Deep Learning A course about theory & practice #### **Auto-Encoders** Marco Piastra Deep Learning 2024–2025 Auto-Encoders [1] # Principal Component Analysis (PCA) Deep Learning 2024–2025 Auto-Encoders [2] ### PCA: the intuitive idea #### Dataset of vectors Suppose you have a dataset made of vectors [images from https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues] ### PCA: the intuitive idea #### Change of Basis Suppose you have a dataset made of vectors May a change in coordinates, which leaves data unaltered, be advantageous? [images from https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues] #### Translation $$D := \{\boldsymbol{x}^{(i)}\}_{i=1}^{N}, \quad \boldsymbol{x}^{(i)} \in \mathbb{R}^{d}$$ dataset in matrix form $$\boldsymbol{X} := \begin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_d^{(N)} \end{bmatrix} \in \mathbb{R}^{N \times d}$$ centroid (mean vector) $$\boldsymbol{\mu} := \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)}$$ $$\boldsymbol{v}^{(i)} := \boldsymbol{x}^{(i)} - \boldsymbol{\mu}$$ translated dataset in matrix form $$\boldsymbol{V} := \begin{bmatrix} v_1^{(1)} & \dots & v_d^{(1)} \\ \vdots & \ddots & \vdots \\ v_1^{(N)} & \dots & v_d^{(N)} \end{bmatrix} \in \mathbb{R}^{N \times d}$$ (it has zero vector mean) $$\boldsymbol{V} := \begin{bmatrix} v_1^{(1)} & \dots & v_d^{(N)} \\ \vdots & \ddots & \vdots \\ v_1^{(N)} & \dots & v_d^{(N)} \end{bmatrix} \in \mathbb{R}^{N \times d}$$ Deep Learning 2024-2025 Auto-Encoders [5] #### Covariance matrix $$oldsymbol{V} := egin{bmatrix} v_1^{(1)} & \dots & v_d^{(1)} \ dots & \ddots & dots \ v_1^{(N)} & \dots & v_d^{(N)} \end{bmatrix} \in \mathbb{R}^{N imes d}$$ Definition of covariance matrix (see Wikipedia) $$oldsymbol{C} := \mathbb{E}\left[(oldsymbol{x} - \mathbb{E}[oldsymbol{x}]) (oldsymbol{x} - \mathbb{E}[oldsymbol{x}])^T ight] = \mathbb{E}\left[(oldsymbol{x} - oldsymbol{\mu}) (oldsymbol{x} - oldsymbol{\mu})^T ight]$$ $$oldsymbol{C} = rac{1}{N} \ oldsymbol{V}^T oldsymbol{V}, \quad oldsymbol{C} \in \mathbb{R}^{d imes d}$$ Actually, with Bessel correction, this would be $\dfrac{1}{N-1}$ (it is completely irrelevant here) Deep Learning 2024-2025 Auto-Encoders [6] #### Spectral Theorem (a.k.a. Eigenvalue Decomposition – EVD) Any square and <u>full-rank</u> matrix like: $$C = V^T V, \quad C \in \mathbb{R}^{d \times d}$$ can be decomposed as $$C = U\Lambda U^T$$ where $oldsymbol{U}$ is $oldsymbol{orthogonal}$ and $oldsymbol{\Lambda}$ is $oldsymbol{diagonal}$ **E**igenvalues: multipliers, or *Eigenvectors:* the new vector basis 'the mass' of the original matrix $$oldsymbol{\Lambda} := egin{bmatrix} \lambda_1 & \dots & 0 \\ draingle & \ddots & draingle \\ 0 & \dots & \lambda_d \end{bmatrix} \qquad oldsymbol{\lambda} := [\lambda_1, \dots, \lambda_d]$$ $$\boldsymbol{\lambda} := [\lambda_1, \dots, \lambda_d]$$ Furthermore, any covariance matrix is *semidefinite positive*, which means $$\lambda_i \ge 0, \forall i \in \{1, \dots, d\}$$ Deep Learning 2024-2025 Auto-Encoders [7] #### Dimension reduction **Rotation matrix** $$oldsymbol{U} \in \mathbb{R}^{d imes d}$$ — Eigenvectors: each row is a versor for the new coordinate space Projecting data onto the new feature space $$oldsymbol{Z} := oldsymbol{V} oldsymbol{U}^T \in \mathbb{R}^{N imes d}$$ Since $m{U}$ and $m{U}^T$ are orthogonal, the linear transformation is a pure <u>rotation</u> around the (translated) origin Deep Learning 2024-2025 Auto-Encoders [8] ### PCA: what is this all for #### Dimension reduction Sorting eigenvalues in λ (scree plot) Selecting principal components $$\hat{\lambda} \in \mathbb{R}^r, \quad r < d$$ Projection matrix $$oldsymbol{U} \in \mathbb{R}^{d imes d}$$ only the selected $oldsymbol{r}$ columns have been preserved Projecting data onto the new feature space $$\hat{oldsymbol{Z}} := oldsymbol{V} \hat{oldsymbol{U}}^T \in \mathbb{R}^{N imes r}$$ Scree Plot Deep Learning 2024-2025 Auto-Encoders [10] #### Encoder A feed-forward neural network with one hidden layer $$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b$$ Deep Learning 2024-2025 Auto-Encoders [11] #### Encoder A feed-forward neural network with one hidden layer $$\tilde{y} = \boldsymbol{w} \cdot g(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) + b$$ • Auto-encoder (basic idea): encoder + decoder $$x^{[m]} = g(W^{[m]} \cdot g(Wx + b) + b^{[m]})$$ Loss function (MSE): $$L(x^{[m]}, x) = (x^{[m]} - x)^2$$ Initially: $$\mathbf{W}^{[m]} = \mathbf{W}^T, \ \mathbf{W} \in \mathbb{R}^{r \times d}$$ then train the network with each data sample *onto itself* (unsupervised learning) Deep Learning 2024-2025 Auto-Encoders [12] ### Linear Auto-Encoders (vs PCA) #### Linear Auto-encoder (basic idea) $$ilde{m{x}} = (m{W}^T(m{W}m{x} + m{b}) + m{b}')$$ Notice the absence of non-linear activation functions... $$ilde{m{v}} = m{W}^T m{W} m{v}$$ Use translated dataset vectors and set vector bias to zero The loss function aims to achieve $\, ilde{v}-v=0\,$ therefore, it can be rewritten as: $$\left\| oldsymbol{V} oldsymbol{W}^T oldsymbol{W} - oldsymbol{V} ight\|_F^2$$ Frobenius norm of a matrix: (flatten it and take the norm) Mathematically, it can be shown that such loss has a unique global minimum in which the line vectors in \mathbf{W} are the r most significant eigenvectors of: $\mathbf{C} = \frac{1}{N} \ \mathbf{V}^T \mathbf{V}$ (up to a scaling factor) [see https://arxiv.org/pdf/1804.10253] ### Deep Auto-Encoders #### Shallow Auto-encoder $$x^{[m]} = g(W^{[m]} \cdot g(Wx + b) + b^{[m]})$$ It can be shown that also with one non-linear layer per each side, the optimum \boldsymbol{W} still relates to the r most significant eigenvectors (PCA) #### Deep Auto-Encoder It takes at least <u>two</u> non-linear layers per each side to achieve a truly non-linear auto-encoder [Bourlard & Kabil, Autoencoders reloaded, 2022] [image from Bourlard & Kabil, 2022 -https://link.springer.com/article/10.1007/s00422-022-00937-6] Deep Learning 2024-2025 Auto-Encoders [14] #### Auto-encoder (More in general) Two main (composite) layers: encoder and decoder One **hidden** or **latent** layer z Each item in the dataset comprises the input only (*Unsupervised Learning*) $$D := \{(\boldsymbol{x}^{(i)})\}_{i=1}^{N},$$ The result of the optimization is $\,z\,:\,$ a compact (i.e. lower-dimensional) representation of the input $\,x\,$ This representation is also called the *latent space* Deep Learning 2024-2025 Auto-Encoders [15] ### Auto-Encoders vs PCA When non-linearity matters... | Feature Space | PCA
Reconstruction | Auto Encoder
Reconstruction | |---|--|--| | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 04
04
02
02 | 37 s.1 34 st se 12 100 0 9 s 2 T B | | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | (2) | 10 az oz 13 te 13 co | | | 1 22.00
1 2.00
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Reconstruction 123.00 12.00 1 | Deep Learning 2024–2025 Auto-Encoders [16]