, b, ¢)

Deep Legring : 08-A Few Relevant Asides

[22]



= A tensor can be split into multiple tensors with the function
tf.split()

= Examples:

# 'value' is a tensor with shape [6, 30]

# split 'value' into 2 tensors along dimension ©
split@ 0, split@ 1 = tf.split(value, 2, axis=0)
tf.shape(splito o) # [3, 30]

# split 'value' into 3 tensors along dimension 1
splitl @, splitl 1, splitl 2 = tf.split(value, 3, axis=1)
tf.shape(splitl ©0) # [6, 10]

# Split 'value' into 3 tensors with sizes [4, 15, 11]

# along dimension 1 (note that 4+15+11 = 30)

splito, splitl, split2 = tf.split(value, [4, 15, 11], 1)
tf.shape(splite) # [6, 4]

tf.shape(splitl) # [6, 15]

tf.shape(split2) # [6, 11]

Deep Legring : 08-A Few Relevant Asides

[23]



