

Deep Learning

02-Artificial Neural Networks Basic Ideas, Notation and all that

Marco Piastra & Andrea Pedrini(*)

(*) Dipartimento di Matematica F. Casorati

This presentation can be downloaded at: http://vision.unipv.it/DL

Approximating a target function

$$y = f^*(x), \quad x \in \mathbb{R}^d$$

a.k.a. "single layer perceptron"

A first approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}$$

i.e. this is a vector of dimension d

Note that, when the input is scalar, the approximator becomes

$$\tilde{y} = wx + b$$

i.e. a straight line

Approximating a target function

$$y = f^*(x), x \in \mathbb{R}^d$$

A first approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}^d$$

dataset

A set of actual inputs and outputs is all we know about the target function

$$D := \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^{N}, \quad y^{(i)} = f^*(\boldsymbol{x}^{(i)}), \forall i$$

Approximating a target function

$$y = f^*(\boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^d$$

A first approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}^d$$

dataset

A set of actual inputs and outputs is all we know about the target function

$$D := \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^{N}, \quad y^{(i)} = f^*(\boldsymbol{x}^{(i)}), \forall i$$

Three other fundamental aspects to be considered:

- representation: which parametric approximator for a given target function?
- evaluation: how do you tell that some parameter values are better than others?
- optimization: how can we <u>learn</u> optimal values for the parameters?

Example: XOR

$$y = XOR(x), x \in \{0, 1\}^2$$

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}$$

Dataset:

$$D := \{(\boldsymbol{x}^{(i)}, \, y^{(i)})\}_{i=1}^{N}$$

x_1	x_2	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

this is our dataset (N=4)

■ Example: XOR

$$y = XOR(x), x \in \{0, 1\}^2$$

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}^d$$

$\underline{}$ x_1	x_2	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

Dataset:

$$D := \{ (\boldsymbol{x}^{(i)}, \, y^{(i)}) \}_{i=1}^{N}$$

this is our dataset (N=4)

Loss function (evaluation):

$$L(\mathbf{x}^{(i)}, y^{(i)}) := (\tilde{y}(\mathbf{x}^{(i)}) - y^{(i)})^2$$

_____ Squared Error

$$L(D) := rac{1}{N} \sum_{(oldsymbol{x}^{(i)}, y^{(i)}) \in D} L(oldsymbol{x}^{(i)}, y^{(i)})$$
 Mean Squared Error (MSE)

Example: XOR

$$y = XOR(x), x \in \{0, 1\}^2$$

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}^d$$

x_1	x_2	$x_1 \oplus x_2$
0	0 0	
0	1	1
1	0	1
1	1	0

Dataset:

$$D := \{(\boldsymbol{x}^{(i)}, \, y^{(i)})\}_{i=1}^{N}$$

this is our dataset (N=4)

Optimization problem:

We need to find

i.e. the set of parameter values that minimizes loss w.r.t. to the dataset

$$(\boldsymbol{w}, b)^* = \underset{(\boldsymbol{w}, b)}{\operatorname{argmin}} L(D)$$

Loss minimization

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}^d$$

Loss function:

$$L(D) := \frac{1}{N} \sum_{i=1}^{N} L(\boldsymbol{x}^{(i)}, y^{(i)})$$

$$= \frac{1}{N} \sum_{i=1}^{N} (\tilde{y}(\boldsymbol{x}^{(i)}) - y^{(i)})^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} ((\boldsymbol{w} \cdot \boldsymbol{x}^{(i)} + b) - y^{(i)})^{2}$$

Can we express this summation by using linear algebra?

As we will see later on, matrix representation may lead to a better **parallelization** of computations

Loss minimization

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}$$

Loss function:

$$L(D) = \frac{1}{N} \sum_{i=1}^{N} ((\boldsymbol{w} \cdot \boldsymbol{x}^{(i)} + b) - y^{(i)})^{2}$$

define:

$$m{X} := egin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_d^{(N)} \end{bmatrix}$$
 input data in matrix form (item index first)

Loss minimization

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}^d$$

Loss function:

$$L(D) = \frac{1}{N} \sum_{i=1}^{N} ((\boldsymbol{w} \cdot \boldsymbol{x}^{(i)} + b) - y^{(i)})^{2}$$

define:

The loss function becomes:

$$L(D) = rac{1}{N} (\hat{m{X}} m{artheta} - m{y})^2$$
 | loss function in matrix form | This is a positive-definite quadratic form

Loss minimization

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}^d$$

Loss function:

$$L(D) = \frac{1}{N} \sum_{i=1}^{N} \left(\left(\boldsymbol{w} \cdot \boldsymbol{x}^{(i)} + b \right) - \boldsymbol{y}^{(i)} \right)^{2}$$

define:

$$\hat{oldsymbol{X}} := egin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} & 1 \ dots & \ddots & dots & dots \ x_1^{(N)} & \dots & x_d^{(N)} & 1 \end{bmatrix} \hspace{0.2cm} oldsymbol{artheta} := egin{bmatrix} w_1 \ dots \ w_d \ b \end{bmatrix} \hspace{0.2cm} oldsymbol{y} := egin{bmatrix} oldsymbol{y}^{(1)} \ dots \ y^{(N)} \end{bmatrix}$$

The loss function becomes:

$$L(D) = rac{1}{N} (\hat{m{X}}m{artheta} - m{y})^2$$
 | loss function in matrix form | This is a positive-definite quadratic form |

Loss minimization

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}$$

Loss function:

$$L(D) = \frac{1}{N} (\hat{\boldsymbol{X}} \boldsymbol{\vartheta} - \boldsymbol{y})^2$$

For XOR:

$$\hat{oldsymbol{X}} := egin{bmatrix} 0 & 0 & 1 \ 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{bmatrix} \qquad oldsymbol{artheta} := egin{bmatrix} w_1 \ w_2 \ b \end{bmatrix} \qquad oldsymbol{y} := egin{bmatrix} 0 \ 1 \ 1 \ 0 \end{bmatrix}$$

$$oldsymbol{artheta} := egin{bmatrix} w_1 \ w_2 \ b \end{bmatrix}$$

XOR

x_1	x_2	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

this is our dataset (N=4)

$$oldsymbol{y} := egin{bmatrix} 0 \ 1 \ 1 \ 0 \end{bmatrix}$$

Loss minimization

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}$$

representation

Loss function:

$$L(D) = \frac{1}{N} (\hat{\boldsymbol{X}} \boldsymbol{\vartheta} - \boldsymbol{y})^2$$

evaluation

Optimization:

$$\frac{\partial}{\partial \boldsymbol{\vartheta}} L(D) = 0$$

optimization

the loss function is <u>convex</u>: by solving this equation we can find ϑ^* i.e. the optimal parameter values

Loss minimization

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}^d$$

Optimization:

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\vartheta}}L(D) &= \frac{1}{N}\frac{\partial}{\partial \boldsymbol{\vartheta}}(\hat{\boldsymbol{X}}\boldsymbol{\vartheta} - \boldsymbol{y})^2 \\ &= \frac{1}{N}\frac{\partial}{\partial \boldsymbol{\vartheta}}(\hat{\boldsymbol{X}}\boldsymbol{\vartheta} - \boldsymbol{y})^T(\hat{\boldsymbol{X}}\boldsymbol{\vartheta} - \boldsymbol{y}) = \frac{1}{N}\frac{\partial}{\partial \boldsymbol{\vartheta}}(\boldsymbol{\vartheta}^T\hat{\boldsymbol{X}}^T - \boldsymbol{y}^T)(\hat{\boldsymbol{X}}\boldsymbol{\vartheta} - \boldsymbol{y}) \\ &= \frac{1}{N}\frac{\partial}{\partial \boldsymbol{\vartheta}}(\boldsymbol{\vartheta}^T\hat{\boldsymbol{X}}^T\hat{\boldsymbol{X}}\boldsymbol{\vartheta} - \boldsymbol{\vartheta}^T\hat{\boldsymbol{X}}^T\boldsymbol{y} - \boldsymbol{y}^T\hat{\boldsymbol{X}}\boldsymbol{\vartheta} + \boldsymbol{y}^T\boldsymbol{y}) \\ &= \frac{1}{N}\frac{\partial}{\partial \boldsymbol{\vartheta}}(\boldsymbol{\vartheta}^T\hat{\boldsymbol{X}}^T\hat{\boldsymbol{X}}\boldsymbol{\vartheta} - 2\boldsymbol{\vartheta}^T\hat{\boldsymbol{X}}^T\boldsymbol{y} + \boldsymbol{y}^T\boldsymbol{y}) \end{split}$$

$$= \frac{1}{N}(2\hat{\boldsymbol{X}}^T\hat{\boldsymbol{X}}\boldsymbol{\vartheta} - 2\hat{\boldsymbol{X}}^T\boldsymbol{y})$$

Loss minimization

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}^d$$

Optimization:

$$\frac{\partial}{\partial \boldsymbol{\vartheta}} L(D) = \frac{1}{N} (2\hat{\boldsymbol{X}}^T \hat{\boldsymbol{X}} \boldsymbol{\vartheta} - 2\hat{\boldsymbol{X}}^T \boldsymbol{y})$$

$$\frac{\partial}{\partial \boldsymbol{\vartheta}} L(D) = 0 \implies 2\hat{\boldsymbol{X}}^T \hat{\boldsymbol{X}} \boldsymbol{\vartheta} - 2\hat{\boldsymbol{X}}^T \boldsymbol{y} = 0$$

$$\hat{\boldsymbol{X}}^T \hat{\boldsymbol{X}} \boldsymbol{\vartheta} = \hat{\boldsymbol{X}}^T \boldsymbol{y}$$

$$oldsymbol{artheta} = (\hat{oldsymbol{X}}^T\hat{oldsymbol{X}})^{-1}\hat{oldsymbol{X}}^Toldsymbol{y}$$

this is what we need

this matrix is SQUARE and, typically, with actual datasets, is invertible (i.e. full rank)

Loss minimization

Approximator: linear combination

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}^d$$

For XOR:

$$oldsymbol{artheta} = (\hat{oldsymbol{X}}^T \hat{oldsymbol{X}})^{-1} \hat{oldsymbol{X}}^T oldsymbol{y}$$

x_1	x_2	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

$$\hat{oldsymbol{X}} := egin{bmatrix} 0 & 0 & 1 \ 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{bmatrix} \quad oldsymbol{artheta} := egin{bmatrix} w_1 \ w_2 \ b \end{bmatrix} \quad oldsymbol{y} := egin{bmatrix} 0 \ 1 \ 1 \ 0 \end{bmatrix}$$

$$\hat{\boldsymbol{X}}^T \hat{\boldsymbol{X}} = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 4 \end{bmatrix} \quad (\hat{\boldsymbol{X}}^T \hat{\boldsymbol{X}})^{-1} = \begin{bmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 0.5 \\ 0.5 & 0.5 & 0.75 \end{bmatrix} \qquad (\hat{\boldsymbol{X}}^T \hat{\boldsymbol{X}})^{-1} \hat{\boldsymbol{X}}^T \boldsymbol{y} = \begin{bmatrix} 0 \\ 0 \\ 0.5 \end{bmatrix}$$

$$(\hat{\boldsymbol{X}}^T\hat{\boldsymbol{X}})^{-1}\hat{\boldsymbol{X}}^T\boldsymbol{y} = \begin{bmatrix} 0\\0\\0.5 \end{bmatrix}$$

Loss minimization

XOR

Approximator: *linear combination*

$$\tilde{y} = \boldsymbol{w} \cdot \boldsymbol{x} + b, \quad \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}$$

For XOR:

$$\boldsymbol{\vartheta} := \begin{bmatrix} w_1 \\ w_2 \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0.5 \end{bmatrix}$$

$\overline{x_1}$	x_2	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

hence the XOR linear approximator becomes:

$$\tilde{y} = 0.5$$

What ???

Function approximation: Feed-Forward Neural Network

Approximating a target function

$$y = f^*(\boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^d$$

Second attempt: (shallow) feed-forward neural network

$$ilde{y} = m{w} \cdot g(m{W}m{x} + m{b}) + b, \quad m{W} \in \mathbb{R}^{h imes d}, \quad m{w}, m{b} \in \mathbb{R}^h, b \in \mathbb{R}$$
 i.e. this is a matrix of dimensions $h imes d$ this is a non-linear scalar function, applied elementwise

Approximating a target function

$$y = f^*(x), x \in \mathbb{R}^d$$

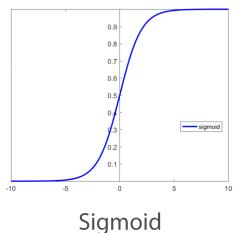
Second attempt: (shallow) feed-forward neural network

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b, \quad \boldsymbol{W} \in \mathbb{R}^{h \times d}, \ \boldsymbol{w}, \boldsymbol{b} \in \mathbb{R}^h, b \in \mathbb{R}^h$$

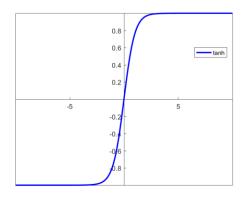
Popular choices for the non-linear function:

$$g(x) = \sigma(x) = \frac{1}{e^{-x} + 1}$$

$$g(x) = \sigma(x) = \frac{1}{e^{-x} + 1}$$

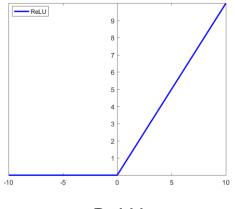


$$g(x) = \tanh(x)$$



Hyperbolic Tangent

$$g(x) = \max(0, x)$$



ReLU

Approximating a target function

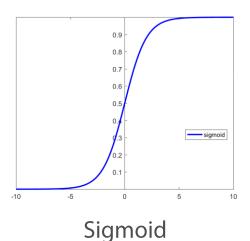
$$y = f^*(x), x \in \mathbb{R}^d$$

Second attempt: (shallow) feed-forward neural network

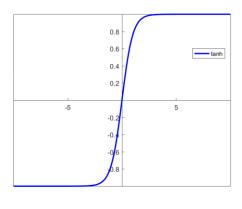
$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b, \quad \boldsymbol{W} \in \mathbb{R}^{h \times d}, \ \boldsymbol{w}, \boldsymbol{b} \in \mathbb{R}^h, b \in \mathbb{R}^h$$

Popular choices for the non-linear function:

$$g(x) = \sigma(x) = \frac{1}{e^{-x} + 1}$$

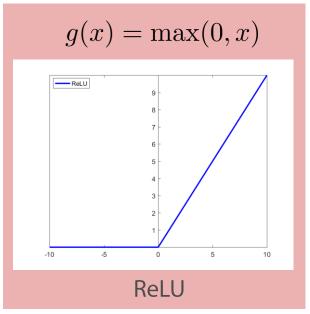


$$g(x) = \tanh(x)$$



Hyperbolic Tangent

this is somewhat special...

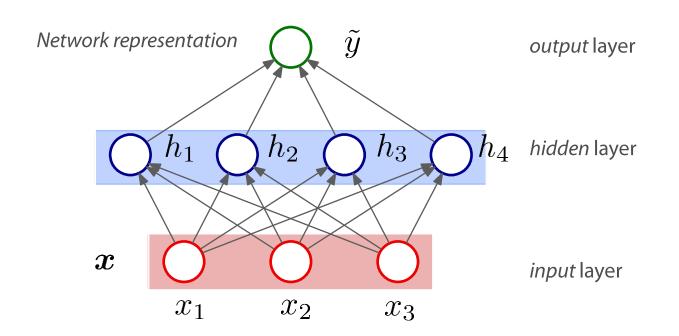


Approximating a target function

$$y = f^*(\boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^d$$

Second attempt: (shallow) feed-forward neural network

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b, \quad \boldsymbol{W} \in \mathbb{R}^{h \times d}, \ \boldsymbol{w}, \boldsymbol{b} \in \mathbb{R}^h, b \in \mathbb{R}^h$$

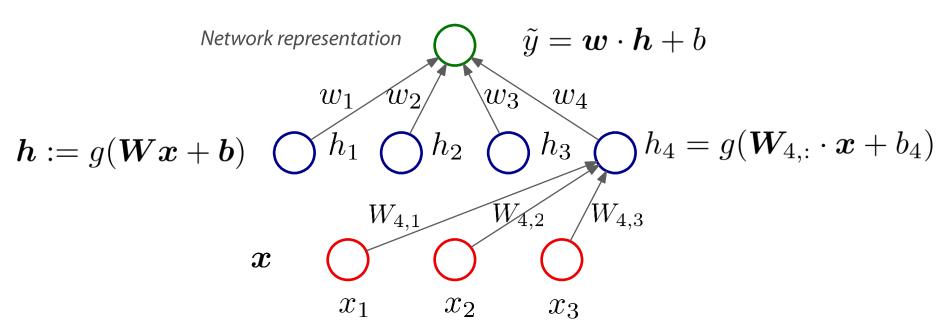


Approximating a target function

$$y = f^*(x), x \in \mathbb{R}^d$$

Second attempt: (shallow) feed-forward neural network

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b, \quad \boldsymbol{W} \in \mathbb{R}^{h \times d}, \ \boldsymbol{w}, \boldsymbol{b} \in \mathbb{R}^h, b \in \mathbb{R}^h$$



NOTE: $\underline{biases}\ oldsymbol{b}$ and b are NOT represented in the graph

Universality of FF Neural Networks

Universal approximation theorem (Cybenko, 1989; Hornik, 1991; Leshno et al. 1991)

For any target function

$$y=f^*(oldsymbol{x}), \;\; oldsymbol{x} \in \mathbb{R}^d$$
 (which is continuous and Borel measurable)

and any $\varepsilon > 0$ there exists parameters

$$h \in \mathbb{Z}^+, \boldsymbol{W} \in \mathbb{R}^{h \times d}, \ \boldsymbol{w}, \boldsymbol{b} \in \mathbb{R}^h, b \in \mathbb{R}^h$$

this is the dimension of the hidden layer: it is a <u>parameter</u> in the theorem

such that the (shallow) feed-forward neural network

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b$$

approximates the target function by less than $\ arepsilon$

$$\sup_{m{x}} |f^*(m{x}) - (m{w} \cdot g(m{W}m{x} + m{b}) + b)| < arepsilon$$
 (on any compact subset of \mathbb{R}^d)

This theorem holds with any of the non-linear functions seen before

Universality of FF Neural Networks

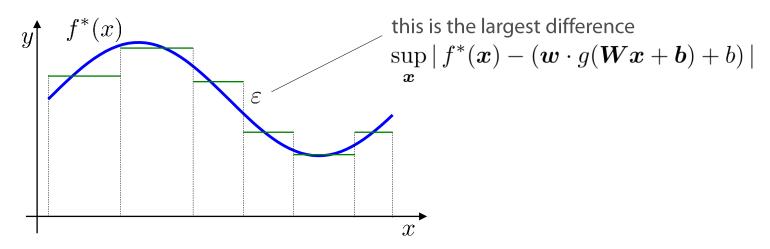
Universal approximation theorem (Cybenko, 1989; Hornik, 1991; Leshno et al. 1991)

<u>Intuitive rationale</u>

Any continuous target function

$$y = f^*(x), x \in \mathbb{R}$$

can be approximated arbitrarily well by a stepwise function



for simplicity, assume x is *scalar* (hence \boldsymbol{W} is *vector*)

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}x + \boldsymbol{b}) + b$$

Universality of FF Neural Networks

Universal approximation theorem (Cybenko, 1989; Hornik, 1991; Leshno et al. 1991)

Intuitive rationale

Consider the *step function* as the non-linearity

$$\tilde{y} = \boldsymbol{w} \cdot \text{step}(\boldsymbol{W}x + \boldsymbol{b}) + b$$

then, by expanding the approximator

$$\tilde{y} = w_1 \operatorname{step}(W_1 x + b_1) + \dots + w_h \operatorname{step}(W_h x + b_h) + b$$

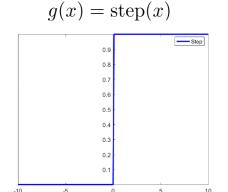
where each step occurs at

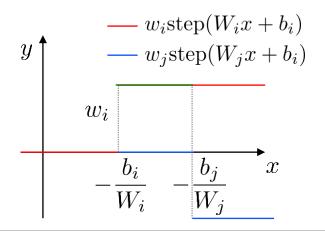
$$W_i \cdot x + b_i = 0 \implies W_i \cdot x = -b_i \implies x = -\frac{b_i}{W_i}$$

Consider *pairs* of steps i and j and impose

$$-\frac{b_i}{W_i} < -\frac{b_j}{W_i}, \quad W_i, W_j > 0, \quad w_i = -w_j$$

in this way we can construct $\frac{h}{2}$ such function steps





Learning Feed-Forward Neural Networks

Learning with FF Neural Networks

Approximating a target function

$$y = f^*(x), x \in \mathbb{R}^d$$

Second attempt: (shallow) feed-forward neural network

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b, \quad \boldsymbol{W} \in \mathbb{R}^{h \times d}, \ \boldsymbol{w}, \boldsymbol{b} \in \mathbb{R}^h, b \in \mathbb{R}^h$$

Optimization problem (learning)

Given a dataset
$$D := \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^N, \ \ y^{(i)} = f^*(\boldsymbol{x}^{(i)}), \ \forall i$$

/ the dimension of the hidden layer is pre-defined

we want to find parameter values $\ m{W} \in \mathbb{R}^{h \times d}, \ m{w}, m{b} \in \mathbb{R}^h, b \in \mathbb{R}$

that minimize the loss function
$$L(D) := \frac{1}{N} \sum_{D} (\tilde{y}^{(i)} - y^{(i)})^2$$

where:
$$\tilde{y}^{(i)} := \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x}^{(i)} + \boldsymbol{b}) + b$$

Learning with FF Neural Networks

Approximating a target function

$$y = f^*(x), \quad x \in \mathbb{R}^d$$

Second attempt: (shallow) feed-forward neural network

$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b, \quad \boldsymbol{W} \in \mathbb{R}^{h \times d}, \ \boldsymbol{w}, \boldsymbol{b} \in \mathbb{R}^h, b \in \mathbb{R}^h$$

Difficulty

In general, minimizing the loss function

$$L(D) = \frac{1}{N} \sum_{D} ((\boldsymbol{w} \cdot g(\boldsymbol{W} \boldsymbol{x}^{(i)} + \boldsymbol{b}) + b) - y^{(i)})^{2}$$

cannot be done directly, since

this loss function is <u>not</u> convex, in general

$$\frac{\partial}{\partial \boldsymbol{\vartheta}} L(D) = 0$$

cannot be solved analytically

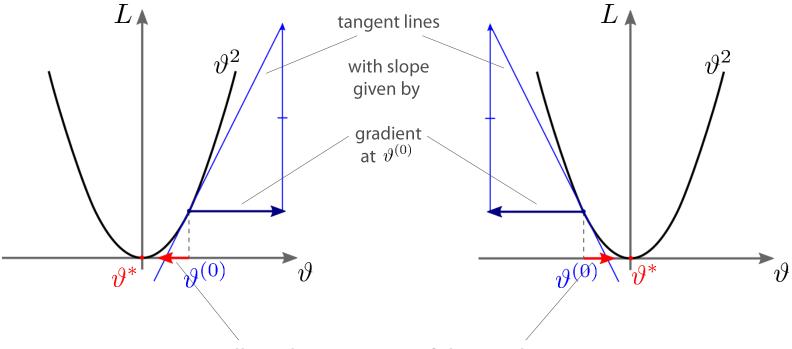
We need to find another way...

Gradient Descent (GD): intuition

Optimization problem

$$oldsymbol{artheta}^* := \mathop{
m argmin}_{oldsymbol{artheta}} \, L(D, oldsymbol{artheta})$$
 Just making the dependence explicit

Minimizing a generic function



Gradient Descent (GD): intuition

Optimization problem

$$\boldsymbol{\vartheta}^* := \operatorname{argmin}_{\boldsymbol{\vartheta}} L(D, \boldsymbol{\vartheta})$$

Just making the dependence explicit

- *Iterative method* Step in the method
 - 1. Initialize $\boldsymbol{\vartheta}^{(0)}$ at random

2. Update
$$\boldsymbol{\vartheta}^{(t)} = \boldsymbol{\vartheta}^{(t-1)} - \eta \; \frac{\partial}{\partial \boldsymbol{\vartheta}} L(D, \boldsymbol{\vartheta}^{(t-1)})$$

3. Unless some termination criterion has been met, go back to step 2.

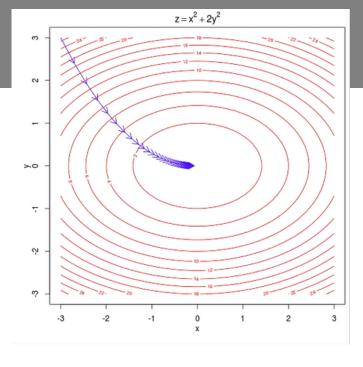
The gradient of the loss over the dataset D is the average of gradients over each data item

where

$$\frac{\partial}{\partial \boldsymbol{\vartheta}} L(D,\boldsymbol{\vartheta}) := \frac{1}{N} \sum_{D} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(\hat{y}^{(i)}, y^{(i)}, \boldsymbol{\vartheta})$$

 $\eta \ll 1$

A learning rate, it is arbitrary (i.e. an hyperparameter)



Gradient Descent (GD): convergence

Convergence

When $L(D, \boldsymbol{\vartheta})$ is convex, derivable, and its gradient is Lipschitz continuous, that is

$$\left\| \frac{\partial}{\partial \boldsymbol{\vartheta}} L(D, \boldsymbol{\vartheta}_1) - \frac{\partial}{\partial \boldsymbol{\vartheta}} L(D, \boldsymbol{\vartheta}_2) \right\| \le C \|\boldsymbol{\vartheta}_1 - \boldsymbol{\vartheta}_2\|, \quad C > 0$$

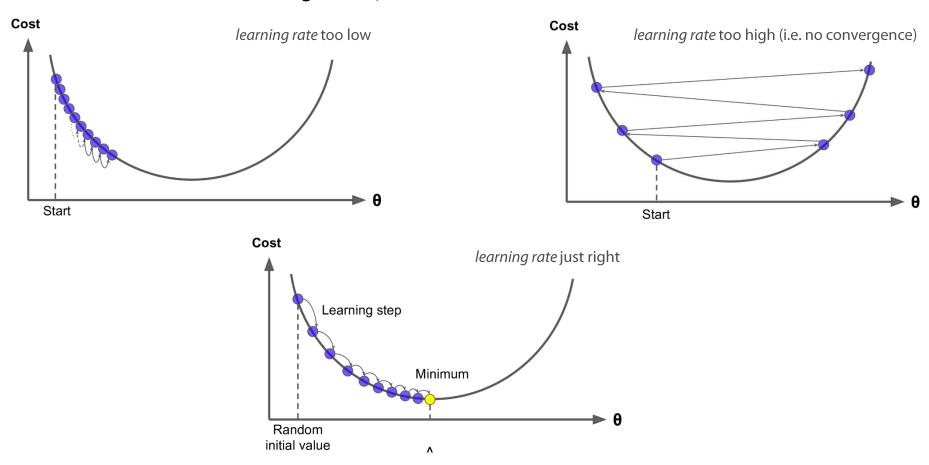
the gradient descent method converges to the optimal $\, \pmb{\vartheta}^*$ for $\, t \to \infty$ provided that $\, \eta \le 1/C \,$

When $L(D, \vartheta)$ is derivable but <u>not</u> convex, and its gradient is Lipschitz continuous, the gradient descent method converges to a <u>local minimum</u> of $L(D, \vartheta)$ under the same conditions

Gradient Descent (GD): practicalities

Convergence in practice

The choice of the *learning rate* η is crucial

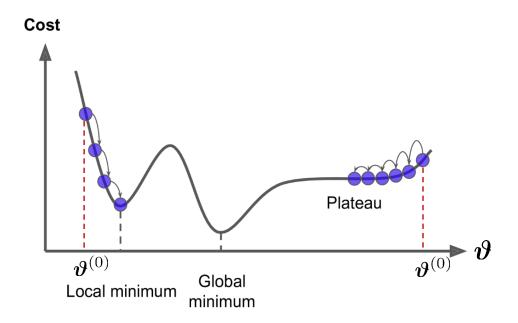


Images from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Gradient Descent (GD): practicalities

Convergence in practice

When $L(D, \boldsymbol{\vartheta})$ is <u>not</u> convex, the **initial estimate** $\boldsymbol{\vartheta}^{(0)}$ is crucial



The outcome of the method will depend on which $\,oldsymbol{artheta}^{(0)}\,$ is picked

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Computing Gradients

Gradient Descent for FF Neural Networks

Recall that the item-wise loss for a specific data item in the dataset is

$$L(\tilde{y}^{(i)}, y^{(i)}) := (\tilde{y}^{(i)} - y^{(i)})^2$$

then

$$L(D) = \frac{1}{N} \sum_{D} L(\tilde{y}^{(i)}, y^{(i)})$$

and the gradient of the loss function is

$$\frac{\partial}{\partial \boldsymbol{\vartheta}} L(D) = \frac{\partial}{\partial \boldsymbol{\vartheta}} \frac{1}{N} \sum_{D} L(\tilde{y}^{(i)}, y^{(i)})$$
$$= \frac{1}{N} \sum_{D} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(\tilde{y}^{(i)}, y^{(i)})$$

Moral: we must be capable to compute the gradient on each data item

Gradient Descent for FF Neural Networks

Suppose we can compute the four *item-wise gradients*, w.r.t. to the parameters:

$$\frac{\partial}{\partial \boldsymbol{W}} L(\tilde{y}^{(i)}, y^{(i)}) \qquad \frac{\partial}{\partial \boldsymbol{b}} L(\tilde{y}^{(i)}, y^{(i)}) \qquad \frac{\partial}{\partial \boldsymbol{w}} L(\tilde{y}^{(i)}, y^{(i)}) \qquad \frac{\partial}{\partial b} L(\tilde{y}^{(i)}, y^{(i)})$$

we can then apply a gradient descent method

Gradient Descent

- 1. Assign initial values to the four parameters $m{W}^{(0)}, \ m{b}^{(0)}, \ m{w}^{(0)}, \ b^{(0)}$
- 2. Update the four parameters by adding

$$\Delta \boldsymbol{W} = -\eta \, \frac{1}{N} \sum_{D} \frac{\partial}{\partial \boldsymbol{W}} L(\tilde{y}^{(i)}, y^{(i)}) \qquad \Delta \boldsymbol{b} = -\eta \, \frac{1}{N} \sum_{D} \frac{\partial}{\partial \boldsymbol{b}} L(\tilde{y}^{(i)}, y^{(i)})$$
$$\Delta \boldsymbol{w} = -\eta \, \frac{1}{N} \sum_{D} \frac{\partial}{\partial \boldsymbol{w}} L(\tilde{y}^{(i)}, y^{(i)}) \qquad \Delta \boldsymbol{b} = -\eta \, \frac{1}{N} \sum_{D} \frac{\partial}{\partial \boldsymbol{b}} L(\tilde{y}^{(i)}, y^{(i)})$$

3. Unless complete, return to step 2.

Computing Gradients

All we need to apply the descent method is computing the item-wise gradients For instance:

$$\frac{\partial}{\partial \mathbf{W}} L(\tilde{y}^{(i)}, y^{(i)}) = \frac{\partial}{\partial \mathbf{W}} (\tilde{y}^{(i)} - y^{(i)})^2$$

$$= \frac{\partial}{\partial \mathbf{W}} ((\mathbf{w} \cdot g(\mathbf{W} \mathbf{x}^{(i)} + \mathbf{b}) + b) - y^{(i)})^2$$

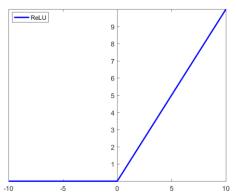
(similar expressions hold for the other three gradients)

Assume

$$g(x) = \text{ReLU}(x) := \max(0, x)$$

i.e. the non-linearity is ReLU Easy, huh?

$$g(x) = \max(0, x)$$



Learning Feed-Forward Neural Networks (contd.)

Function Approximation: FF Neural Networks

Loss minimization

XOR

x_1	x_2	$x_1 \oplus x_2$
0	0	0
0	1	1
-		_

Approximator:

(shallow) feed-forward neural network

$$\tilde{y} = \boldsymbol{w} \cdot \text{ReLU}(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b$$

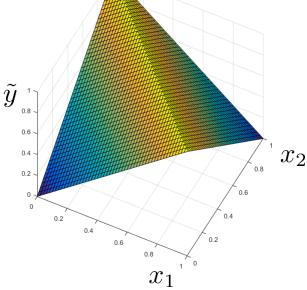
Optimal values for XOR and h = 2:

dimension of the hidden layer

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \qquad b = 0$$

$$b = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$w = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$



0

Function Approximation: FF Neural Networks

Loss minimization

XOR

Approximator:

(shallow) feed-forward neural network

$$\tilde{y} = \boldsymbol{w} \cdot \text{ReLU}(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b$$

In this case our dataset was tiny... (N=4)

What if the dataset was <u>very</u> large?

x_1	x_2	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

this is our dataset

Stochastic Gradient Descent for FF Neural Networks

With very large datasets, the sum in:

$$\Delta \boldsymbol{\vartheta} = -\eta \, \frac{1}{N} \sum_{D} \frac{\partial}{\partial \boldsymbol{\vartheta}} L(\tilde{y}^{(i)}, y^{(i)})$$

may take very long to compute (and this must be repeated at each iteration)

- Stochastic Gradient Descent (SGD) (i.e. "you don't actually need to sum up them all")
 - 1. Assign initial values to the four parameters $\mathbf{W}^{(0)}$, $\mathbf{b}^{(0)}$, $\mathbf{w}^{(0)}$, $b^{(0)}$
 - 2. Pick up a data item $(x^{(i)}, y^{(i)})$ from D with uniform probability and update the four parameters (with $\eta \ll 1.0, \ \eta \to 0$ as iterations progress)

$$\Delta \mathbf{W} = -\eta \; \frac{\partial}{\partial \mathbf{W}} L(\tilde{y}^{(i)}, y^{(i)}) \qquad \qquad \Delta \mathbf{b} = -\eta \; \frac{\partial}{\partial \mathbf{b}} L(\tilde{y}^{(i)}, y^{(i)})$$

$$\Delta \boldsymbol{w} = -\eta \; \frac{\partial}{\partial \boldsymbol{w}} L(\tilde{y}^{(i)}, y^{(i)}) \qquad \qquad \Delta b = -\eta \; \frac{\partial}{\partial b} L(\tilde{y}^{(i)}, y^{(i)})$$

3. Unless complete, return to step 2.

Stochastic Gradient Descent (SGD): convergence

Convergence

When $L(D, \boldsymbol{\vartheta})$ is convex, derivable, and its gradient is Lipschitz continuous, that is

$$\left\| \frac{\partial}{\partial \boldsymbol{\vartheta}} L(D, \boldsymbol{\vartheta}_1) - \frac{\partial}{\partial \boldsymbol{\vartheta}} L(D, \boldsymbol{\vartheta}_2) \right\| \le C \|\boldsymbol{\vartheta}_1 - \boldsymbol{\vartheta}_2\|, \quad C > 0$$

the <u>stochastic</u> gradient descent method converges to the optimal $\, \pmb{\vartheta}^* \,$ for $\, t \to \infty \,$ provided that

$$\eta^{(t)} \leq \frac{1}{Ct}$$
 Note that $\eta^{(t)} \to 0$ for $t \to \infty$

When $L(D, \vartheta)$ is derivable, and its gradient is Lipschitz continuous but not convex the stochastic gradient descent method converges to a local minimum of $L(D, \vartheta)$ under the same conditions

Speed of Convergence

Perhaps surprisingly, **stochastic gradient descent** shares the same properties and could be <u>faster</u> than GD ...

Consider a generic loss function $L(\vartheta)$ which is *convex* in the parameter ϑ Define *accuracy* as an upper bound:

optimal value current parameter estimate
$$|L(\boldsymbol{\vartheta}^*) - L(\tilde{\boldsymbol{\vartheta}})| < \rho$$

[from Bottou & Bousquet, 2008]

N size of the dataset < q number of (scalar) parameters in $oldsymbol{artheta}$

Algorithm	Cost per iteration	Iterations to reach accuracy $ ho$	Time to reach accuracy $ ho$
Gradient descent (GD)	$\mathcal{O}(N q)$	$\mathcal{O}\left(\log \frac{1}{\rho}\right)$	$\mathcal{O}\left(N q \log \frac{1}{\rho}\right)$
Stochastic gradient descent (SGD)	$\mathcal{O}(q)$	$\mathcal{O}\left(\frac{1}{\rho}\right)$	$\mathcal{O}\left(q\frac{1}{\rho}\right)$

Mini-batch Gradient Descent for FF Neural Networks

Mini-batch Gradient Descent (MBGD)

- 1. Assign initial values to the four parameters $m{W}^{(0)}, \ m{b}^{(0)}, \ m{w}^{(0)}, \ b^{(0)}$
- 2. Pick a mini-batch $B\subseteq D$ with uniform probability and update the four parameters (with $\eta\ll 1.0, \ \eta\to 0$ as iterations progress)

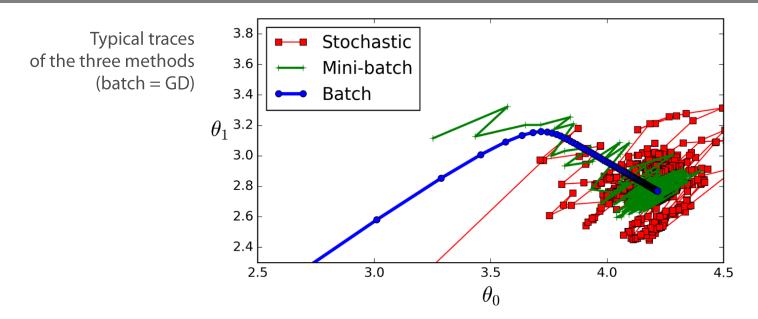
$$\Delta \boldsymbol{W} = -\eta \; \frac{1}{|B|} \sum_{B} \frac{\partial}{\partial \boldsymbol{W}} L(\tilde{y}^{(i)}, y^{(i)}) \quad \Delta \boldsymbol{b} = -\eta \; \frac{1}{|B|} \sum_{B} \frac{\partial}{\partial \boldsymbol{b}} L(\tilde{y}^{(i)}, y^{(i)})$$

$$\Delta \boldsymbol{w} = -\eta \, \frac{1}{|B|} \sum_{B} \frac{\partial}{\partial \boldsymbol{w}} L(\tilde{y}^{(i)}, y^{(i)}) \qquad \Delta b = -\eta \, \frac{1}{|B|} \sum_{B} \frac{\partial}{\partial b} L(\tilde{y}^{(i)}, y^{(i)})$$

3. Unless complete, return to step 2.

This method has the same convergence properties of SGD

Qualitative comparison of GD methods



In general:

- GD is more regular but slower (with large datasets)
- SGD is faster (with large datasets) but noisy
- MBGD is often the right compromise in practice...

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html