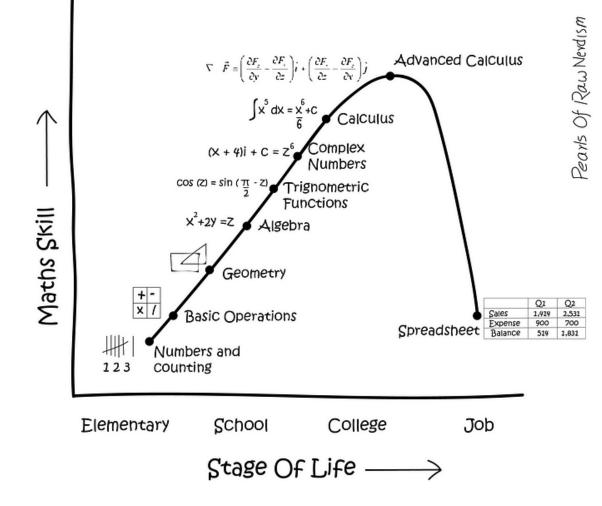
Deep Learning

A course about theory & practice

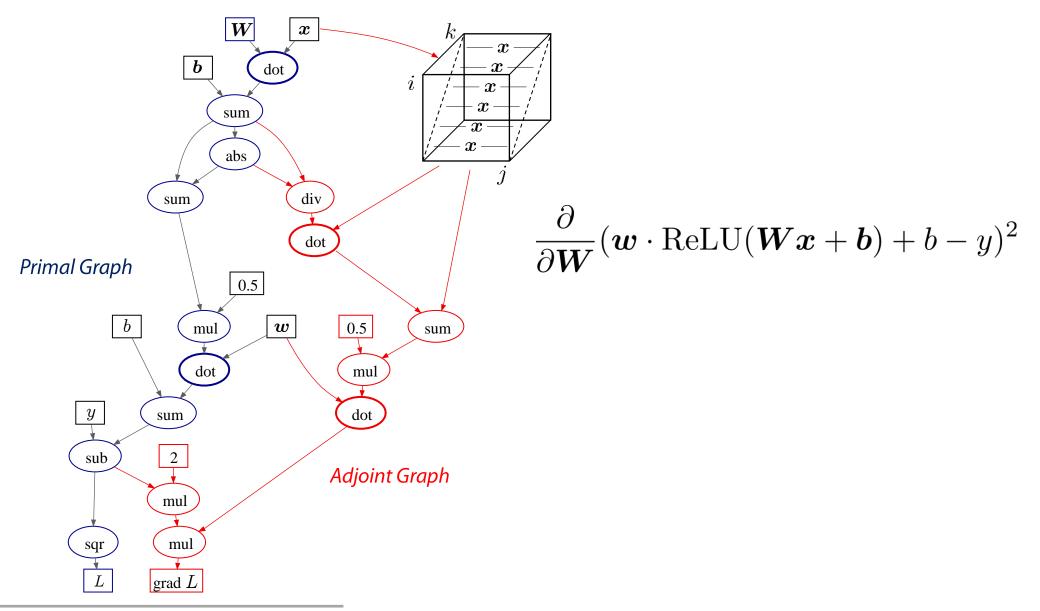
Differentiating Algorithms?


Marco Piastra

Deep Learning 2023-2024

Differentiating Algorithms [1]

Aside the Aside


[Image from: https://medium.com/passivelogic/intro-to-differentiable-swift-part-0-why-automatic-differentiation-is-awesome-a522128ca9e3]

Deep Learning 2023-2024

Differentiating Algorithms [2]

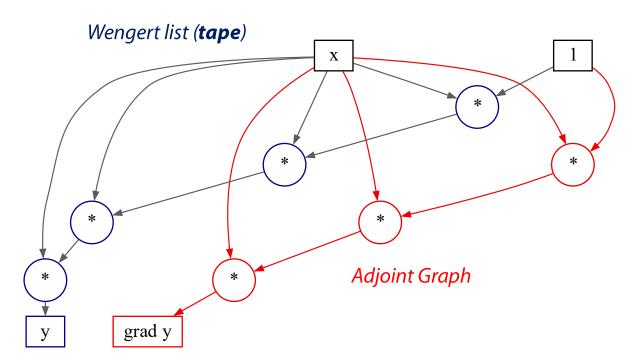
Graph-Based Automatic Differentiation

Automatic Differentiation (AD): Graph-Based

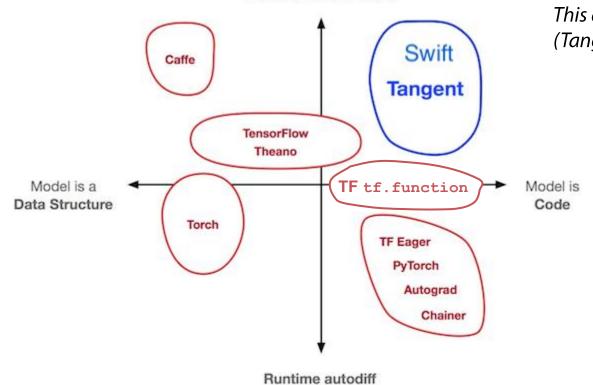
Deep Learning 2023-2024

Differentiating Algorithms [4]

AD of Flow Control Structures


Differentiating Any Functions

def pow(x, n):
r = 1
while n > 0:
 n -= 1
 r *= x
return r


How can a while structure be differentiated? Consider the runtime <u>trace</u> of a particular execution:

y = pow(x, 4)	r = 1
	$\mathbf{r} = \mathbf{r} \star \mathbf{x}$
grad(y) = ?	$\mathbf{r} = \mathbf{r} \star \mathbf{x}$
	$\mathbf{r} = \mathbf{r} \star \mathbf{x}$
	$\mathbf{r} = \mathbf{r} \star \mathbf{x}$
	y = r

It is also called Wengert list, or tape

AD Frameworks

Ahead-of-time autodiff

This diagram is a bit obsolete now (Tangent was archived in 2021)

Different approaches and styles of modern deep learning libraries. Not drawn to scale!

[Image edited from: https://github.com/tensorflow/swift/blob/main/docs/AutomaticDifferentiation.md]

Deep Learning 2023-2024

Differentiating Algorithms [6]

AD strategies

Graph-based

- It must be constructed explicitly, by the programmer
- The primal graph and the adjoint graph can be both constructed once and for all
- The combination of both graphs can be optimized as much as needed
- Memory blocks need only be allocated at runtime and reclaimed once not used

Programming is cumbersome and counterintuitive (with control structures, in particular)

Wengert List ('trace', 'Tape-based')

- It can be constructed automatically, at runtime
- The primal graph must be collected each time, the adjoint graph needs to be computed each time and 'on the fly'
- Optimization introduces a runtime overhead: apply with care
- Memory in the primal graph needs be kept allocated until the gradients are computed

Programming is only slightly different from normal; control structures can be used as usual

Different Frameworks: Engineering Trade-Offs

TensorFlow 1.x

Construction of static graphs, using a separate language (define-and-run)

PyTorch 1.x

"Eager by design"

Overloading of Python operators, trace operation on <u>tensors</u> (define-*by*-run) Autodiff in backward mode

TensorFlow 2.x

Eager mode (no @tf.function decorator)

Overloading of Python operators, trace operation via tape (define-by-run)

Graph-based, using Otf.function

Decorated function are translated once, on their first execution, into a graph-builder (define-*and*-run) Tracing via <u>tape</u> becomes easier (define-*by*-run)

PyTorch 2.x

Ahead-of-Time (AOT) autodiff on intermediate representation (IR). Mixed forward-backward model.

TensorFlow

Deep Learning 2023-2024

Multiple Frameworks, Right Now

BUSINESS INSIDER

ENTERPRISE

Google is quietly replacing the backbone of its Al product strategy after its last big push for dominance got overshadowed by Meta

Matthew Lynley Jun 17, 2022, 9:40 PM CEST

Google CEO Sundar Pichai speaking during a Google event in California in 2016. Justin Sullivan/Getty Images

- Google was a trailblazer in machine learning, releasing one of the first general-use frameworks.
- TensorFlow has since lost the hearts and minds of developers to Meta's AI framework, PyTorch.
- Google is now betting on a new AI project internally to replace TensorFlow called JAX.

[Image from: https://www.businessinsider.com/facebook-pytorch-beat-google-tensorflow-jax-meta-ai-2022-6]

Differentiating Algorithms [9]

A Different Approach: JAX

Differentiating Algorithms [10]

JAX in a nutshell

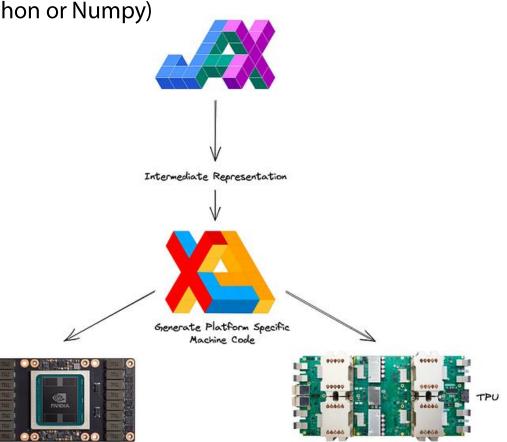
Automatic Differentiation (Autograd)

https://github.com/HIPS/autograd JAX grad creates the gradient of any *pure* function (even plain python or Numpy)

GPU

Automatic Vectorization

Transforming function that operates on a single data point into a function that operates on a batch of data points


Just-In-Time Compiler (JIT)

TensorFlow and PyTorch have precompiled GPU and TPU kernel The JAX compiler creates efficient code 'on-the-fly'

It does not create machine code but an

- intermediate representation
- that can be further transformed

(differentiation, vectorization, translation into machine code)

