Deep Learning

A course about theory & practice

Word Embedding

Marco Piastra

Deep Learning 2024–2025

Basic Idea

Embedding, in short

Words (*=token*) from natural language are each translated into a high-dimensional *numerical vector*



Images from https://ig.ft.com/generative-ai/

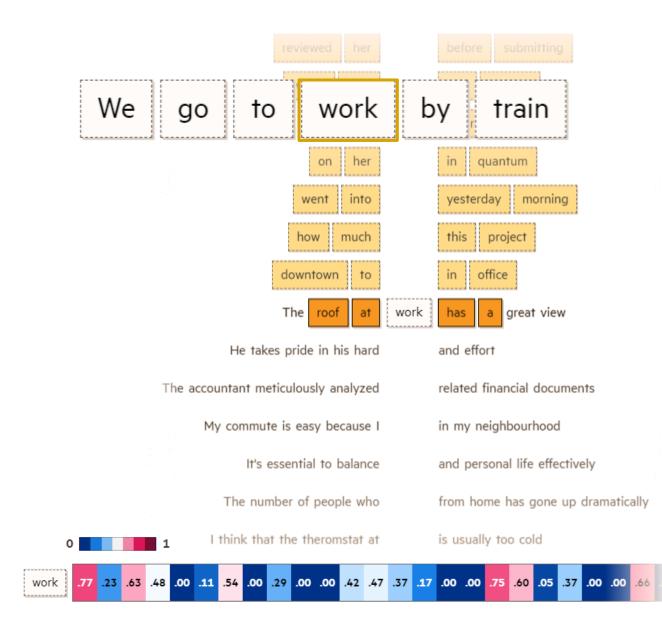
Deep Learning 2024–2025

Word Embedding [3]

Embedding, in short

Words (*=token*) from natural language are each translated into a high-dimensional *numerical vector*

Such vector is computed by estimating the *probability of co-occurrence* in a context of other words in a (very) large text corpus



Images from https://ig.ft.com/generative-ai/

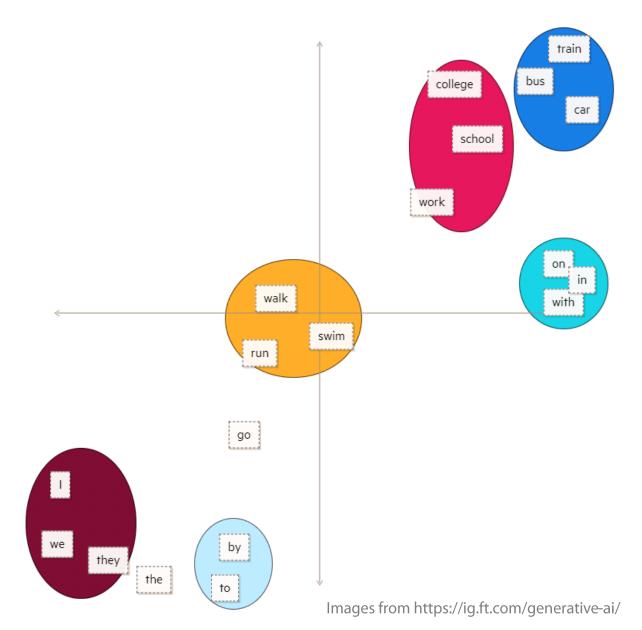
Deep Learning 2024-2025

Word Embedding [4]

Embedding, in short

Words (*=token*) from natural language are each translated into a high-dimensional *numerical vector*

Such vector is computed by estimating the *probability of co-occurrence* in a context of other words in a (very) large text corpus In this way, the *numerical similarity* among vectors is representative of words' affinity in terms of role or meaning (or both)



Word Embedding

Representing sentences

Natural Language

"The man loves his son"

Clearly, this is a sequence, of words

How can each word be represented by a <u>numerical vector</u>?

First idea: one hot encoding

Given a dictionary of W words, each word w could be assigned a unique vector

$$oldsymbol{v}_w \in \{0,1\}^W$$

- Not particularly efficient: large vectors with almost entirely filled with zeros
- The ordering of components will be meaningless: <u>similarities</u> among words will not be represented at all

Representing sentences

Natural Language

"The man loves his son" Clearly, this is a sequence, of words How can each word be represented, effectively?

Nice-to-have: *similarity* among words

Cosine similarity between two vectors

$$\frac{\bm{v}_1\cdot\bm{v}_2}{\|\bm{v}_1\|\|\bm{v}_2\|}\in [-1,1]$$

• Similar words (e.g., "son", "daughter") should have a high similarity value

Representing words

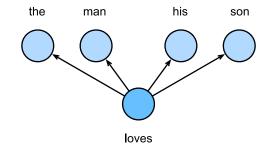
The Skip-Gram Model

"The man loves his son"

Basic idea: representing words in relation to their context (in terms of conditional probability)

P("the", "man", "his", "son" | "loves")

Assuming conditional independence (akin Naïve Bayesian Classifier):



the following factorization is correct:

 $= P(\text{"the"} \mid \text{"loves"})P(\text{"man"} \mid \text{"loves"})P(\text{"his"} \mid \text{"loves"})P(\text{"son"} \mid \text{"loves"})$

Note that the ordering of context words is *irrelevant*

Representing words

The Skip-Gram Model

$$P(\text{"the", "man", "his", "son"} \mid \text{"loves"}) =$$
$$P(\text{"the"} \mid \text{"loves"})P(\text{"man"} \mid \text{"loves"})P(\text{"his"} \mid \text{"loves"})P(\text{"son"} \mid \text{"loves"})$$

Conditional probability *factors* are defined via *softmax*

$$P(w_o \mid w_c) := \frac{\exp(\boldsymbol{u}_o \cdot \boldsymbol{v}_c)}{\sum_{i=1}^{W} \exp(\boldsymbol{u}_i \cdot \boldsymbol{v}_c)}$$

under these assumptions:

- each word i in the dictionary is associated to two vectors $oldsymbol{u}_i, oldsymbol{v}_i \in \mathbb{R}^d$
- v_i is the vector for i as <u>center</u> word, whereas u_i is the vector for i as <u>context</u> word
- the dimension d of vectors is an hyperparameter
- W is the <u>vocabulary</u>

Deep Learning 2024–2025

The Skip-Gram Model

A **skip-gram** is a *context* of words in a sentence, corresponding to a *'center'* word Each skip-gram is obtained from a fixed *window size*, that is, the number of words the context of the *center* word Each skip-gram (a data item) is of the kind (center_word, context word)

Negative Sampling

A dataset for word embedding can be augmented using *negative sampling*: creating skip-grams for words that <u>do not</u> occur with the context of the center word in the sentence

Therefore, a skip-gram becomes

```
(center_word, context word, label)
```

where **label** is either **1** (positive) or **0** (negative)

Window Size	Text	Skip-grams
2	[The wide road shimmered] in the hot sun.	wide, the wide, road wide, shimmered
	The <mark>[wide road shimmered in the]</mark> hot sun.	shimmered, wide shimmered, road shimmered, in shimmered, the
	The wide road shimmered in [the hot sun].	sun, the sun, hot
3	[The wide road shimmered in] the hot sun.	wide, the wide, road wide, shimmered wide, in
	[The wide road shimmered in the hot] sun.	shimmered, the shimmered, wide shimmered, road shimmered, in shimmered, the shimmered, hot
	The wide road shimmered <mark>[in the hot <u>sun</u>]</mark> .	sun, in sun, the sun, hot

Representing words

Skip-gram: loss function

Given the independence conditions, the <u>likelihood</u> of a textual sentence of length T is:

$$\prod_{t=1}^{T} \prod_{j \in Cntx(t)} P(w^{(t)} \mid w^{(j)})$$

where Cntx(t) is the context (of fixed length) of word t

Using log-probability:

$$\sum_{t=1}^{T} \sum_{j \in Cntx(t)} \log P(w^{(t)} \mid w^{(j)})$$

where:

$$\log P(w_o \mid w_c) = \boldsymbol{u}_o \cdot \boldsymbol{v}_c - \log \left(\sum_{i=1}^W \exp(\boldsymbol{u}_i \cdot \boldsymbol{v}_c) \right)$$

Representing words

Skip gram: gradient

$$\begin{aligned} \frac{\partial \log P(w_o \mid w_c)}{\partial \boldsymbol{v}_c} &= \boldsymbol{u}_o - \frac{\sum_{j=1}^W \exp(\boldsymbol{u}_j \cdot \boldsymbol{v}_c) \boldsymbol{u}_j}{\sum_{i=1}^W \exp(\boldsymbol{u}_i \cdot \boldsymbol{v}_c)} \\ &= \boldsymbol{u}_o - \sum_{j=1}^W \left(\frac{\exp(\boldsymbol{u}_j \cdot \boldsymbol{v}_c)}{\sum_{i=1}^W \exp(\boldsymbol{u}_i \cdot \boldsymbol{v}_c)} \right) \boldsymbol{u}_j \\ &= \boldsymbol{u}_o - \sum_{j=1}^W P(w_j \mid w_c) \boldsymbol{u}_j \end{aligned}$$

Representing words

Skip-gram: gradient

$$\frac{\partial \log P(w_o \mid w_c)}{\partial u_o} = \boldsymbol{v}_c - \frac{\exp(\boldsymbol{u}_o \cdot \boldsymbol{v}_c) \boldsymbol{v}_c}{\sum_{i=1}^W \exp(\boldsymbol{u}_i \cdot \boldsymbol{v}_c)}$$
$$= \boldsymbol{v}_c - \frac{\exp(\boldsymbol{u}_j \cdot \boldsymbol{v}_c)}{\sum_{i=1}^W \exp(\boldsymbol{u}_i \cdot \boldsymbol{v}_c)} \boldsymbol{v}_c$$
$$= \boldsymbol{v}_c - P(w_o \mid w_c) \boldsymbol{v}_c$$

Representing words

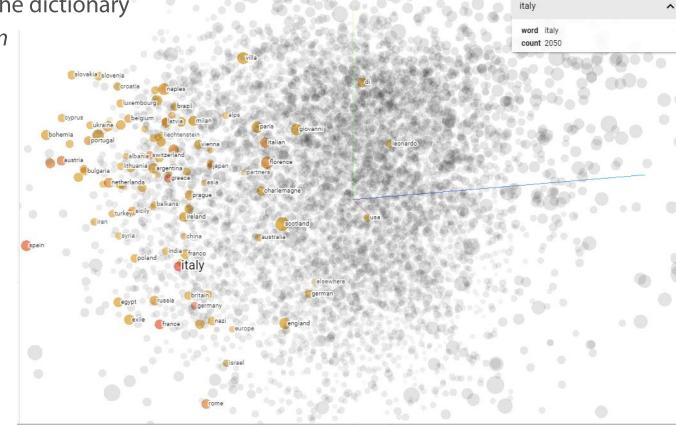
Training and results

- 1. Have a dataset (text corpus) of sentences
- 2. Extract skip-grams, both positive and negative
- 3. Train with the model with a gradient descent variant
- 4. Obtain vectors $oldsymbol{v}_i$ and $oldsymbol{u}_i$ for each word in the dictionary
- 5. Use vectors v_i as the *embedded representation* of corresponding words

The vocabulary \mathcal{W} is now represented by vectors whose relative position in a *d*-dimensional space reflects the co-occurrence in context

d is an hyperparameter

See http://projector.tensorflow.org/



Representing words

The Continuous Bag of Words (CBOW) Model

"The man loves his son"

The basic idea is dual to skip-gram: predict center word starting from the context

$$P(\text{"loves"} \mid \text{"the", "man", "his", "son"})$$

Mathematically, this is slightly more complex, since independence assumptions are in the priors

Once again, the ordering of context words is *irrelevant*

Representing words

The Continuous Bag of Words (CBOW) Model

 $P(\text{"loves"} \mid \text{"the"}, \text{"man"}, \text{"his"}, \text{"son"})$

Conditional probability *factors* are defined via a different *softmax*

$$P(w_c \mid w_{o_1}, \dots, w_{o_m}) = \frac{\exp\left(\frac{1}{m}\boldsymbol{u}_c \cdot (\boldsymbol{v}_{o_1} + \dots + \boldsymbol{v}_{o_m})\right)}{\sum_{i=1}^{W} \exp\left(\frac{1}{m}\boldsymbol{u}_i \cdot (\boldsymbol{v}_{o_1} + \dots + \boldsymbol{v}_{o_m})\right)}$$

From this point on, the derivation is similar.

Representing words

word2vec

- Word *vectors* are used to represent words, can also be considered as *feature vectors*
- The technique of mapping words to real vectors is called word *embedding*
- The word2vec tool contains both the <u>skip-gram</u> and <u>continuous bag of words</u> models
- The *skip-gram model* assumes that a word can be used to generate its surrounding words in a text sequence
- The *continuous bag of words* model assumes that a center word is generated based on its surrounding context words

Skip-gram or CBOW?

According to [Mikolov et al., 2013] Skip-Gram works well with small datasets and can better represent less frequent words

However, CBOW is considered to train faster than Skip-Gram and better in representing more frequent words

Say It with Tokens

Words vs Tokens

So far, we have assumed that binary vectors encode entire words, in natural language

- Large Language Models (LLM) use *token* instead:
- sentences are pre-processed
- words and symbols are split apart, whit spaces removed
- individual words are further split apart

The man loves the sun!	
Clear Show example	
TokensCharacters623	
The man loves the sun! Text Token IDs	Punctuation marks and symbols translate into tokens
[791, 893, 16180, 279, 7160, 4999] Text Token IDs	<i>Note the different encoding of words 'The' and 'the'</i>

Words vs Tokens

So far, we have assumed that binary vectors encode entire words, in natural language

- Large Language Models (LLM) use *token* instead:
- sentences are pre-processed
- words and symbols are split apart, whit spaces removed
- individual words are further split apart

Occorre amare i propri figli!	
Clear Show example	
TokensCharacters930	
Occorre amare i propri figli! Text Token IDs	Typically, latin languages generate more sub-word tokens
[22513, 93533, 1097, 548, 602, 21744, 4237, 747, 4999] Text Token IDs	

Byte-Pair Encoding (BPE)

(see: https://huggingface.co/learn/nlp-course/chapter6/5)

frequency

words: [("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)]
Tokens: ["b", "g", "h", "n", "p", "s", "u"]
Corpus: ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)
Most frequent pair: "u" + "g" 20

Tokens: ["b", "g", "h", "n", "p", "s", "u", "ug"] Corpus: ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) *Most frequent pair*: "u" + "n" 16

Tokens: ["b", "g", "h", "n", "p", "s", "u", "ug", "un"] Corpus: ("h" "ug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("h" "ug" "s", 5) *Most frequent pair:* "h" + "ug" 15

Tokens: ["b", "g", "h", "n", "p", "s", "u", "ug", "un", <mark>"hug"</mark>] Corpus: ("hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5)

Tokens reaching zero frequency are removed from the vocabulary

. . .