

Università degli Studi di Pavia

Deep Learning

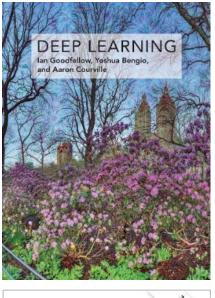
01-Introduction

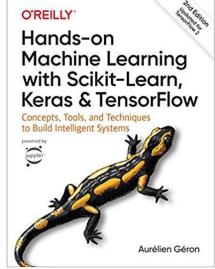
Marco Piastra & Andrea Pedrini(*)

(*) Dipartimento di Matematica F. Casorati

This presentation can be downloaded at: <u>http://vision.unipv.it/DL</u>

Main References for the This Course


Deep Learning


Ian Goodfellow, Yoshua Bengio and Aaron Courville *MIT Press, 2017*

See also http://www.deeplearningbook.org/

 Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition

Aurélien Géron O'Reilly, 2020

Prologue: "Deep Learning"?

Deep Learning in the Artificial Intelligence Cosmos

Artificial Intelligence

automated reproduction of human cognitive activities

Machine Learning

automated extraction of generalized knowledge from data and experience

Deep Learning

automated extraction of generalized knowledge from data and experience ...

... using multi-layered **representations**

Al strikes back?

The revolution in AI has been profound, it definitely surprised me, even though I was sitting right there.

Sergey Brin Google co-founder

• Sergey Brin [Google Co-Founder, January 2017]

"I didn't pay attention to it [i.e. Artificial Intelligence] at all, to be perfectly honest."

"Having been trained as a computer scientist in the 90s, everybody knew that AI didn't work. People tried it, they tried neural nets and none of it worked."

[Quote and image from https://www.weforum.org/agenda/2017/01/google-sergey-brin-i-didn-t-see-ai-coming/]

Artificial Intelligence Overhype

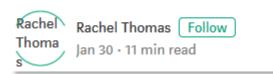
10,693 views | Feb 15, 2019, 02:15pm

Markets

3 Reasons AI Is Way Overhyped

Peter Cohan Contributor ①

1. Many CEOs Are Being Scared Into Caring Too Much About AI


2. There Are Very Few Examples of High Payoff AI Applications

3. Very Few Companies Can Afford or Find Good Uses For AI

[Quote from https://www.forbes.com/sites/petercohan/2019/02/15/3-reasons-ai-is-way-overhyped/#3d3fef8c5a6a/

Artificial Intelligence Risks

I'm an AI researcher, and here's what scares me about AI

AI is being increasingly used to make important decisions. Many AI experts (including <u>Jeff Dean</u>, head of AI at Google, and <u>Andrew Ng</u>, founder of Coursera and deeplearning.ai) say that <u>warnings about sentient robots are</u> overblown, but other harms are not getting enough attention. I agree. I am an AI researcher, and <u>I'm worried</u> about some of the societal impacts that we're already seeing. In particular, these 5 things scare me about AI:

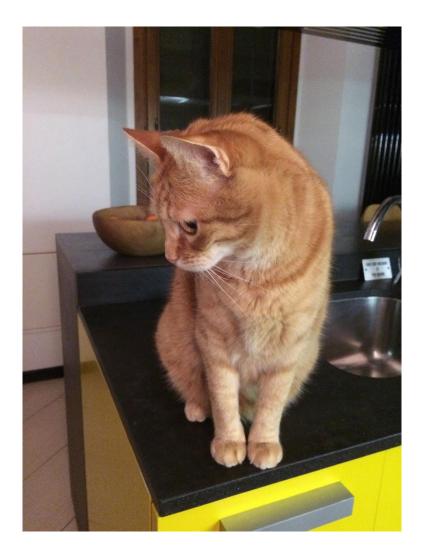
- 1. Algorithms are often implemented without ways to address mistakes.
- 2. AI makes it easier to not feel responsible.
- 3. AI encodes & magnifies bias.
- 4. Optimizing metrics above all else leads to negative outcomes.
- 5. There is no accountability for big tech companies.

[Quote from https://medium.com/@racheltho/im-an-ai-researcher-and-here-is-what-scares-me-about-ai-909a406e4a71

Artificial Intelligence Hysteria?

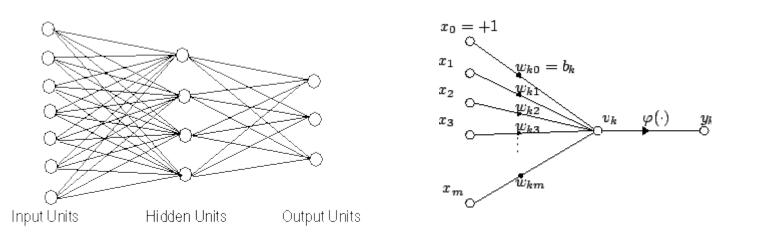
Al isn't as scary as we imagine. AndreyZH/Shutterstock

The reality of AI is currently very different, particularly when you look at the threat of automation. Back in 2013, <u>researchers estimated</u> that, in the following ten to 20 years, 47% of jobs in the US could be automated. Six years later, instead of a trend towards mass joblessness, we're in fact seeing US unemployment at <u>a historic low</u>.


Current AI is good at finding patterns in large datasets, and not much else.

[Quote from https://theconversation.com/ais-current-hype-and-hysteria-could-set-the-technology-back-by-decades-120514]

One Giant Leap for Mankind

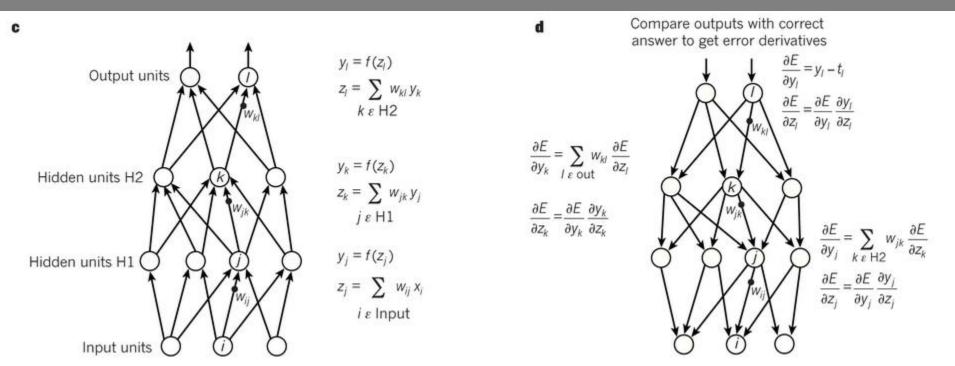

Is there a cat in this picture?

[this is my cat, Rabarbaro]

Artificial Neural Networks: The Origins

Emulation or simulation? Connectionism

(from Wikipedia)


"In our view, people are smarter than today's computers because the brain employs a basic computational architecture that is more suited to deal with a central aspect of the natural information processing tasks that people are so good at."

[Rumelhart, D.E., J.L. McClelland and the PDP Research Group (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition]

Basic assumption

Mental phenomena can be described by interconnected networks of simple and often uniform units

Artificial Neural Network

[figure from LeCun, Bengio, Hinton, Deep Learning, Nature 521, 2015]

Function approximation

Basically, this is what a 'classical' artificial neural network does

Supervised learning

The parameters (i.e. *weights*) are "learnt" from a dataset of inputs and expected outputs pairs

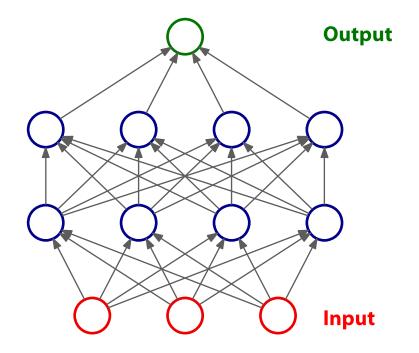
Incremental optimization —— a.k.a. "backward propagation"

Weights are progressively corrected to reduce *the difference* between actual and expected outputs

Artificial Neural Networks

From shallow to deep networks

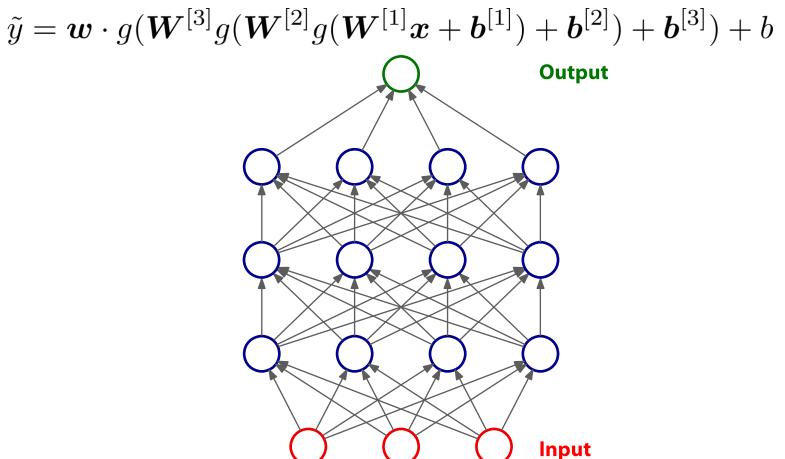
A feed-forward neural network with one hidden layer


$$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}^{[1]}\boldsymbol{x} + \boldsymbol{b}^{[1]}) + \boldsymbol{b}$$
Deep Learning systems
(e.g. TensorFlow, PyTorch)
use this representation
$$y = f^*(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^d$$
Sigiven enough units and proper parameters)
Output
The two representations
are equivalent

Artificial Neural Networks

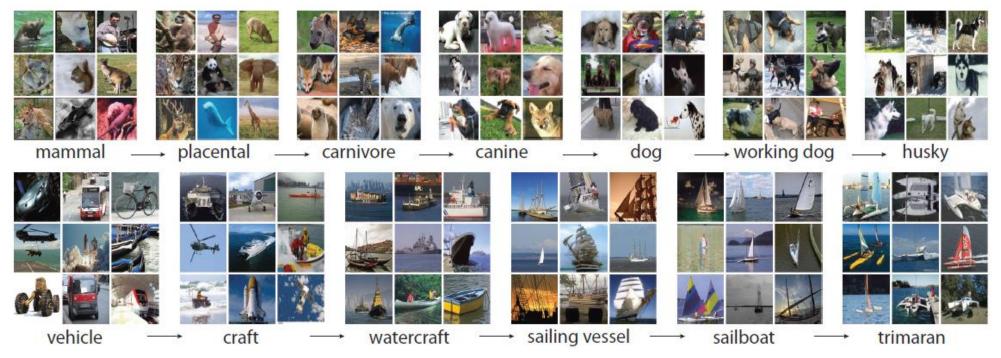
From shallow to deep networks

A feed-forward neural network with two hidden layers


$$\tilde{y} = w \cdot g(W^{[2]}g(W^{[1]}x + b^{[1]}) + b^{[2]}) + b$$

Artificial Neural Networks

From shallow to deep networks


A feed-forward neural network with three hidden layers

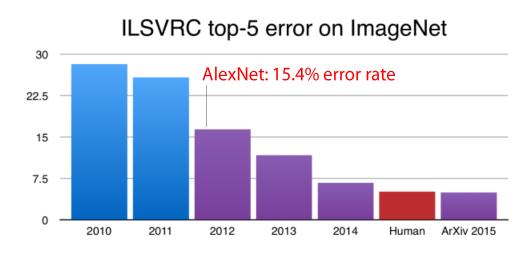
Well, it's just a function anyway ...

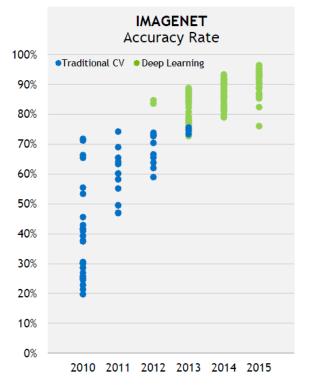
ImageNet Challenge

The ImageNet Large Scale Visual Recognition Challenge

1,461,406 full resolution images

Complex and multiple textual annotation,


hierarchy of 1000 object classes along several dimensions

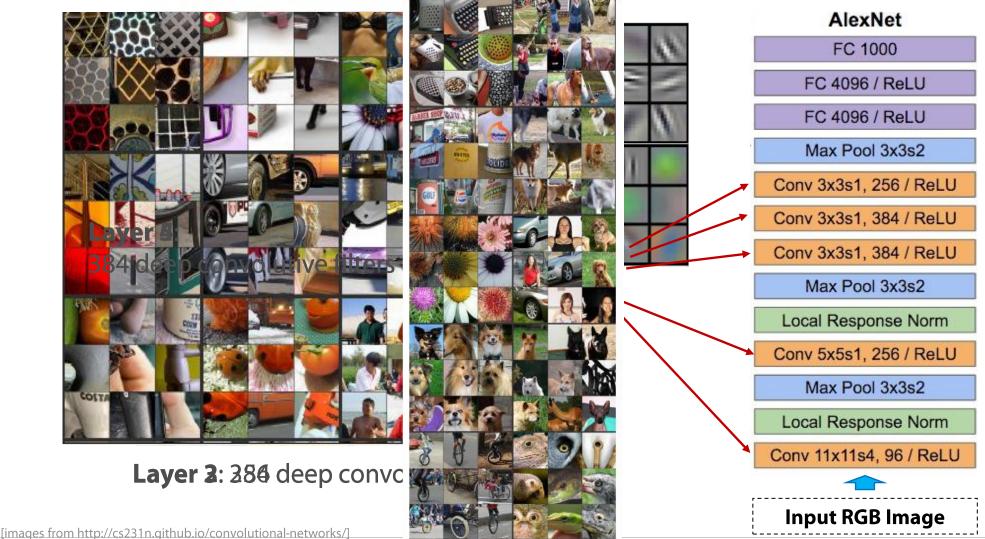

The image classification challenge was run annually from 2010 to 2017

[figures from www.nvidia.com]

ImageNet Challenge

The ImageNet Large Scale Visual Recognition Challenge

1,461,406 full resolution images


Complex and multiple textual annotation, hierarchy of 1000 object classes along several dimensions

The image classification challenge was run annually from 2010 to 2017

[figures from www.nvidia.com]

Deep Convolutional Neural Networks (DCNN)

AlexNet [Krizhevsky, Sutskever & Hinton, 2012]

Deep Learning : 01-Introduction

Well, it's just a function anyway (contd.)...

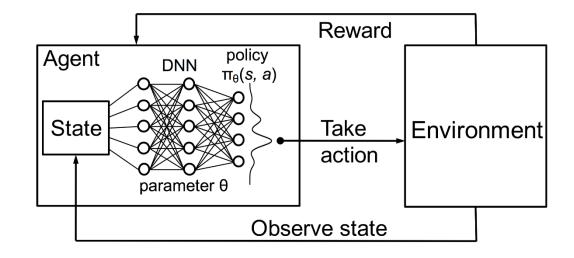
Games of strategy: AlphaGo (2016)

Image from: https://nikcheerla.github.io/deeplearningschool/2018/01/01/AlphaZero-Explained/

 Mastering the game of Go with deep neural networks and tree search [2016, D. Silver, et al. (22 authors), <u>http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html</u>]

There are more possible positions in Go than there are atoms in the universe

Sophisticated machine-learning techniques


Strategy selection via Monte Carlo Tree Search (MCTS) Deep neural networks (trained on human matches) for both guidance and learning Adversarial self-training: playing again itself and improving via reinforcement learning

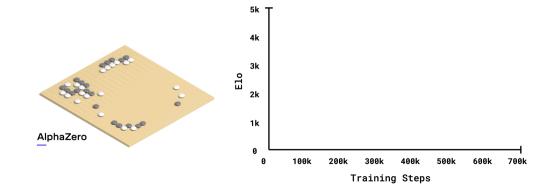
Super-human player?

On March 2016, AlphaGo won 4-1 against the legendary Lee Sedol, the top Go player in the world over the past decade

Deep Reinforcement Learning (DRL)

• A Deep Neural Network learns a policy

The agent interacts with an environment (it could be a copy of itself)


It selects an **action** in each **state** and receives a **reward** (possibly deferred) as a function of the results obtained

The DRL system optimizes its policy

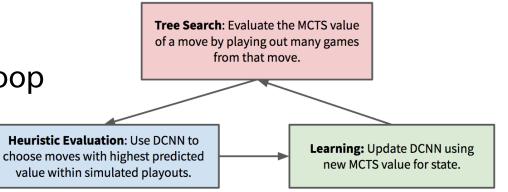
Beyond Emulating Humans: AlphaZero (2018)

Image from: https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

AlphaGo is heavily reliant on the experience of human players

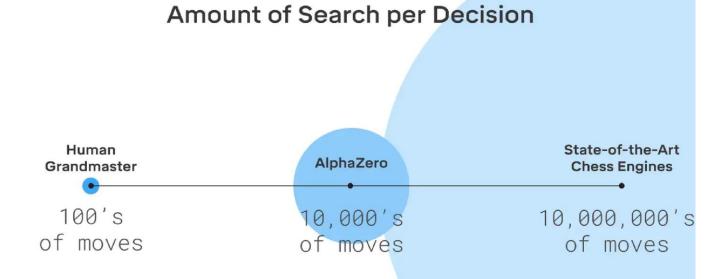
AlphaZero learns by itself

[2018, D. Silver, et al. (13 authors), https://science.sciencemag.org/content/362/6419/1140.full]


Basic Knowledge Only

It just knows the basic rules of the games

Learning via Self-Play


It plays against a (frozen) copy of itself

MCTS and DCNN in a closed loop

Beyond Emulating Humans: AlphaZero (2018)

Image from: https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

AlphaZero uses much less 'brute force' search

When playing, the search process is driven by its neural network It acts like a memory of past experiences

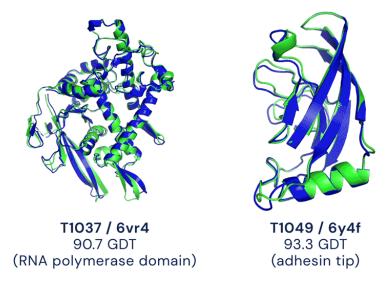
While training, it learns through a huge amount of self-playing But it is a faster learner than Alpha Go

AlphaFold (2020)

Images from https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Predicting how proteins fold

Several Neural Networks


Trained separately, working together

A big step ahead

Substantial improvement over the best actual systems yet

Median Free-Modelling Accuracy

Experimental result
 Computational prediction

It's open source

In the version used for the CASP13 challenge https://github.com/deepmind/deepmind-research/tree/master/alphafold_casp13

Deep Learning : 01-Introduction

Image from https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3

Deep Learning : 01-Introduction

Image from https://www.nytimes.com/2020/07/29/opinion/gpt-3-ai-automation.html

Fortier fed GPT-3 a strange prompt: "Below is a transcript from an interview where Barack Obama explained why he was banned from Golden Corral for life." The system then filled in the rest of the interview, running with the concept that Obama had been banned from an all-you-can-eat buffet.

Obama: Yes. It's true. I am no longer allowed in Golden Corral.

Interviewer: Is this because of your extensive shrimp-n-crab legs policy?

Obama: Absolutely.

Interviewer: What is your extensive shrimp-n-crab legs policy?

Obama: Oh, well, in brief, they were offering an all-you-can-eat shrimp-n-crab leg buffet, and I did not hesitate. After I ate so much shrimp and crab that my stomach hurt, I would quietly sneak in and throw more shrimp and crab onto my plate. I did this over and over again until I had cleaned out the buffet and was full of shrimpn-crab.

Image from http://jalammar.github.io/how-gpt3-works-visualizations-animations/

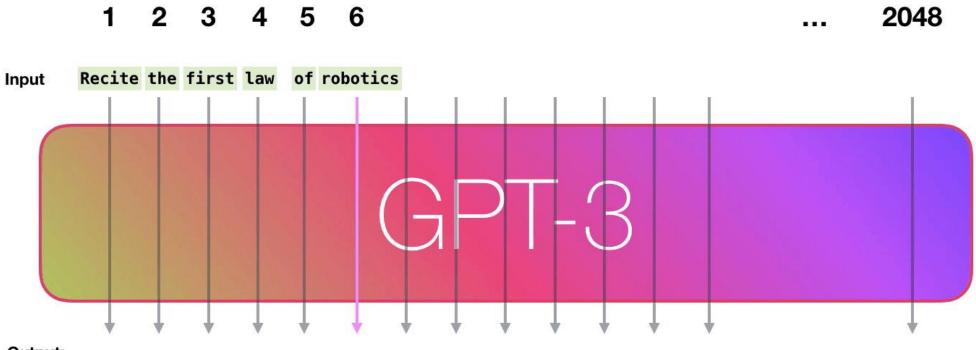
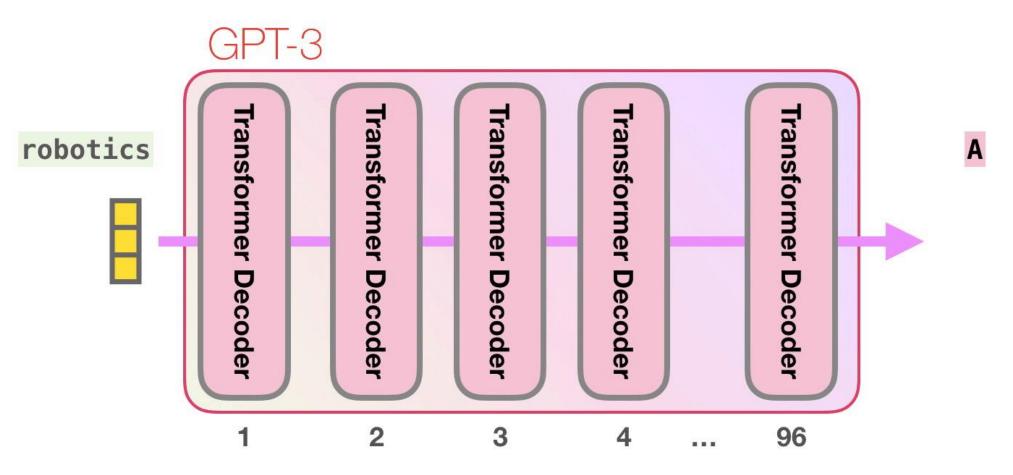



Image from http://jalammar.github.io/how-gpt3-works-visualizations-animations/

One of the biggest Neural Networks yet

GPT-3 has 175 <u>Billion</u> parameters (AlexNet has 64 Million)

OK, about this course ...

This Course in a Nutshell

- 1) Fundamentals
- 2) Deep Supervised Learning
- 3) Deep Convolutional Neural Networks
- 4) Deep Recurrent Networks
- 5) Deep Reinforcement Learning

Labs with Google Colab

CO Welcome To Colaborat File Edit View Insert Ru	Co Share 🐺 🧥
Table of contents \times	+ Code + Text Copy to Drive Connect - Connect - Editing
 Getting started Data science Machine learning More Resources Machine Learning Examples Section 	 What is Colaboratory? Colaboratory, or "Colab" for short, allows you to write and execute Python in your browser, with Zero configuration required Free access to GPUs Easy sharing Whether you're a student, a data scientist or an Al researcher, Colab can make your work easier. Watch Introduction to Colab to learn more, or just get started below! Getting started
	The document you are reading is not a static web page, but an interactive environment called a Colab notebook that lets you write and execute code. For example, here is a code cell with a short Python script that computes a value, stores it in a variable, and prints the result: [] seconds_in_a_day = 24 * 60 * 60 seconds_in_a_day 86400 To execute the code in the above cell, select it with a click and then either press the play button to the left of the code, or use the keyboard shortcut "Command/Ctrl+Enter" To edit the code just click the cell and start editing

Make sure you have a look!

<u>Better yet</u>: follow the tutorial at

https://colab.research.google.com/notebooks/intro.ipynb

PyCharm (optional)

However, if you really want to see how things work...

Set it up on your computer

Python 3.7+ Numpy 1.17+ TensorFlow 2.+

... and, above all ...

Install PyCharm (Community Edition)

https://www.jetbrains.com/pycharm/

It's free

Learn using the <u>debugger</u>: it will change the way you learn

CAUTION: no assistance whatsoever will be provided for this ... "Legions of students succeeded in doing this on their own: you can make it too!"

PyCharm

Deep Learning : 01-Introduction

The Final Exam

1) Choose and propose a final project

The topic could be any of your choice The techniques adopted must be (strongly) related with the course Groupwork is allowed, with a maximum of <u>two</u> (*no exceptions*)

2) Develop and submit your projects

Each final project must be submitted as a Google Colab notebook plus dataset *(if required)* Submission must be made at least <u>two</u> days before the exams

3) Be strong on theory as well

Not even a *phenomenal* final project, alone, will give you a final grade (*sorry*) See also below

4) Final Exam

Oral interview, about both theory and final project Relative weights: theory 60%, final project 40%