

Università degli Studi di Pavia

Deep Learning

05-Learning as Optimization

Marco Piastra & Andrea Pedrini(*)

(*) Dipartimento di Matematica F. Casorati

This presentation can be downloaded at: <u>http://vision.unipv.it/DL</u>

About why they did not use Deep Networks from the beginning

Problem: vanishing or exploding Gradients

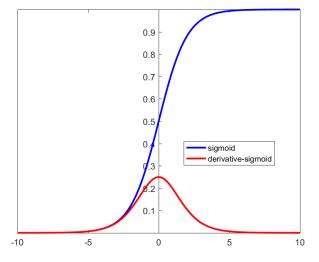
The gradient descent method implies updating the parameters at each step: making sure that the gradient does not either *vanish* or *explode* is not easy

For instance, in

$$\Delta \boldsymbol{W} = -\eta \, \frac{\partial L}{\partial \boldsymbol{W}} (\tilde{y}^{(i)}, y^{(i)})$$

the gradient contains a multiplicative term $\label{eq:gamma} \frac{\partial}{\partial x}g(x)$ which can be $\ \ll 1.0$

e.g. for the sigmoid function:



Problem: vanishing or exploding Gradients

The gradient descent method implies updating the parameters at each step: making sure that the gradient does not either *vanish* or *explode* is not easy Consider a deep network

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}^{[k]} \cdots g(\boldsymbol{W}^{[1]}\boldsymbol{x} + \boldsymbol{b}^{[1]}) \cdots + \boldsymbol{b}^{[k]}) + b$$

in which

- q is the identity function
- all hidden layers have the same size d of the input •
- all $oldsymbol{W}^{[i]}$ are identical and diagonalizable, with eigenbasis $(oldsymbol{e}_1,\cdots,oldsymbol{e}_d)$ this means that i.e. first eigenvalue raised to the k-th power

$$oldsymbol{W}^{[k]}\cdotsoldsymbol{W}^{[1]}oldsymbol{x}=oldsymbol{W}^koldsymbol{x}=\lambda_1^k(oldsymbol{e}_1\cdotoldsymbol{x})oldsymbol{e}_1+\cdots\lambda_d^k(oldsymbol{e}_d\cdotoldsymbol{x})oldsymbol{e}_d$$

$$=\lambda_1^k x_1 \boldsymbol{e}_1 + \cdots \lambda_d^k x_d \boldsymbol{e}_d$$

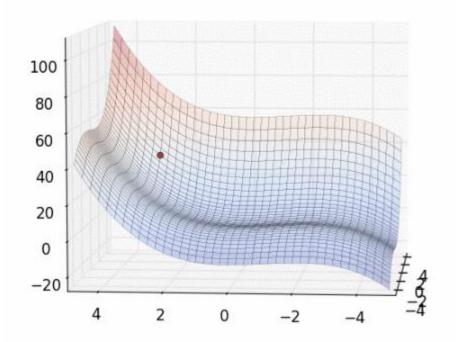
Moral: any $\lambda_i > 1$ leads to explosion while any $\lambda_i < 1$ leads to vanishing

Problem: initial values of the parameters

However, the main problem of training is that of *initial values*...

Gradient Descent can only discover minima that are close to the initial values

Using deep networks can only make this problem worse: intuitively, with deeper networks, the 'surface' can be even rougher...



Improving optimization

SGD (or MBGD)

Standard, decaying learning rate Update step:

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \; \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$

decaying learning rate mini-batch, possibly a singleton

SGD (or MBGD)

Standard, decaying learning rate Update step:

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \, \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$

decaying learning rate mini-batch, possibly a singleton

Many different ways to improve performance and speed rate:

- add some *momentum*
- take in account 2nd order derivatives
- make the *learning rate adaptive*

Momentum

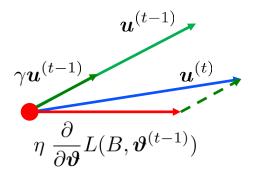
"Let the ball run"

momentum term: tendency to keep running at the same speed and direction

$$\boldsymbol{u}^{(t)} = \gamma \boldsymbol{u}^{(t-1)} + \eta \ \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}), \quad \boldsymbol{u}^{(0)} = \boldsymbol{0}$$

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \boldsymbol{u}^{(t)} \qquad 0 < \gamma < 1$$

coefficient of friction"



Momentum

"Let the ball run"

$$\boldsymbol{u}^{(t)} = \gamma \boldsymbol{u}^{(t-1)} + \eta \frac{\partial}{\partial \vartheta} L(B, \vartheta^{(t-1)}), \quad \boldsymbol{u}^{(0)} = \mathbf{0}$$

$$\boldsymbol{\vartheta}^{(t)} = \vartheta^{(t-1)} - \boldsymbol{u}^{(t)}$$

$$\boldsymbol{\vartheta}^{(t)} = \vartheta^{(t-1)} - \boldsymbol{u}^{(t)}$$

$$\boldsymbol{\vartheta}^{(t)} = \vartheta^{(t-1)} - \boldsymbol{u}^{(t)}$$

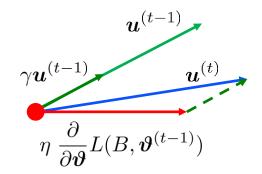
$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \boldsymbol{\vartheta}^{(t)}$$

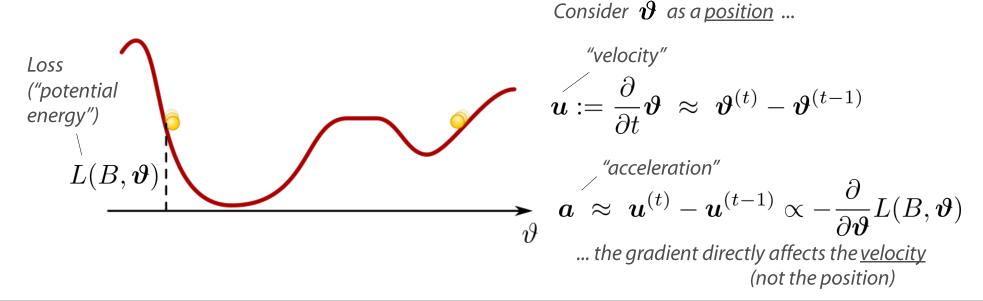
$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \boldsymbol{\vartheta}^{(t)} - \boldsymbol$$

Momentum

"Let the ball run"

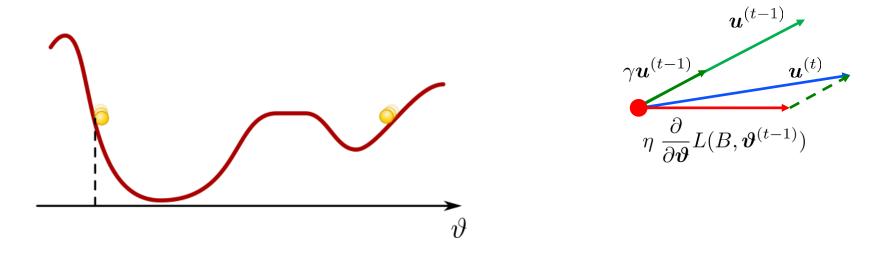
$$\boldsymbol{u}^{(t)} = \gamma \boldsymbol{u}^{(t-1)} + \eta \, \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}), \quad \boldsymbol{u}^{(0)} = \boldsymbol{0}$$
$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \boldsymbol{u}^{(t)}$$





Momentum

"Let the ball run"



 $\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \boldsymbol{u}^{(t)}$

• Update the *velocity* :

$$\boldsymbol{u}^{(t)} = \gamma \boldsymbol{u}^{(t-1)} + \eta \; \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}), \; \; \boldsymbol{u}^{(0)} = \boldsymbol{0}$$

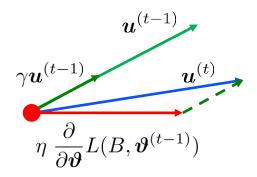
• Then the *position*:

NAG

Momentum

"Let the ball run"

$$\boldsymbol{u}^{(t)} = \gamma \boldsymbol{u}^{(t-1)} + \eta \, \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}), \quad \boldsymbol{u}^{(0)} = \boldsymbol{0}$$
$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \boldsymbol{u}^{(t)}$$



Nesterov Accelerated Gradient (NAG)

"Let the ball run but be predictive"

$$\boldsymbol{u}^{(t)} = \gamma \boldsymbol{u}^{(t-1)} + \eta \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)} - \gamma \boldsymbol{u}^{(t-1)})$$
$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \boldsymbol{u}^{(t)}$$
$$\boldsymbol{\eta} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$

2nd order methods

Taylor's expansion

$$L(B, \vartheta) = L(B, \vartheta^{(t-1)}) + \frac{\partial}{\partial \vartheta} L(B, \vartheta^{(t-1)}) \cdot (\vartheta - \vartheta^{(t-1)}) + \frac{1}{2} (\vartheta - \vartheta^{(t-1)}) \cdot \boldsymbol{H} (\vartheta - \vartheta^{(t-1)}) + \dots$$

All terms in blue are <u>constant</u>

where

$$oldsymbol{H} := rac{\partial}{\partial oldsymbol{artheta}} \left(rac{\partial}{\partial oldsymbol{artheta}} L(B, oldsymbol{artheta}^{(t-1)})
ight)$$
 — The Hessian Matrix

• Differentiate both sides and take
$$\vartheta = \vartheta^*$$
 The argmin

this is
$$0 - \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^*) = \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}) + \boldsymbol{H}(\boldsymbol{\vartheta}^* - \boldsymbol{\vartheta}^{(t-1)})$$

whence

$$\boldsymbol{\vartheta}^* - \boldsymbol{\vartheta}^{(t-1)} = -\boldsymbol{H}^{-1} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$

Gradient Descent

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \; \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$

Newton-Raphson's optimization method

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \ \boldsymbol{H}^{-1} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$

where
$$\boldsymbol{H} := \frac{\partial}{\partial \boldsymbol{\vartheta}} \left(\frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}) \right)$$

Why is the Newton-Raphson's method better than GD?

2nd order methods

Newton-Raphson's optimization method

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \ \boldsymbol{H}^{-1} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}) \qquad \boldsymbol{H} := \frac{\partial}{\partial \boldsymbol{\vartheta}} \left(\frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}) \right)$$

Example ac

where $\begin{bmatrix} a_1 & \dots & 0 \end{bmatrix}$

> a quadratic form, does not depend on B

 $L(B, \boldsymbol{\vartheta}) = \boldsymbol{\vartheta} \cdot \boldsymbol{A} \boldsymbol{\vartheta}$

a diagonal, positive definite matrix (whence L is convex)

$$\begin{aligned} \boldsymbol{A} &:= \begin{bmatrix} \vdots & \ddots & \vdots \\ 0 & \dots & a_d \end{bmatrix}, \quad a_i > 0 \ \forall i = 1, \dots, d \\ \\ \frac{\partial}{\partial \vartheta} L(B, \vartheta) &= 2\boldsymbol{A}\vartheta \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A}\vartheta \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A}\vartheta \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A}\vartheta \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A}\vartheta \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A}\vartheta \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} & \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{\partial} \left(\begin{array}{cc} \partial \\ \partial \end{array} \right) = 2\boldsymbol{A} \\ \boldsymbol{A} \\ \boldsymbol{A$$

2nd order methods

In this example (geometric view)

-0.6

-0.8

-1

-0.5

$$L(B, \vartheta) = \vartheta \cdot A\vartheta \quad \text{with} \quad A := \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}, \ a_1 \ll a_2$$

$$\begin{array}{c} \textbf{Gradient Descent} \\ \vartheta^{(t)} = \vartheta^{(t-1)} - \eta 2A\vartheta^{(t-1)} \\ \vartheta^{(t)} = \vartheta^{(t-1)} - \eta \vartheta^{(t-1)} \\ \vartheta^{(t)} = \vartheta^{(t-1)} - \eta \vartheta^{(t-1)}$$

0.5

-0.6

-0.8

-0.5

The level curves of a quadratic form in 2D are ellipses centered in the origin

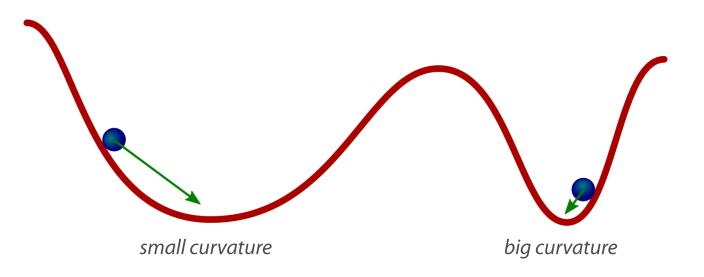
0.5

2nd order methods

• Newton-Raphson's optimization method $\vartheta^{(t)} = \vartheta^{(t-1)} - \eta \ H^{-1} \frac{\partial}{\partial \vartheta} L(B, \vartheta^{(t-1)}) \qquad H := \frac{\partial}{\partial \vartheta} \left(\frac{\partial}{\partial \vartheta} L(B, \vartheta^{(t-1)}) \right)$

The (inverse of the) Hessian Matrix takes into account also the curvature

• A smaller curvature leads to a bigger update step



AdaGrad

Newton-Raphson's optimization method

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \ \boldsymbol{H}^{-1} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}) \qquad \boldsymbol{H} := \frac{\partial}{\partial \boldsymbol{\vartheta}} \left(\frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}) \right)$$

However

- Computing the inverse Hessian matrix is not easy, in general
- It requires $\mathcal{O}(d^3)$ time versus $\mathcal{O}(d)$ of the gradient --- d is the number of parameters

AdaGrad

Newton-Raphson's optimization method

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \ \boldsymbol{H}^{-1} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}) \qquad \boldsymbol{H} := \frac{\partial}{\partial \boldsymbol{\vartheta}} \left(\frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)}) \right)$$

However

- Computing the inverse Hessian matrix is not easy, in general
- It requires $\mathcal{O}(d^3)$ time versus $\mathcal{O}(d)$ of the gradient --- d is the number of parameters

• AdaGrad approximation

$$G_i^{(t)} := \sqrt{\sum_{j=1}^t \left(\frac{\partial}{\partial \vartheta_i} L(B, \vartheta^{(j)})\right)^2} \qquad \mathbf{G}^{(t)} := \begin{bmatrix} G_1^{(t)} & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & G_d^{(t)} \end{bmatrix}$$

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \left(\boldsymbol{G}^{(t-1)} \right)^{-1} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$

AdaGrad

Gradient Descent

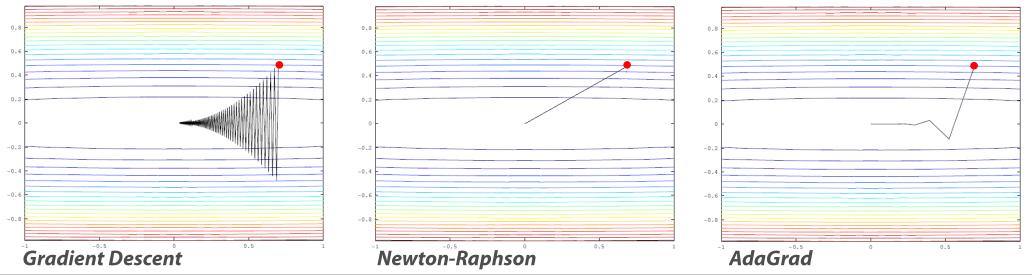
$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \; \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$

Newton-Raphson

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \ \boldsymbol{H}^{-1} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$

AdaGrad

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \left(\boldsymbol{G}^{(t-1)} \right)^{-1} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$



Deep Learning : 05-Learning as Optimization

RMSprop

AdaGrad approximation

$$G_i^{(t)} := \sqrt{\sum_{j=1}^t \left(\frac{\partial}{\partial \vartheta_i} L(B, \boldsymbol{\vartheta}^{(j)})\right)^2}$$

RMSprop approximation

 \cap

The overall sum is replaced by the exponential moving average (EMA)

$$g_i^{(t)} := \frac{\partial}{\partial \vartheta_i} L(B, \vartheta^{(t)})$$

$$EMA(g_i^2)^{(t)} := \gamma(g_i^{(t)})^2 + (1 - \gamma) EMA(g_i^2)^{(t-1)}$$

$$G_i^{(t)} := \sqrt{EMA(g_i^2)^{(t)}}$$

$$G^{(t)} := \begin{bmatrix} G_1^{(t)} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & G_d^{(t)} \end{bmatrix}$$

$$\vartheta^{(t)} = \vartheta^{(t-1)} - \eta \left(G^{(t-1)} \right)^{-1} \frac{\partial}{\partial \vartheta} L(B, \vartheta^{(t-1)})$$

AdaDelta

RMSprop approximation

$$g_i^{(t)} := \frac{\partial}{\partial \vartheta_i} L(B, \boldsymbol{\vartheta}^{(t)})$$

 $EMA(g_i^2)^{(t)} := \gamma(g_i^{(t)})^2 + (1 - \gamma)EMA(g_i^2)^{(t-1)}$

$$G_i^{(t)} := \sqrt{\mathrm{EMA}(g_i^2)^{(t)}}$$

 $G^{(}$

Г

 $(\mathbf{1})$

$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \left(\boldsymbol{G}^{(t-1)}\right)^{-1} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$

AdaDelta approximation

$$D_i^{(t)} := \sqrt{\mathrm{EMA}(\Delta \vartheta_i^2)^{(t)}} \qquad D^{(t)} := \begin{bmatrix} D_1^{(t)} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & D_d^{(t)} \end{bmatrix}$$
$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \ \boldsymbol{D}^{(t-1)} (\boldsymbol{G}^{(t-1)})^{-1} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(B, \boldsymbol{\vartheta}^{(t-1)})$$

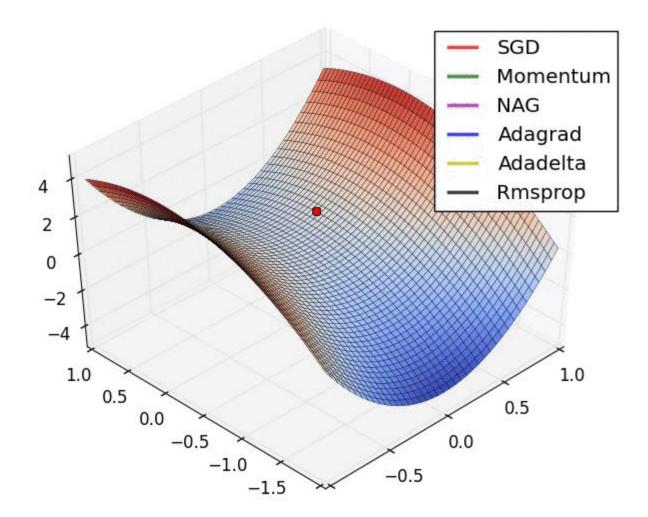


Image from https://imgur.com/a/Hqolp

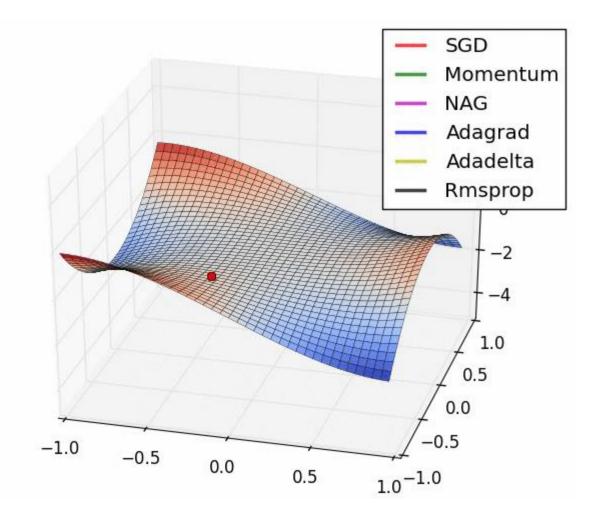


Image from https://imgur.com/a/Hqolp

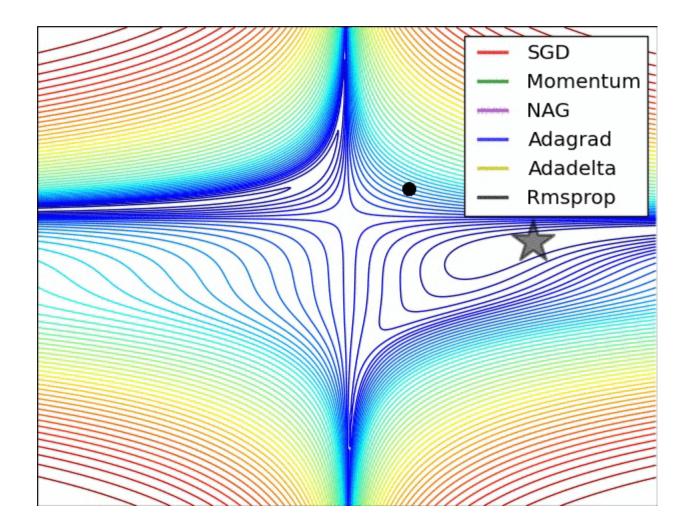


Image from https://imgur.com/a/Hqolp

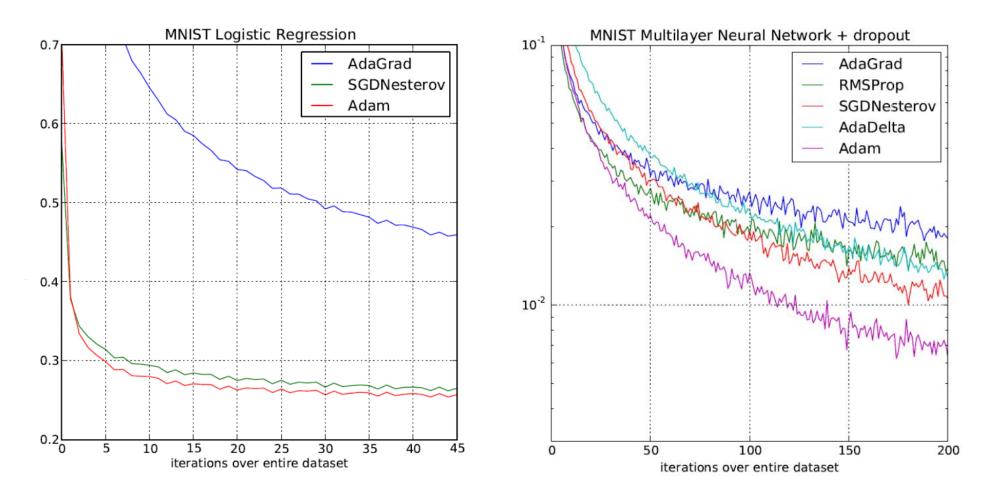
Adam

• Replace components with their EMAs ...

$$\begin{split} m_i^{(t)} &:= \beta_1(g_i^{(t)}) + (1 - \beta_1)m_i^{(t-1)} \qquad \boldsymbol{m}^{(t)} := \begin{bmatrix} m_1^{(t)} \\ \vdots \\ m_d^{(t)} \end{bmatrix} & \quad -\text{EMA of the gradient} \\ r_i^{(t)} &:= \beta_2(g_i^{(t)})^2 + (1 - \beta_2)r_i^{(t-1)} \qquad \boldsymbol{r}^{(t)} := \begin{bmatrix} r_1^{(t)} \\ \vdots \\ r_d^{(t)} \end{bmatrix} & \quad -\text{EMA of the Hessian} \\ approximation \\ (vector form) \\ \hat{\boldsymbol{m}}^{(t)} &:= \frac{\boldsymbol{m}^{(t)}}{1 - (1 - \beta_1)^t} \qquad \text{bias corrections (decay with time)} \\ \hat{\boldsymbol{r}}^{(t)} &:= \frac{\boldsymbol{r}^{(t)}}{1 - (1 - \beta_2)^t} & \quad -\text{bias corrections (decay with time)} \\ \hat{\boldsymbol{\vartheta}}^{(t)} &= \boldsymbol{\vartheta}^{(t-1)} - \eta \ \frac{\hat{\boldsymbol{m}}^{(t-1)}}{\sqrt{\hat{\boldsymbol{r}}^{(t-1)}}} & \quad -\text{(elementwise)} \end{split}$$

Adam

Experimentally



A bag of wonderful tricks

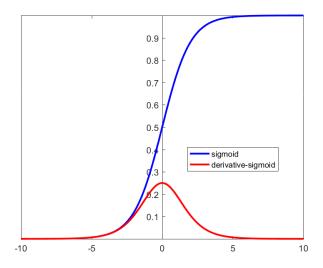
Why ReLU is better (sometimes)

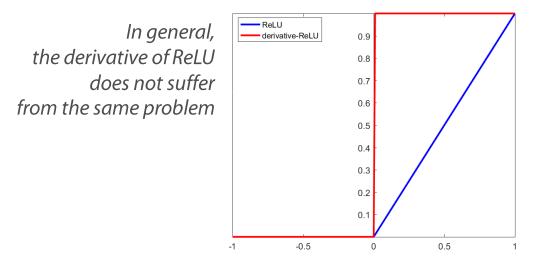
The gradient descent method implies updating the parameters at each step: making sure that the gradient does not either *vanish* or *explode* is not easy

For instance, in

$$\Delta \boldsymbol{W} = -\eta \, \frac{\partial L}{\partial \boldsymbol{W}} (\tilde{y}^{(i)}, y^{(i)})$$

the gradient contains a multiplicative term $\frac{\partial}{\partial x}g(x)$ which can be $\ll 1.0$



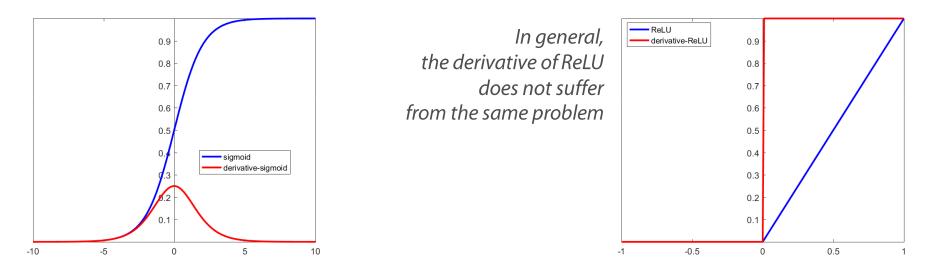


Why ReLU is better (sometimes)

In experimental practice (sometimes):

ReLU alleviates the problem of initial values

 (i.e. when initial values are too far away and cause sigmoid or tanh to saturate)

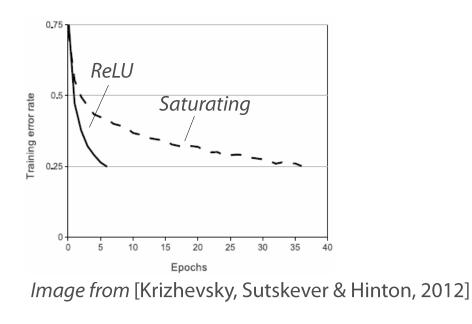


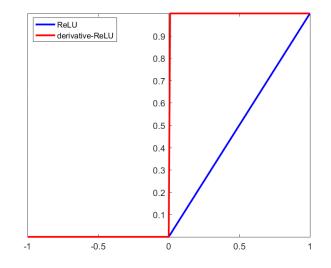
Why ReLU is better (sometimes)

In experimental practice (sometimes):

- ReLU alleviates the problem of initial values

 (i.e. when initial values are too far away and cause sigmoid or tanh to saturate)
- ReLU may accelerate the training process





Overfitting

When the training process becomes too specific to the training set

Training set, validation set

Splitting the dataset

$$D = D_{train} \cup D_{val}$$

$$\{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^{N} = \{(\boldsymbol{x}^{(j)}, y^{(j)})\}_{j=1}^{N_{train}} \cup \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^{N_{val}}$$

$$N_{train} \gg N_{val}$$

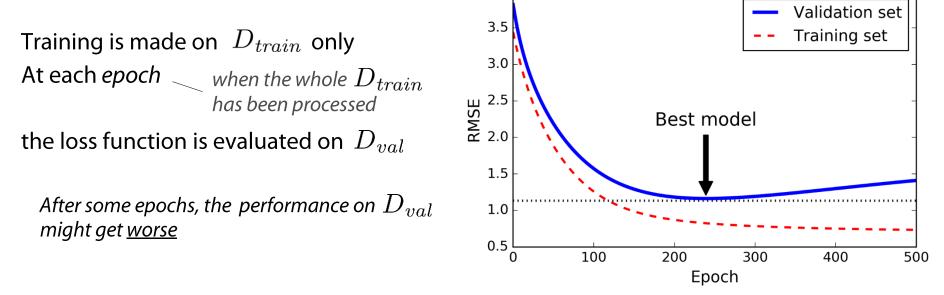
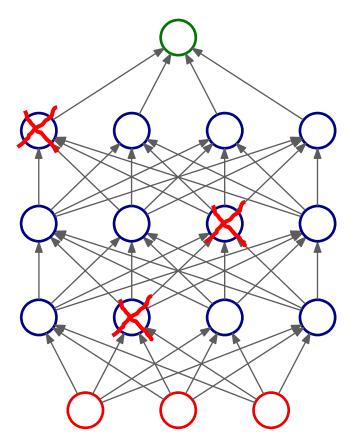


Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Dropout

Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

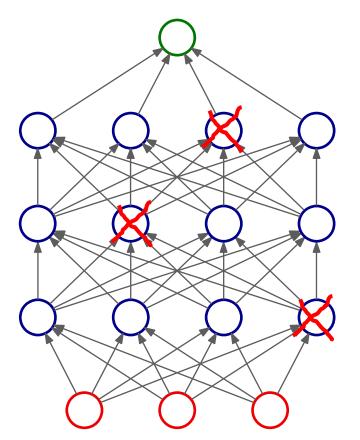


Training: mini-batch 1

Dropout

Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

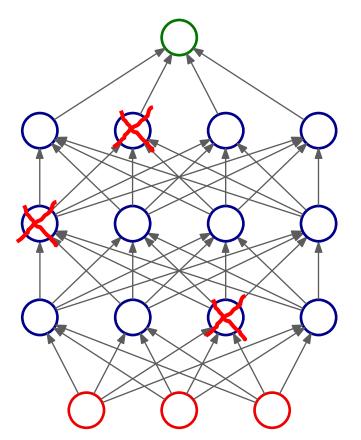


Training: mini-batch 2

Dropout

Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

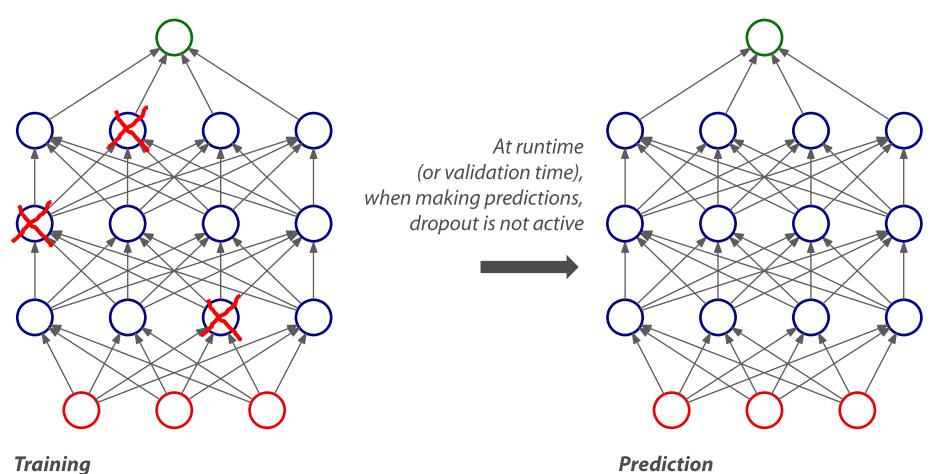


Training: mini-batch 3

Dropout

Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated



Deep Learning : 05-Learning as Optimization

Contrasting Overfitting

Applying Dropout

In a typical experiment

- initially, the performance on D_{val} improves slowly
- then it becomes better and more resilient to overfitting

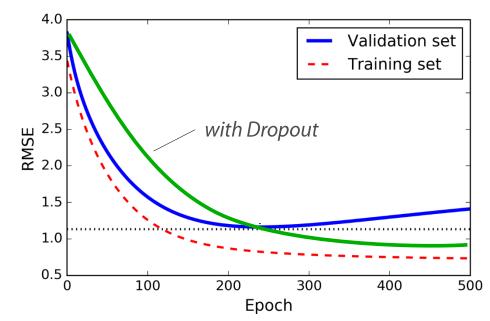
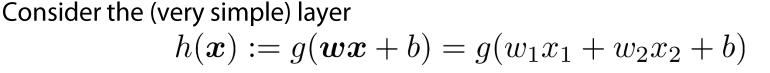
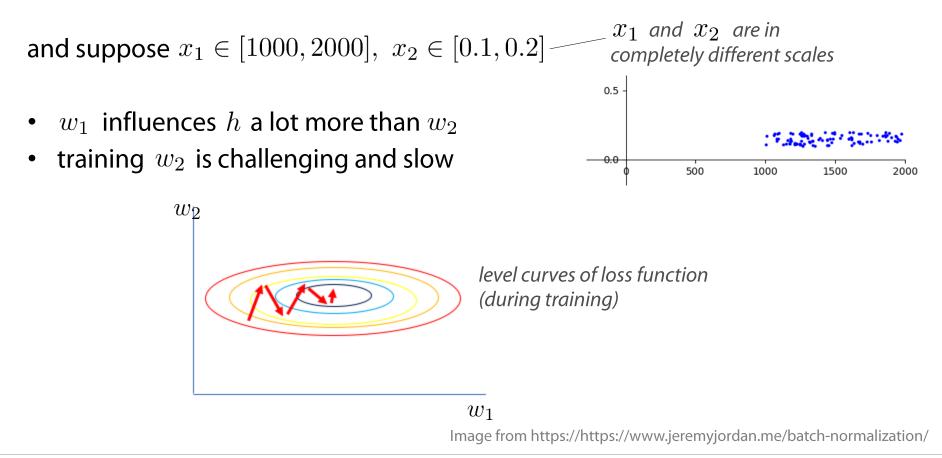


Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Intuition

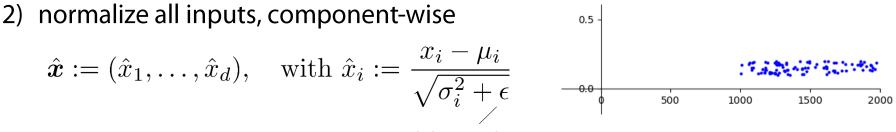




Input normalization

1) compute **mean** μ and (*component-wise*) **variance** σ^2 of inputs over dataset D

$$\boldsymbol{\mu} := \frac{1}{|D|} \sum_{\boldsymbol{x} \in D} \boldsymbol{x} \qquad \boldsymbol{\sigma}^2 := (\sigma_1^2, \dots, \sigma_d^2,) \quad \text{with } \sigma_i^2 := \frac{1}{|D|} \sum_{\boldsymbol{x} \in D} (x_i - \mu_i)^2$$

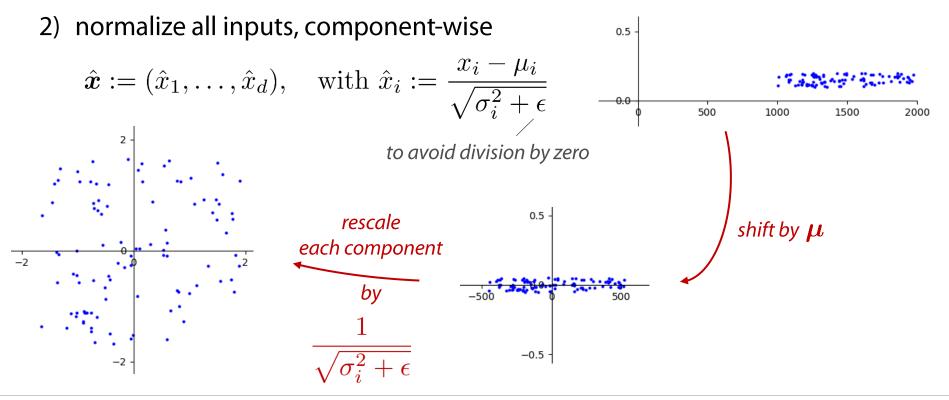


to avoid division by zero

Input normalization

1) compute mean μ and (*component-wise*) variance σ^2 of inputs over dataset D

$$\boldsymbol{\mu} := \frac{1}{|D|} \sum_{\boldsymbol{x} \in D} \boldsymbol{x} \qquad \boldsymbol{\sigma}^2 := (\sigma_1^2, \dots, \sigma_d^2,) \quad \text{with } \sigma_i^2 := \frac{1}{|D|} \sum_{\boldsymbol{x} \in D} (x_i - \mu_i)^2$$



Input normalization

1) compute **mean** μ and (*component-wise*) **variance** σ^2 of inputs over dataset D

$$\boldsymbol{\mu} := \frac{1}{|D|} \sum_{\boldsymbol{x} \in D} \boldsymbol{x} \qquad \boldsymbol{\sigma}^2 := (\sigma_1^2, \dots, \sigma_d^2,) \quad \text{with } \sigma_i^2 := \frac{1}{|D|} \sum_{\boldsymbol{x} \in D} (x_i - \mu_i)^2$$

2) normalize all inputs, component-wise

$$\hat{\boldsymbol{x}} := (\hat{x}_1, \dots, \hat{x}_d), \quad \text{with } \hat{x}_i := \frac{x_i - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

3) apply
$$h(\hat{x}) := g(w\hat{x} + b) = g(w_1\hat{x}_1 + w_2\hat{x}_2 + b)$$

Input normalization

1) compute **mean** μ and (*component-wise*) **variance** σ^2 of inputs over dataset D

 w_2

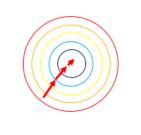
$$\boldsymbol{\mu} := \frac{1}{|D|} \sum_{\boldsymbol{x} \in D} \boldsymbol{x} \qquad \boldsymbol{\sigma}^2 := (\sigma_1^2, \dots, \sigma_d^2,) \quad \text{with } \sigma_i^2 := \frac{1}{|D|} \sum_{\boldsymbol{x} \in D} (x_i - \mu_i)^2$$

2) normalize all inputs, component-wise

$$\hat{\boldsymbol{x}} := (\hat{x}_1, \dots, \hat{x}_d), \quad \text{with } \hat{x}_i := \frac{x_i - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

3) apply
$$h(\hat{x}) := g(w\hat{x} + b) = g(w_1\hat{x}_1 + w_2\hat{x}_2 + b)$$

training becomes
 <u>faster</u> and <u>more stable</u>
 (also allowing higher learning rates)



level curves of the loss function (during training)

Image from https://https://www.jeremyjordan.me/batch-normalization/

 w_1

Normalizing in between layers

In a DNN $ilde{m{y}} = m{h}^{[n]}(m{h}^{[n-1]}(\dots(m{h}^{[2]}(m{h}^{[1]}(m{x})))\dots))$

<u>each layer</u> $h^{[i]}$ has an input of its own, which should be normalized How?

Normalizing in between layers

In a DNN $ilde{y} = h^{[n]}(h^{[n-1]}(\dots(h^{[2]}(h^{[1]}(x)))\dots))$

<u>each layer</u> $h^{[i]}$ has an input of its own, which should be normalized

Normalizing in between layers during training would require:

- pre-computing the input to each layer, for each data item in D
- applying normalization before proceeding further upwards
- doing it again after *each* updating the DNN parameters

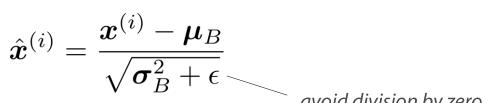
Moral: it's impossible

• For each mini-batch:

$$B = \left\{ \boldsymbol{x}^{(i)} \right\}_{i=1}^{m}$$

(all operations are performed element-wise)

$$ext{BN}_{oldsymbol{eta},oldsymbol{\gamma}}(oldsymbol{x}^{(i)}) := oldsymbol{\gamma}\hat{oldsymbol{x}}^{(i)} + oldsymbol{eta}_{ ext{trainable parameters}}$$



avoid division by zero

$$oldsymbol{\sigma}_B^2 = rac{1}{m} \sum_{i=1}^m \left(oldsymbol{x}^{(i)} - oldsymbol{\mu}_B
ight)$$
 $oldsymbol{\mu}_B = rac{1}{m} \sum_{i=1}^m oldsymbol{x}^{(i)}$

m

Training

- at step $t: \mu_{B^{(t)}}$ and $\sigma_{B^{(t)}}^2$ are computed over the <u>current</u> mini-batch $B^{(t)}$
- parameters γ and β (for each BN-layer) are trained in the same way as the other parameters in the DNN
- moving averages of mean and variance of the mini-batches $B^{(t)}$ are <u>collected</u>

$$MA(\boldsymbol{\mu})^{(t)} := \delta \cdot \boldsymbol{\mu}_{B^{(t)}} + (1 - \delta) \cdot MA(\boldsymbol{\mu})^{(t-1)}, \qquad MA(\boldsymbol{\mu})^{(1)} := \boldsymbol{\mu}_{B^{(1)}}$$
$$MA(\boldsymbol{\sigma}^2)^{(t)} := \delta \cdot \boldsymbol{\sigma}_{B^{(t)}}^2 + (1 - \delta) \cdot MA(\boldsymbol{\sigma}^2)^{(t-1)}, \qquad MA(\boldsymbol{\sigma}^2)^{(1)} := \boldsymbol{\sigma}_{B^{(1)}}^2$$

Inference

It will be performed for fewer inputs, possibly just one

Training

- at step : $\mu_{B^{(t)}}$ and $\sigma^2_{B^{(t)}}$ are computed over the <u>current</u> mini-batch $B^{(t)}$
- parameters γ and β (for each BN-layer) are trained in the same way as the other parameters in the DNN
- moving averages of mean and variance of the mini-batches $B^{(t)}$ are <u>collected</u>

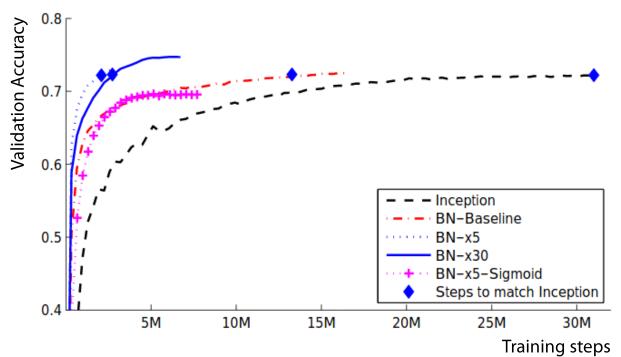
$$MA(\boldsymbol{\mu})^{(t)} := \delta \cdot \boldsymbol{\mu}_{B^{(t)}} + (1 - \delta) \cdot MA(\boldsymbol{\mu})^{(t-1)}, \qquad MA(\boldsymbol{\mu})^{(1)} := \boldsymbol{\mu}_{B^{(1)}}$$
$$MA(\boldsymbol{\sigma}^2)^{(t)} := \delta \cdot \boldsymbol{\sigma}_{B^{(t)}}^2 + (1 - \delta) \cdot MA(\boldsymbol{\sigma}^2)^{(t-1)}, \qquad MA(\boldsymbol{\sigma}^2)^{(1)} := \boldsymbol{\sigma}_{B^{(1)}}^2$$

Inference

Normalize using the moving averages collected *during training*

• $\boldsymbol{\mu} := MA(\boldsymbol{\mu})^{(T)}$ • $\boldsymbol{\sigma}^2 := MA(\boldsymbol{\sigma}^2)^{(T)}$ as collected during the training process

Does it work?



- Batch normalization acts as a *reparametrization* of the optimization process that
 - 1. makes the loss function smoother
 - 2. allows higher learning rates
 - 3. reduces chances to getting stuck into local minima

Image from [loffe and Szegedy 2015]