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GPU vs. CPU

* The GPU resides on a separate board

CPU, with ventilation RAM chips Power Supplier

An almost independent computer

GPU Board, with its own DRAM

[image from https://www.researchgate.net/publication/322525660]
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GPU vs. CPU

= Different hardware architectures

Different computing paradigms

A trade-off between

CPU GPU

* inte rdependent cores (G PU) MULTIPLE CORES THOUSANDS OF CORES
with some (limited) degrees of independence

 fully independent cores (CPU)
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[images from http://www.nvidia.com/docs/]
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GPU vs. CPU

= Different hardware architectures

Different computing paradigms

Deep Learning 2024-2025

CPU

(Intel Core
i7-7700k)

GPU
(NVIDIA

RTX 3090)

GPU

(Data Center)
NVIDIA A100

TPU

Google Cloud

TPUvV3

Cores

10

10496

6912 CUDA,
432 Tensor

Clock
Speed

4.3 GHz

1.6 GHz

1.5 GHz

2 Matrix Units 72

(MXUs) per
core, 4 cores

Memor

System
RAM

24 GB
GDDR
B6X

40/80
GB
HBM?2

128 GB
HBM

Price

$385

$1499

$3/hr
(GCP)

$8/hr
(GCP)

Speed

~640 GFLOPs FP32

~35.6 TFLOPs FP32

~9.7 TFLOPs FP64
~20 TFLOPs FP32
~312 TFLOPs FP16

~420 TFLOPs
(non-standard FP)

[image http://cs231n.stanford.edu/slides/2021/lecture_6.pdf]
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SIMT Parallelism

= Single Instruction, Multiple Data (SIMD)

Execution is parallel

All cores are executing the same instruction, in sync

Each core works on specific data

Vector A

Vector B

Vector C

[images from https://www.sciencedirect.com/topics/computer-science/single-instruction-multiple-data]
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SIMT Parallelism

= Single Instruction, Multiple Threads (SIMT)

Execution is parallel

All active cores are executing
the same instruction, in sync

Each core works on specific data

The control system activates and
deactivates cores on each
execution branch

Moral: any computation might
be performed, but divergent threads
will be sequentialized
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Selective parallelization

Not all parts of a program are worth executing in parallel...

How GPU Acceleration Works

Application Code

Compute-Intensive Functions

l i s Rest of Sequential
il oo _ , CPU Code
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GPU Processing Cycle

= CPU > Memory Transfer > GPU and back

The program on the CPU drives the execution:

1. All data (program + actual data) are
transferred from main memory to GPU DRAM

2. The GPU kernelis launched

The Kernel is executed in parallel
onto GPU cores, using GPU DRAM

4. Results are copied back from GPU DRAM
to main memory

-
Execute parallel
in each core

3

Processing flow
on CUDA

[image from https://commons.wikimedia.org/wiki/File:CUDA_processing_flow_(En).PNG]
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PyTorch and GPUs

= PyTorch computations are optimized to be run on GPUs

For the programmer, these implementation details are (mostly) transparent

TF can also run on the CPU only, but with lower performance.

» PyTorch automatically manages memory transfers to/from GPUs

Memory transfers are very costly, due to low bandwidth PCle

PCle CONMECTION

low bandwidth

HIGH BANDWIDTH
GRAPHICS MEMORY

BANDWIDTH LARGE

MEDILIM

SYSTEM MEMORY

PCle SWITCH

low baridwidth

HIGH BANDWIDTH
GRAPHICS MEMORY

HIGH BANDWIDTH
GRAPHICS MEMORY

MEDIUM
BANDWIDTH LARGE
SYSTEM MEMORY
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High Speed Interconnect

» Available for large GPUs (data center)
Dedicate direct link between GPUs:

* High bandwidth, for faster data communication
* Low latency

* Scalability

* Energy efficiency

[image from https://www.cudocompute.com/blog/a-beginners-guide-to-nvidia-gpus]
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GPU Multiprocessing

Until recently, GPUs could only serve one process at time
Now they can be partitioned among several processes

( CUDA MULTI-PROCESS SERVICE

N/

GPU Execution

CPU Processes 1 1 |

GPU Execution ‘ ‘ ‘

Pascal GP100

Volta GV100

2016 2017

[images from https://docs.nvidia.com/deploy/mps/]
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Tensor Cores

Specilalized processing units to accelerate tensor algebra operations

* Matrix Multiply-Accumulate (MMA) units
Each MMA unit can perform a 4x4 matrix multiply-accumulate operation in a single clock cycle

Warp schedulers
MMA units are kept busy and the data flow is optimized

* High-speed registers and shared memory
For storing and sharing intermediate among threads

Pascal NVIDIA V100 Tensor Core FP16 NVIDIA A100 Tensor Core FP16 with Sparsity
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[image from https://www.cudocompute.com/blog/a-beginners-guide-to-nvidia-gpus]
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In-Cloud TPUs

» Tensor Processing Units (TPUs)

They are ASICs (Application-Specific Integrated Circuits)
and are not on sale

As computation resources, they are only available in cloud
(at Google)

TPUs are mounted on separate boards, much like GPUs

Woight FIFO
(Weight Fetcher)
& 30 GiB/s
&
* Matrix Multiply
3 Unit
14 GiBls g 14 GiBls (64K por cyclo)
=8
L) Normalize / Pool
[[] onchpro
[] ats Botter
[[] computation
[ contrat
Not to Scale

[Image from https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu]
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Systolic Parallel Processing

» Data flow through cores

TPU architecture is optimized natively for tensor processing
and not for graphics

Arithmetic Logic Units are organized in a pipeline

Tensor data are made to ‘flow through’ the pipeline
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TPUs can be much more efficient for tensor computations
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[Image from https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu]
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