Deep Learning

A course about theory & practice

AlphaZero, MuZero

Marco Piastra

Deep Learning 2024–2025 AlphaZero, MuZero [1]

AlphaZero = MCTS + DNN

Deep Learning 2024–2025 AlphaZero, MuZero [2]

Monte Carlo Tree Search (MCTS) method

- **MCTS** method:
 - <u>memory</u> of past playouts in a single MCTS step (collected in the tree statistics)
 - knowledge transfer between MCTS steps (by reusing subtrees already explored)
 - optimal policy only <u>partially</u> defined (on actually computed states)
 - <u>intrinsically stochastic</u> policy optimization (the same initial state can give rise to different optimizations)
 - What about <u>knowledge transfer</u>
 between MCTS episodes?
 transferring the entire MCTS tree
 would rapidly cause its explosive growth...

Deep Learning 2024–2025 AlphaZero, MuZero [3]

Knowledge transfer between MCTS episodes

- **AlphaZero** [Silver et al. 2017]
 - <u>Monte Carlo Tree Search (MCTS):</u> improves the policy by focusing on the most promising actions
 - <u>Deep Neural Network (DNN):</u> learns the improved policy and transfers it between MCTS episodes

Deep Learning 2024–2025 AlphaZero, MuZero [4]

AlphaZero

■ AlphaZero = MCTS + DNN

Deep Learning 2024–2025 AlphaZero, MuZero [5]

DNN in AlphaZero

DNN in AlphaZero

- <u>input:</u> a state s
- output: a probability distribution $\tilde{m{P}}(s) := [\tilde{P}(a \mid s)]_{a \in \mathcal{A}(S)}$

and a $State-value\ ilde{V}(s)$ acts as an $State-value\ ilde{V}(s)$ of the net $State-value\ ilde{V}(s)$ which also impacts on training $State-value\ ilde{V}(s)$

V is compared with the *actual* reward \hat{P} which also impacts on training \hat{P} by <u>backpropagating</u> through the Common Body

*Y" shape

stochastic policy (a vector of probabilities)

Deep Learning 2024–2025 AlphaZero, MuZero [6]

MCTS step in AlphaZero

<u>selection</u>: UCT policy is replaced with **PUCT** ("Predictor" + UCT)

$$\pi^{\text{PUCT}}(s) := \underset{a}{\operatorname{argmax}} \left\{ \hat{Q}(s,a) \text{ for DNN policy} \atop \hat{Q}(s,a) + c(s) \tilde{P}(a \mid s) \frac{\sqrt{N(s)}}{N(s,a) + 1} \right\}$$

$$\underset{\text{(slowly grows with search time)}}{\operatorname{exploration rate}} c(s) := \log \frac{1 + N(s) + c_{\text{base}}}{c_{\text{base}}} + c_{\text{init}}$$
avoids division by 0

Deep Learning 2024–2025 AlphaZero, MuZero [7]

MCTS step in AlphaZero

• <u>expansion</u>: initialization of the leaf new node s_L :

$$N(s_L):=0$$
 and $\forall\,a\in\mathcal{A}(s_L)$ $N(s_L,a_L):=0,$ $\hat{Q}(s_L,a_L):=-\infty$

Deep Learning 2024–2025 AlphaZero, MuZero [8]

MCTS step in AlphaZero

• <u>expansion</u>: initialization of the leaf new node s_L :

$$N(s_L) := 0$$
 and $\forall a \in \mathcal{A}(s_L)$ $N(s_L, a_L) := 0$, $\hat{Q}(s_L, a_L) := -\infty$

• <u>evaluation</u> (in place of <u>simulation</u>): expected reward is $\tilde{V}(s_L)$

Deep Learning 2024–2025 AlphaZero, MuZero [9]

MCTS step in AlphaZero

• expansion: initialization of the leaf new node s_L :

$$N(s_L) := 0$$
 and $\forall a \in \mathcal{A}(s_L)$ $N(s_L, a_L) := 0$, $\hat{Q}(s_L, a_L) := -\infty$

- <u>evaluation</u> (in place of <u>simulation</u>): expected reward is $\tilde{V}(s_L)$
- <u>backpropagation</u>: for each state s and action a visited in selection/expansion:

$$N(s) := N(s) + 1,$$

$$N(s,a) := N(s,a) + 1$$
 and
$$\hat{Q}(s,a) := \hat{Q}(s,a) + \underbrace{\tilde{V}(s_L) - \hat{Q}(s,a)}_{N(s,a)}$$

Deep Learning 2024–2025 AlphaZero, MuZero [10]

MCTS step in AlphaZero: policies

Selection policy: PUCT

$$\pi^{\text{sel}}(s) := \pi^{\text{PUCT}}(s) := \underset{a}{\operatorname{argmax}} \left\{ \hat{Q}(s, a) + c(s)\tilde{P}(a \mid s) \frac{\sqrt{N(s)}}{N(s, a) + 1} \right\}$$

Output policy:

$$\pi^{\text{out}}(s) \sim \left[\hat{P}(a \mid s) := \frac{N(s, a)}{N(s)}\right]_{a \in \mathcal{A}(s)}$$

taking frequencies as probabilities (in place of their argmax as output action) ensures **exploration**

(the <u>simulation</u> policy does not exist anymore)

Deep Learning 2024–2025 AlphaZero, MuZero [11]

DNN training in AlphaZero

■ **Data items** from a <u>single</u> MCTS episode:

After an MCTS episode $\tau = \langle (s_0, a_0, r_0), \dots, (s_{T-1}, a_{T-1}, r_{T-1}), (s_T, r_T) \rangle$ with episode return

$$R(\tau) = \sum_{t=0}^{T} \gamma^t r_t$$

• for each $\underline{\textit{non-terminal}}$ state $s_i \ (i=0\dots T-1)$ in τ

$$\hat{m{P}}(s_i) := \left[\hat{P}(a \mid s_i) := rac{N(s_i, a)}{N(s_i)}
ight]_{a \in \mathcal{A}(s_i)}$$
 vector of frequencies

• the **output** of episode au is

$$D^ au := \left\{ ig\langle s_i, \hat{m{P}}(s_i), \hat{V}_i^ au
ight
angle_{i=0...T-1}^ au$$
data item

Hold on a minute: how can this be collected?

DNN training in AlphaZero

State values are <u>retrofitted</u>

$$D^{ au} := \left\{ \underbrace{(s_i, \hat{m{P}}(s_i), \hat{V}_i^{ au})}_{ ext{data item}}
ight\}_{i=0...T-1}$$

At the end of each episode, all rewards are known Then:

$$V_i^{\tau} = \sum_{t=i}^{T} \gamma^t r_t$$

[Image from https://www.nature.com/articles/nature24270]

b Neural network training

Deep Learning 2024–2025 AlphaZero, MuZero [13]

DNN training in AlphaZero

Iteration:

times 1) play one MCTS episode
$$\tau$$
 2) collect data items D^{τ}

3) train the parameters of the DNN by using as dataset

$$D := \bigcup_{\tau=1}^{M} D^{\tau}$$

In the limit of *infinite* iterations:

$$\pi^{\text{DNN}}(s) := \underset{a \in \mathcal{A}(s)}{\operatorname{argmax}} \tilde{P}(a \mid s) \to \pi^*(s) \quad \forall s$$

Deep Learning 2024–2025 AlphaZero, MuZero [14]

AlphaZero

• AlphaZero:

- <u>memory</u> of past playouts in a single MCTS step (collected in the tree statistics)
- <u>knowledge transfer</u> between MCTS steps (by reusing subtrees already explored)
- <u>knowledge transfer</u> between *MCTS* episodes (provided by DNN)
- $\underline{deterministic}$ policy optimization with policy defined for all states s:

$$\pi^{\mathrm{DNN}}(s) := \operatorname*{argmax}_{a \in \mathcal{A}(s)} \tilde{P}(a \mid s)$$

Deep Learning 2024–2025 AlphaZero, MuZero [15]

MuZero = model-free MCTS + DNN

Deep Learning 2024–2025 AlphaZero, MuZero [16]

Expansion step in AlphaZero

The expansion step of a selected node $\,s\,$ entails applying action $\,a\,$ and entering node $\,s'\,$

• This is a *state transition* to s', given a and s: the <u>model</u> of the environment need to be known

at least to some extent

• It is *hypothetical*: it will <u>not</u> be reproduced in the environment

Alternative transitions will also be considered (the branches of the tree)

Not all environment <u>simulators</u> can support this

Deep Learning 2024–2025 AlphaZero, MuZero [17]

The MuZero solution

MuZero uses three different networks:

representation

It encodes a set of observations into (an internal) state representation

$$h(\boldsymbol{o}_1,\ldots,\boldsymbol{o}_t;\theta_h) \to \boldsymbol{s}_t$$

prediction

It returns the predicted policy (as probability distribution) and state value

$$f(\boldsymbol{s}_t; \theta_f) \rightarrow \boldsymbol{p}(\boldsymbol{s}_t), v_t$$

dynamics

Given an (internal) state representation and one action, it predicts the next state and reward

$$g(\boldsymbol{s}_t, \boldsymbol{a}_t; \theta_g) \rightarrow \boldsymbol{s}_{t+1}, r_{t+1}$$

Deep Learning 2024–2025 AlphaZero, MuZero [18]

The MuZero solution

MuZero uses three different networks:

representation

$$h(\boldsymbol{o}_1,\ldots,\boldsymbol{o}_t;\theta_h) o \boldsymbol{s}_t$$

prediction

$$f(\boldsymbol{s}_t; \theta_f) \to \boldsymbol{p}(\boldsymbol{s}_t), v_t$$

dynamics

$$g(\boldsymbol{s}_t, \boldsymbol{a}_t; \theta_g) \rightarrow \boldsymbol{s}_{t+1}, r_{t+1}$$

[Image from https://arxiv.org/pdf/1911.08265v2]

The MuZero solution

- MuZero training
 - Sample a trajectory au from the replay buffer
 - Select an initial step t

$$h(oldsymbol{o}_1,\ldots,oldsymbol{o}_t; heta_h) o oldsymbol{s}_0 \ oldsymbol{p}(oldsymbol{s}_0),v_0=f(oldsymbol{s}_0; heta_f)$$

Unroll for K steps, at each step k:

$$egin{aligned} oldsymbol{s}_k, r_k &= g(oldsymbol{s}_{k-1}, oldsymbol{a}_{k-1}; heta_g) \ oldsymbol{p}(oldsymbol{s}_k), v_k &= f(oldsymbol{s}_k; heta_f) \end{aligned}$$

Update the three networks jointly by comparing

$$\boldsymbol{p}(\boldsymbol{s}_k), v_k, r_k$$

with the actual values stored in au

[Image from https://arxiv.org/pdf/1911.08265v2]