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About why they did not use
Deep Networks
from the beginning
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Problem: vanishing or exploding Gradients

The gradient descent method implies updating the parameters at each step:
making sure that the gradient does not either vanish or explode is not easy

Forinstance, in

oL , ¢
AW = —p —— (7D 4,
the gradient contains a multiplicative term p g(x)

which canbe < 1.0

e.g. for the sigmoid function:

-10 -5 0 5 10
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Problem: vanishing or exploding Gradients

The gradient descent method implies updating the parameters at each step:
making sure that the gradient does not either vanish or explode is not easy

Consider a deep network
J=w - g(W[k] . -g(Wma: 4 bll]) Co b[k]) + b
in which

* g istheidentity function

« all hidden layers have the same size d of the input
o all WU greidentical and diagonalizable, with eigenbasis (e1,--- ,eq)

this means that i.e. first eigenvalue raised to the k-th power
S
k 1 k k k
Wk o Wwllle = Whre = M(e; - x)e; + - Ni(eg - z)ey
k k
= )\1.56161 + .- )\dazded

Moral:any A\; > 1 leads to explosion whileany \; < 1 leads to vanishing

Deep Learning : O5-Learning as Optimization [4]




Problem: initial values of the parameters

However, the main problem of training is that of initial values...
Gradient Descent can only discover minima that are close to the initial values

Xx=3.00000, y=3.00000, f(x,y)=34.20000

Using deep networks
can only make this problem worse:

intuitively, with deeper networks, 100
the 'surface’ can be even rougher... 80

[Image from http://cpmarkchang.logdown.com/posts/434534-optimization-method-momentum]
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Improving optimization
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Improving optimization

= SGD (or MBGD)

Standard, decaying learning rate

Update step:
90 — 9= _p 9 g g1
N
decaying mini-batch,
learning rate possibly a singleton
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Improving optimization

= SGD (or MBGD)

Standard, decaying learning rate

Update step:
90 — 9= _p 9 g g1
N
decaying mini-batch,
learning rate possibly a singleton

Many different ways to improve performance and speed rate:
e add some momentum
* take in account 2" order derivatives
* make the learning rate adaptive
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Momentum

" Momentum momentum term:
"l ot the ball run” / tendency to keep running at the same speed and direction
ﬁ(t):ﬁm 0<y <1

“coefficient of friction”
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Momentum

= Momentum

"Let the ball run”
w® = D 4 g a% L(B,9¢D), u® — o =D

(t—1)
91 — 9t—1 _ ., (®) Tu —
> .
— I(B.9{1
“force felt by the ball”
N 0
Loss f = _8_,‘9L(Bv"9)
(“potential “acceleration”
energ{”) f — ma 4
|
L(B,9) 9
| o a x ——L(B,?9)
... the gradient directly affects the velocity
(not the position)
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Momentum

= Momentum

"Let the ball run”
w® = 4D £ 1B gty 40 Z g D)
09
91 — (=1 _ 4,® Tt —
- o
il (t=1)
0 55 L(B,9" )
Consider 19 as a position ...
[oss “velocity”
(“potential -~ 0 N ; 1
energy”) u = a'ﬁ ~ 19( ) _ 19( )
\ .
“acceleration”
L(Ba 19) : /! ) (t—1) O
! > a ~ u' —u x ——L(B,19)
9 oY
... the gradient directly affects the velocity
(not the position)
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Momentum

= Momentum

"Let the ball run”
=)
()
9 -
9 (t—1)
: 0 55 L(B,9" )
: .
Y
- (©) _ qyt=1) o 9 (t=1)) 4, (0) _
* Update thevelocity: u'” =~yu +n a—ﬁL(B,ﬁ ), u) =0
« Then the position: 9 = glt—1) _ 4 (®)

[See https://cs231n.github.io/neural-networks-3/]
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NAG

= Momentum

“Let the ball run”

w® = D 4 g a%L(B 9ED) 40 Z g

91 — 9t=1) _ o, (t)

= Nesterov Accelerated Gradient (NAG)
"Let the ball run but be predictive"

0

(1) — ~p, (t—1) i
Uu yu +7n 59

L(B, 90 — yqt=1))

91 — 9t=1) _ o, (0)

Deep Legrning : O5-Leatning as Optimization

[13]



24 order methods

» Taylor’s expansion
L(B,¥) = L(B, 9" V) + %L(B, 9 Y) - (9 -9 Y)

(9 — 9. H (9 -9tV +

All terms in blue are constant

1
2

where

3, 0 . .
p— (t—1) _— The Hessian Matrix
H - 99 (aﬁL(B,'ﬁ ))

— The argmin

= Differentiate both sides and take 9 = 9*
thisis0 —__ 0

55 L(B,0") = L(B YY) + H(9* — 9¢~))
whence
0
,'9* _,!9(?5—1) H 1_L B ﬁ(t 1)
59 ( )
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24 order methods

= Gradient Descent
0

91 — 9t=1) _
T 90

L(B,9% V)

= Newton-Raphson's optimization method

0
(t) — =1 _ 1 = (t=1)
U Y n H L(B,9 )

o (0
. (t—1)
where  H := = (aﬁL(B,ﬁ ))

Why is the Newton-Raphson's method better than GD?
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24 order methods

= Newton-Raphson's optimization method

I =9t=b _p H‘la%L(B, 91y H = 8319 ( ;ﬁL(B, 19<t—1>))
Exa mple P a quadratic form, does not depend on B
L(B,9) =19 A9
e o] e,
A= , a; >0Vi=1,...,d
0 ... aq
iL(B 9) = 2A9
oY ’ (1/ay ... 0 ]
Hza(aL(Bﬁ))=2A Hl-ta 1)
09 \ 0¥ ’ 2 2 ' ' '
| 0 ... 1/aq
9 — 9= _ % A=12490-D — 9= _ pg(t=1) _ (1 _ ;g(t=1

What??
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24 order methods

In this example (geometric view)

L(B,9) =19 A9 with A := [aol 02] , a1 K ag
Gradient Descent Newton-Raphson
9 = 9= _ p2 49— 9 = 9= _ pg(t=1)
= __:+_i ;—— ———————— ——:%——7__

The level curves of i I H“WWMWW

a quadratic formin 2D
are ellipses centered =~ —  —— ——— e — = —
in theorigin = - — B :
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24 order methods

= Newton-Raphson's optimization method

d o (8
9O =9t _p 7' (B, 9"V = (¢-1)

The (inverse of the) Hessian Matrix takes into account also the curvature

* A smaller curvature leads to a bigger update step

small curvature big curvature
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= Newton-Raphson's optimization method
0 0
O =9t _p g1 (B9 —
9 9 n 59 (B, v ) H 59 (

0
o0V

L(B, 19“—1)))

However
* Computing the inverse Hessian matrix is not easy, in general

« ltrequires O(d°) time versus O(d) of the gradient — d is the number of parameters
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= Newton-Raphson's optimization method

0 0

9 =9ty g1 (B, 94 V) H := ( 0

09

(t—1)
o 55 (551B.207)

However
Computing the inverse Hessian matrix is not easy, in general

It requires O(d>) time versus O(d) of the gradient — d is the number of parameters

* AdaGrad approximation

o 2 G o
G\ .= L(B,90) ) . — ; ;

7= 0 a|
9O = 9= _p (GU=1)1 %L(B, 9=
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AdaGrad

Gradient Descent

90 _ gt—1) _ 9

—n —L(B,9%V
N 5L (B )

Newton-Raphson 5

(1) _ (t—1) H—l_L B (t—1)
9 =9V B LB, )

AdaGrad
0

9 = 9t=) _p (G(t_l))_la_ﬁL(B’ 9t—1)

il g\//
il
Gradient Descent ‘Newton-Raphson " AdaGrad
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* AdaGrad approximation

* RMSprop approximation

The overall sum is replaced by the exponential moving average (EMA)

(t) ._ 0 (t)
S = L(B,9
gq, 8'191 ( ? )

EMA(g2)® := 7(g{")? + (1 — y)EMA(g2)¢*~V i .

G\ =\ [EMA(g2) ¥ G .=

90 = 9lt=1) _ (Glt=1)y-1 a% L(B. 9D j '
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AdaDeltz

= RMSprop approximation

O ._ 9 1p 90
g?, : 8?92 ( Y )
EMA (7)) = v(g{")? + (1 — 7)EMA(g7) Y e .
1
G .= \/EMA(gf)(t) GY .= | ;
———— Hessian approximation ( £)
0 .o Gy
9 i i
90 — 9= _ o (qt=\=1_ 1 (B 91
* AdaDelta approximation ] ]
D 0
1
D = \ /EMA(AG2)® DY .= | :
——— 'momentum’ factor '(t)
5 I 0 . Dy ]
9 — 9= _ o pt-D(qtt-1\-1 ~Z 1B 9t
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Improving optimization

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

Image from https://imgur.com/a/Hqolp
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Image from https
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Improving optimization

| \ - SGD -
o == Momentum [

=== NAG :
,;.;:?::'L \ X — Adagrad
-~ | — Adadelta

= Rmsprop |

Image from https://imgur.com/a/Hqolp
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* Replace components with their EMAs ...

_TTth)_
() ._ (t) - (t-1) o |
i Brlg:) + Brm; mee= - | ———EMA of the gradient
g
_7« gt)_
T,Et) = 2(9;@)2 + (1 — 62)T§t—1) r® .— | : | ——EMAoftheHessian
(' £ approximation
T4 (vector form)
m®) -7
mt) .—
1—(1—pq)t bias corrections (decay with time)
A r(0)
1 —(1—p5s)t
3 (t—1)

N —= = ——— (elementwise)
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Adam

= Experimentally

1 1

0.7 :

MNIST Logistic Regression

AdaGrad
SGDNesterov
Adam

0.2

] N TS O T

0.5 e TS

i i i i
0 5 10 15 20 25 30

35 40 45

iterations over entire dataset

10

MNIST Multilayer Neural Network + dropout
1 ! 1

— AdaGrad
RMSProp
SGDNesterov |1
AdaDelta
Adam

50

| 1
100 150 200
iterations over entire dataset
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A bag of wondertul tricks
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Why ReLU is better (sometimes)

The gradient descent method implies updating the parameters at each step:
making sure that the gradient does not either vanish or explode is not easy

Forinstance, in

AW = oL

0L ) @)
”aw(y YY)

the gradient contains a multiplicative term —g(x)

which canbe < 1.0

ox

In general,

the derivative of RelLU
does not suffer

from the same problem

— Rel U

= derivative-ReL.U

0.9

0.8

0.7

0.6

0.5

04

03}

02}

01f

-0.5

.
0.5
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Why ReLU is better (sometimes)

In experimental practice (sometimes):

* ReLU alleviates the problem of initial values
(i.e. when initial values are too far away and cause sigmoid or tanh to saturate)

In general, || —iewaweraw 0
the derivative of RelLU 08
does not suffer 07

0.6

from the same problem

0.5

04

03}

02}

01f
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Why ReLU is better (sometimes)

In experimental practice (sometimes):

* RelLU alleviates the problem of initial values

(i.e. when initial values are too far away and cause sigmoid or tanh to saturate)

* RelLU may accelerate the training process

0.75

. RelLU
N /[ Saturating

~-_/

T

025 =~

Training error rate

0

T T T T T T T
0 5 10 15 20 25 30 35 40
Epochs

Image from [Krizhevsky, Sutskever & Hinton, 2012]

= RelU
= derivative-ReL.U

0.9

0.8

0.7

0.6

0.5

04
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01f

-0.5

.
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Overfitting

When the training process becomes too specific to the training set

* Training set, validation set
Splitting the dataset

D = Dtrain U Dval

{(@, gL = {@Y,y) il u {(af

Ntra?ln > N'ual

Training is made on D¢rqipn only

Ateach epoch __ when the whole D ygin
has been processed

the loss function is evaluated on D,

After some epochs, the performance on D,

might get worse

val

1=1

- \/alidation set

- = Training set
Best model
s,.l ............................................
200 300 400 500
Epoch

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Deep Legrning : O5-Leatning as Optimization

[33]



= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 1

Deep Learning : O5-Learning as Optimization [34]



= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 2
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= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 3

Deep Learning : O5-Learning as Optimization [36]



ave

NN vAS

e B @se
LAY
() 4.404«.&5

At runtime

(or validation time),
when making predictions,

dropout Is not active

out at random

WAL 0‘,’
ol
80

&

For each mini-batch, a small percentage of 'units' is de-activated

= Knocking-

N
S
QA
9

Q

[371

Prediction

Training
Deep Legrning : O5-Leatning as Optimization




Contrasting Overfitting
= Applying Dropout

In a typical experiment
* initially, the performance on D,,; improves slowly
* then it becomes better and more resilient to overfitting

Validation set
Training set ||

-
=~ -
-
--------------

0 100 200 300 400 500
Epoch

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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Input Normalization

* Intuition
Consider the (very simple) layer

h(x) := g(wx +b) = g(wiz1 + woxs + b)

X1 and X9 arein
and suppose x1 € [10007 2000]3 T2 € [0-17 O-2]/complez‘elydifferem‘scales

0.5
* w; influences h alot more than ws
* training ws is challenging and slow

®
©

T T T 1
( 500 1000 1500 2000

wyp

level curves of loss function

/ @) (during training)

w1
Image from https://https://www.jeremyjordan.me/batch-normalization/
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Input Normalization

* Input normalization
1) compute mean p and (component-wise) variance o’ of inputs over dataset D

1 1

. 2. (42 2 - 2. 2

M= D] E T o°:=(of,...,03,) with o; =D E (x; — i)

2) normalize all inputs, component-wise 05

A~ A~ A . A aj T ) " - n L, e, -

Ir = (331, coe ,a:d), with X; = - 5 i LR aAgeeg ALy
V T + € = 500 1000 1500 2000

/

to avoid division by zero
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Input Normalization

* Input normalization

1) compute mean p and (component-wise) variance o2 of inputs over dataset D

1 1
- 2. (-2 2 : 2 . 2
M= D] E T o°:=(of,...,03,) with o; =D E (x; — i)
xcD | | xcD
2) normalize all inputs, component-wise 05
. . . 1 A Lg — g " s Ry e edar
T = (T1,...,2q), with z; = > R AT RRRL N
V T + € = 500 1000 1500 2000
| /
. to avoid division by zero
0.5 A
. rescale shiftby 4
— : ‘c; . ~ each component
— * . . - \ " da e, .
. by IO S
*3‘;. . ’ . 1
_0.5_
- o2 + €

1
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Input Normalization

* Input normalization
1) compute mean p and (component-wise) variance o’ of inputs over dataset D

1 _ 1
M:mzm 0'2 = (O'%,...,O'?l,) VVlJl?hO',L-2 :WZ(:UZ_”Z)Z
xcD xcD

2) normalize all inputs, component-wise
Li — [

\/a? + €

3) apply h(z) := g(wz +b) = g(wi21 + waZs + b)

r = (ml,...,a:d), with f%z =

Deep Learning : O5-Learning as Optimization [42]



Input Normalization

* Input normalization
1) compute mean p and (component-wise) variance o’ of inputs over dataset D

2. (.2 2 - 2 . )2
|D\Zw o°:=(of,...,03,) with o; .—WZ(:I:Z 1)

xcD

2) normalize all inputs, component-wise
LTj — g

\/a? + €

3) apply h(z) := g(wz +b) = g(wi21 + waZs + b)

T = (fl,...,iﬁd), with .’ﬁz =

W9

* training becomes B

faster and more stable /@ level curves of the loss function
(also allowing higher learning rates) = (during training)

w1

Image from https://https://www.jeremyjordan.me/batch-normalization/
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Batch Normalization

* Normalizing in between layers

nabNN- - _ Rl (=Y (R (R (@))) . )

each layer k'Y has an input of its own, which should be normalized

N

How?
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Batch Normalization

* Normalizing in between layers

nabNN- - _ Rl (=Y (R (R (@))) . )

each layer k'Y has an input of its own, which should be normalized

Normalizing in between layers during training would require:

e pre-computing the input to each layer, for each data itemin D
» applying normalization before proceeding further upwards

» doing it again after each updating the DNN parameters

Moral: it's impossible
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Batch Normalization

= For each mini-batch:
B = {m(i) }m
1=1

BNg ~(2') :=v&") + 3

(all operations are performed element-wise)

—
trainable parameters
() _ ) — g
opte—
avoid division by zero
1 m
2 7
98 = E :(33()—#'3)
=1
m
pp = — 3 ald
m
1=1
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Batch Normalization

* Training
e atstep t: ppw and aé(t) are computed over the current mini-batch B(*)

» parameters v and 3 (for each BN-layer) are trained
in the same way as the other parameters in the DNN

* moving averages of mean and variance of the mini-batches B are collected
MA()" =6 ppew + (1 =0)- MA()"~", MA(W)Y = ppa
MA(a?) :=5-a%,, + (1 -96)-MA(e?)D, MA@ =02,

* Inference
It will be performed for fewer inputs, possibly just one
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Batch Normalization

* Training
e atstep : ppw and aé(t) are computed over the current mini-batch B(*)

» parameters v and 3 (for each BN-layer) are trained
in the same way as the other parameters in the DNN

* moving averages of mean and variance of the mini-batches B are collected
MA()" =6 ppew + (1 =0)- MA()"~", MA(W)Y = ppa
MA(a?) :=5-a%,, + (1 -96)-MA(e?)D, MA@ =02,

= Inference

Normalize using the moving averages collected during training

* pi=MA(u)™

as collected during the training process

« o2 :=MA(c?)T)
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Batch Normalization

= Does it work?

0.8

Validation Accuracy
“\
3
L
)
\
\
1
\
\

= = = |nception
= = BN-Baseline
------- BN-x5
BN-x30
-+ BN-x5-5igmoid
4 Steps to match Inception

1 1
10M 15M 20M 25M 30M
Training steps

* Batch normalization acts as a reparametrization of the optimization process that

1. makes the loss function smoother

2. allows higher learning rates

3. reduces chances to getting stuck into local minima
Image from [loffe and Szegedy 2015]
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