Deep Learning

A course about theory & practice

Deep Reinforcement Learning

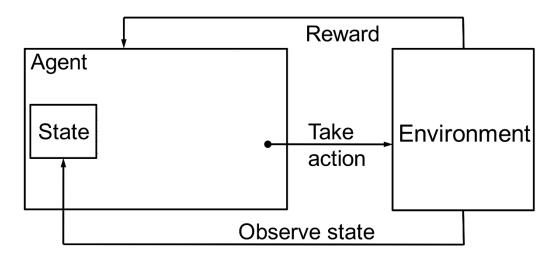
Marco Piastra

Deep Learning 2024–2025 Deep Reinforcement Learning [1]

Basics (Intuition)

Deep Reinforcement Learning (DRL)

Reinforcement Learning



Deep Learning 2024–2025 Deep Reinforcement Learning [3]

Q-Learning

Q-Learning Algorithm

Initialize $\hat{Q}(s,a)$ at random, put the agent in a random state s Repeat:

- 1) Select the action $\operatorname*{argmax}_a\hat{Q}(s,a)$ with probability $(1-\varepsilon)$ otherwise, select a at random
- 2) The agent is now in state s^\prime and has received the reward r
- 3) Update $\hat{Q}(s,a)$ by

$$\Delta \hat{Q}(s, a) = \alpha [r + \gamma \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]$$

Critical aspects:

Tabular representation of $\,\hat{Q}(s,a)\,$

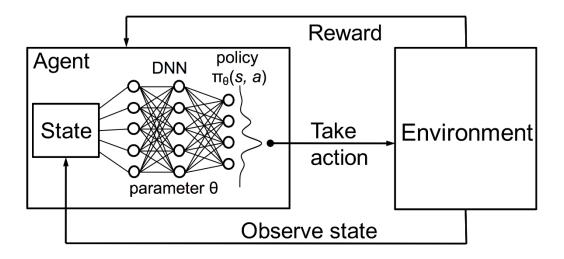
Suitable for discrete action spaces only

Very <u>slow</u> learner: each pair (s,a) is a distinct entry, to be learned directly or by using a linear function approximator

Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning

Using a deep neural network for the $\hat{Q}(s,a)$ approximator



The optimal policy is learnt incrementally by using a deep neural network

Deep Learning 2024–2025 Deep Reinforcement Learning [5]

Deep Reinforcement Learning

Deep Q-Learning Algorithm (intuitive)

Initialize $\hat{Q}(s,a;\theta)$, put the agent in a random state s Repeat:

- 1) Select the action $\arg\max_a \hat{Q}(s,a;\theta)$ with probability $(1-\varepsilon)$ otherwise, select a at random
- 2) The agent is now in state s^\prime and has received the reward r
- 3) Define:

$$y = \begin{cases} r & \text{if } s' \text{ is terminal} \\ r + \operatorname{argmax}_{a'} \hat{Q}(s', a'; \theta) & \text{otherwise} \end{cases}$$

4) Perform gradient descent over $(y - \hat{Q}(s, a; \theta))^2$

Fundamental Idea:

Use a deep neural network to learn the approximator $\hat{Q}(s,a;\theta)$ from the examples collected while **exploring** – **exploiting** Replace the update step with <u>DNN training</u>

Deep Reinforcement Learning

Deep Q-Learning Algorithm (intuitive)

Initialize $\hat{Q}(s,a;\theta)$, put the agent in a random state s Repeat:

- 1) Select the action $\argmax_a \hat{Q}(s,a;\theta)$ with probability $(1-\varepsilon)$ otherwise, select a at random
- 2) The agent is now in state s^\prime and has received the reward r
- 3) Define:

$$y = \begin{cases} r & \text{if } s' \text{ is terminal} \\ r + \operatorname{argmax}_{a'} \hat{Q}(s', a'; \theta) & \text{otherwise} \end{cases}$$

4) Perform gradient descent over $(y - \hat{Q}(s, a; \theta))^2$

CAREFUL

Training $\hat{Q}(s, a; \theta)$ *may be* <u>non-trivial</u>...

DQN Algorithm

Deep Q-Learning

Playing Atari with Deep Reinforcement Learning

[2013, V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html]

A software system only

Runs on virtually any Linux-based system, it contains optional provisions for GPU

It's open source

https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner

Sophisticated machine-learning techniques

Uses deep reinforcement learning

in combination with convolutional neural networks (CNN)

Same configuration, multiple games

Same configuration applied to arcade games

It learned to play 7 (2013) or 49 (2015) different games

It is *autonomous*

It learns by itself, it receives no human expertise as input In many cases, it outperforms human players

(from GitHub)

Deep Q-Learning

DQN Algorithm [https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf]

```
Algorithm 1 Deep Q-learning with Experience Replay
  Initialize replay memory \mathcal{D} to capacity N
   Initialize action-value function Q with random weights
                                                                        states are images, which require some preprocessing
  for episode = 1, M do
       Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
       for t = 1, T do
           With probability \epsilon select a random action a_t
           otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
           Execute action a_t in emulator and observe reward r_t and image x_{t+1}
           Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
           Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
           Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
                                                                 for terminal \phi_{j+1}
                          r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta)
                                                                 for non-terminal \phi_{i+1}
           Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
       end for
                                                                                                     (see next slide)
  end for
```

Deep Q-Learning

Loss function

$$\begin{split} L(\theta^{(t)}) &= \underset{s,a}{\mathbb{E}} \left[\left(y^{(t)} - Q(s,a;\theta^{(t)}) \right)^2 \right] \\ &= \underset{s,a,s'}{\mathbb{E}} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta^{(t-1)}) - Q(s,a;\theta^{(t)}) \right)^2 \right] \\ & \text{these parameters are kept constant when computing the gradient} \end{split}$$

Gradient

$$\nabla_{\theta} L(\theta^{(t)}) = \mathbb{E}_{s,a,s'} \left[\left(r + \gamma \max_{a'} Q(s', a'; \theta^{(t-1)}) - Q(s, a; \theta^{(t)}) \right) \nabla_{\theta} Q(s, a; \theta^{(t)}) \right]$$

- It is computed at each iteration (see algorithm)
- It compares the last (actual) step (variable y in the algorithm) ... with the value given by Q
- The expectation is approximated by the average, on the minibatch

Deep Learning 2024-2025

Trajectory

$$\tau := \langle (s_t, a_t) \rangle_{t=0}^T$$

i.e., a sequence of *states* and *actions*. It can be either <u>finite</u> or <u>infinite</u>, depending on T

Reward

Reward function:

$$r_t := r(s_t, a_t, s_{t+1})$$

Depending on the application, it could be *simplified*:

$$r_t := r(s_t, a_t), \quad r_t := r(s_t)$$

Return

$$R(\tau) := \sum_{t=0}^{\infty} \gamma^t r_t$$

we will use these forms from now on, for brevity

It is <u>discounted</u> when $\gamma < 1$ or <u>undiscounted</u>, when $\gamma = 1$ (when trajectories are <u>finite</u>)

Value Function (of a policy)

$$V^{\pi}(s) := \mathbb{E}[r(S_t) + \gamma r(S_{t+1}) + \gamma^2 r(S_{t+2}) + \dots \mid \pi, S_t = s]$$

Action-Value function (of a policy)

$$Q^{\pi}(s, a) := \sum_{S_{t+1}} P(S_{t+1} \mid s, a) \cdot V^{\pi}(S_{t+1})$$
$$= \mathbb{E}[r(S_t) + \gamma r(S_{t+1}) + \gamma^2 r(S_{t+2}) + \dots \mid \pi, S_t = s, a_t = a]$$

Value Function (of a policy)

$$V^{\pi}(s) := \underset{\tau \sim \pi}{\mathbb{E}} \left[R(\tau) \mid s_0 = s \right]$$

Action-Value function (of a policy)

$$Q^{\pi}(s,a) := \underset{\tau \sim \pi}{\mathbb{E}} [R(\tau) \mid s_0 = s, a_0 = a]$$

Optimal Value Function

$$V^*(s) := \max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[R(\tau) \mid s_0 = s \right]$$

Optimal Action-Value Function

$$Q^*(s, a) := \max_{\pi} \mathbb{E}_{\tau \sim \pi} [R(\tau) \mid s_0 = s, a_0 = a]$$

Connecting Value and Action-Value Functions

$$V^{\pi}(s) = \underset{a \sim \pi}{\mathbb{E}} \left[Q^{\pi}(s, a) \right]$$

$$V^*(s) = \max_{a} \left[Q^*(s, a) \right]$$

Optimal Policy

$$a^*(s) = \operatorname*{argmax}_{a} \left[Q^*(s, a) \right]$$

Advantage Function

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

It tells how advantageous (or disadvantageous) is a particular action w.r.t. what is prescribed by the policy

Probability of a trajectory

$$P(au|\pi) := P(s_0) \prod_{t=0}^{T-1} P(s_{t+1}|s_t,a_t)\pi(a_t|s_t)$$
 probability of initial states $t=0$ transition probability (i.e. the 'model')

Expected return of a policy

$$J(\pi) := \underset{\tau \sim \pi}{\mathbb{E}} \left[R(\tau) \right] = \int_{\tau \sim \pi} P(\tau | \pi) R(\tau)$$

where $au \sim \pi$ is the space of all the trajectories distributed as $\pi(a_t|s_t)$

Central Reinforcement Learning Problem

$$\pi^* := \operatorname*{argmax}_{\pi} J(\pi)$$

i.e. finding the policy with the highest expected return

Parametric Policy

A generic policy that depends on parameters $\, heta$

$$\pi_{\theta}$$

For instance, in the **DQN Algorithm**, the **Action-Value Function** is approximator is a Deep Neural Network

$$\hat{Q}(s, a; \theta)$$

Policy Gradient Ascent

At each iteration, improve parameters using expected returns as the loss function:

$$\theta^{(k+1)} = \theta^{(k)} + \eta \nabla_{\theta} J(\pi_{\theta}|_{\theta^{(k)}})$$

easier said than done ...

1) Probability of a trajectory, given a parametric policy

$$P(\tau|\pi_{\theta}) := P(s_0) \prod_{t=0}^{T-1} P(s_{t+1}|s_t, a_t) \pi_{\theta}(a_t|s_t)$$

2) Log-Derivative

(Let's take another direction)

By the chain rule, this derivative is:

$$\nabla_{\theta} \log P(\tau | \pi_{\theta}) = \frac{1}{P(\tau | \pi_{\theta})} \nabla_{\theta} P(\tau | \pi_{\theta})$$

It follows:

$$\nabla_{\theta} P(\tau | \pi_{\theta}) = P(\tau | \pi_{\theta}) \nabla_{\theta} \log P(\tau | \pi_{\theta})$$

Remember this 'mathematical trick': it will be played again...

3) Log-Probability of a trajectory

$$P(au|\pi_{ heta}) := P(s_0) \prod_{t=0}^{T-1} P(s_{t+1}|s_t,a_t) \pi_{ heta}(a_t|s_t)$$

$$\log P(au|\pi_{ heta}) := \log P(s_0) + \sum_{t=0}^{T-1} \left[\log P(s_{t+1}|s_t,a_t) + \log \pi_{ heta}(a_t|s_t)
ight]$$
 these terms do NOT depend on $heta$

4) Gradient of the Log-Probability

$$\nabla_{\theta} \log P(\tau | \pi_{\theta}) := \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

This is the purpose of the 'mathematical trick': discounting the probability model $\,P\,$

Basic Policy Gradient

$$J(\pi) = \int_{\tau \sim \pi} P(\tau|\pi)R(\tau)$$

$$\nabla_{\theta}J(\pi_{\theta}) = \int_{\tau \sim \pi_{\theta}} \nabla_{\theta}P(\tau|\pi_{\theta})R(\tau)$$
this term does NOT depend on θ

$$= \int_{\tau \sim \pi_{\theta}} P(\tau|\pi_{\theta})\nabla_{\theta} \log P(\tau|\pi_{\theta})R(\tau)$$

$$= \underset{\tau \sim \pi_{\theta}}{\mathbb{E}} \left[\nabla_{\theta} \log P(\tau|\pi_{\theta})R(\tau)\right]$$

$$= \underset{\tau \sim \pi_{\theta}}{\mathbb{E}} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})R(\tau)\right]$$

This last term is an expectation: it can be estimated from a sample mean

Basic Policy Gradient

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau) \right]$$

$$\hat{g} := \frac{1}{|\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) R(\tau)$$
Estimated gradient (mean)

Basic Policy Gradient

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau) \right]$$

An entire trajectory? Even in the past?

Better switch to this:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \sum_{t'=t}^{T-1} r(s_{t'}, a_{t'}) \right]$$

Reward from t onward ('reward-to-go')

Simple Policy Gradient

Pseudo-Algorithm

Initialize the weights $\, heta \,$ of a DNN $\, \hat{Q}(s,a; heta) \,$ at random $\it Repeat$:

1) For M episodes Start in initial state s_0 How can we 'sample a policy' in practice? For t from 0 to T play by $a_t \sim \pi_\theta(a|s_t)$ Collect the episode trajectory $\tau = \langle (s_t, a_t) \rangle_{t=0}^T$ and store it in \mathcal{D}

2) Sample a random minibatch $\mathcal{B} = \{ au_i\}$ from \mathcal{D}

 $\Delta \theta = \eta \frac{1}{|\mathcal{B}|} \sum_{\tau \in \mathcal{B}} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau)$

Sampling a Policy

Problem

Sampling actions from a stochastic policy

$$a_t \sim \pi_{\theta}(a|s_t)$$

Intended meaning:

$$\pi_{\theta}(a_t|s_t) \propto \hat{Q}(a_t, s_t; \theta)$$

the probability of each action should be proportional to the expected return

Discrete Action Space

Consider $\hat{Q}(a_t, s_t; \theta)$ as the **logit** of a <u>softmax</u>

$$\pi_{\theta}(a_t|s_t) := \frac{\exp(\hat{Q}(a_t, s_t; \theta))}{\sum_{a \in \mathcal{A}(s_t)} \exp(\hat{Q}(a, s_t; \theta))}$$

and sample accordingly

All possible actions in state s_t

An Aside:

Expected Grad-Log

Probability

(EGLP lemma)

EGLP Lemma. Suppose that P_{θ} is a parameterized probability distribution over a random variable, x. Then:

$$\mathop{\mathbb{E}}_{x \sim P_{\theta}} \left[\nabla_{\theta} \log P_{\theta}(x) \right] = 0.$$

Proof

Recall that all probability distributions are normalized:

$$\int_{x} P_{\theta}(x) = 1.$$

Take the gradient of both sides of the normalization condition:

$$\nabla_{\theta} \int_{x} P_{\theta}(x) = \nabla_{\theta} 1 = 0.$$

Use the log derivative trick to get:

$$0 = \nabla_{\theta} \int_{x} P_{\theta}(x)$$

$$= \int_{x} \nabla_{\theta} P_{\theta}(x)$$

$$= \int_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x)$$

$$\therefore 0 = \mathop{\mathbb{E}}_{x \sim P_{\theta}} [\nabla_{\theta} \log P_{\theta}(x)].$$

[image from: https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html]

Policy Gradient

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \sum_{t'=t}^{T-1} r(s_{t'}, a_{t'}) \right]$$

Due to the EGLP lemma:

$$\mathbb{E}_{a_t \sim \pi_\theta} \left[\nabla_\theta \log \pi_\theta(a_t | s_t) \, b(s_t) \right] = 0$$

for any function $b(s_t)$ that depends on s_t only (i.e., $b(s_t)$ is constant w.r.t. to a_t)

Policy Gradient with Baseline

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \left(\left(\sum_{t'=t}^{T-1} r(s_{t'}, a_{t'}) \right) - b(s_t) \right) \right]$$

We can subtract term-wise any function $b(s_t)$ without altering the expectation

baseline

Actor-Critic

(typical formulation)

state-value function as baseline

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \left(\left(\sum_{t'=t}^{T-1} r(s_{t'}, a_{t'}) \right) - V^{\pi}(s_t) \right) \right]$$

Note that:

$$\left(\sum_{t'=t}^{T-1} r(s_{t'}, a_{t'})\right) - V^{\pi}(s_t) = (r(s_t, a_t) + V^{\pi}(s_{t+1})) - V^{\pi}(s_t)
= Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)
= A^{\pi}(s_t, a_t)$$

it's the *advantage function*

Actor-Critic

(typical formulation)

$$abla_{ heta}J(\pi_{ heta}) = \mathop{\mathbb{E}}_{ au\sim\pi_{ heta}}\left[\sum_{t=0}^{T-1}
abla_{ heta}\log\pi_{ heta}(a_t|s_t) A^{\pi}(s_t,a_t)
ight]$$
'Actor'
'Critic'

In practice, $V^{\pi}(s_t)$ is estimated via $\hat{V}(s;\phi)$ namely, another DNN with specific parameters ϕ

$$\hat{A}(s_t, a_t) := \left(r(s_t, a_t) + \hat{V}(s_{t+1}; \phi) \right) - \hat{V}(s_t; \phi)$$

What are the advantages? "It reduces variance"

Intuitively $\hat{Q}(s,a;\theta)$ depends also on how the action space is explored whereas $\hat{V}(s_t;\phi)$ depends only on actual rewards $r(s_t,a_t)$

Pseudo-Algorithm

Initialize the weights $heta,\phi$ of \underline{two} DNNs $\pi_{ heta}(a|s),~\hat{V}(s;\phi)$ at random **Repeat**:

1) For M episodes

Start in initial state s_0

For t from 0 to T

play by
$$a_t \sim \pi_{\theta}(a|s_t)$$

Collect all episode *trajectories* $au_r:=\langle (s_t,a_t,r_t,s_{t+1}) \rangle_{t=0}^T$ and store them in \mathcal{D}

2) For a random minibatch $\,\mathcal{B}=\{(s_i,a_i,r_i,s_{i+1})\}\,$ from \mathcal{D}

Evaluate

$$\hat{A}(s_i, a_i) = \left(r_i + \hat{V}(s_{i+1}; \phi)\right) - \hat{V}(s_i; \phi)$$

Update weights

$$\Delta \phi = -\eta_{\phi} \nabla_{\phi} \left(\hat{A}(s_i, a_i) \right)^2$$

 $\Delta \theta = \eta_{\theta} \nabla_{\theta} J(\pi_{\theta}) = \eta_{\theta} \nabla_{\theta} \log \pi_{\theta}(a_i | s_i) \hat{A}(s_i, a_i)$

gradient descent:
$$\hat{V}(s;\phi)$$
 should converge to $V(s)$

replay buffer

gradient <u>ascent</u>: increase $J(\pi_{ heta})$ as much as possible

Pseudo-Algorithm (update step in more detail)

2) For a random minibatch $\mathcal{B} = \{(s_i, a_i, r_i, s_{i+1})\}$ from \mathcal{D}

Evaluate

$$\hat{h} = \frac{1}{|\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \frac{1}{T} \sum_{t=0}^{T} \nabla_{\phi} \left(\hat{V}(s_t; \phi) - \hat{R}_t) \right)^2 \qquad \hat{R}_t = \left(r_t + \hat{V}(s_{t+1}; \phi) \right)$$

$$\hat{g} = \frac{1}{|\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \hat{A}_t$$

$$\hat{g} = \frac{1}{|\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \hat{A}_t$$

Update

$$\phi^{(t+1)} = \phi^{(t)} - \eta_{\phi} \hat{h}$$

$$\theta^{(t+1)} = \theta^{(t)} - \eta_{\theta} \; \hat{g}$$

NOTE: standard mini-batch gradient optimization can be replaced by Adam or other optimizers

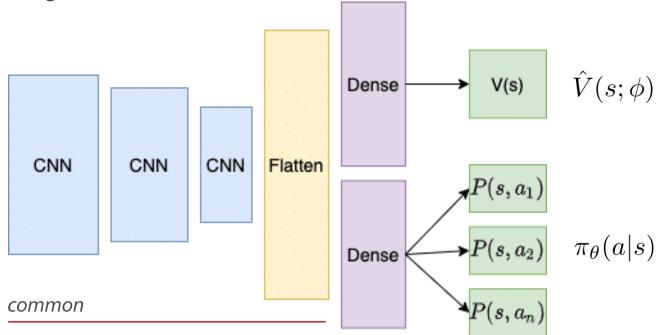
 $\hat{A}_t = \left(r_t + \hat{V}(s_{t+1}; \phi)\right) - \hat{V}(s_t; \phi)$

Network Architecture (typical)

A bifurcated structure which includes:

- A common part
- A V-head
- A π -head

It follows that part of the weights are shared



Deep Learning 2024-2025

Proximal Policy Optimization (PPO)

Improving Training Stability

In the Actor-Critic approach, the *policy update* step is critical:

$$\Delta \theta = \eta_{\theta} \nabla_{\theta} J(\pi_{\theta}) = \eta_{\theta} \nabla_{\theta} \log \pi_{\theta}(a_i | s_i) \hat{A}(s_i, a_i)$$

Unlike supervised learning, deep reinforcement learning is a very delicate process: even small steps $\Delta\theta$ may induce large changes in policy, which may compromise the entire optimization

The objective of Proximal Policy Optimization (PPO) is ensuring that steps $\Delta \theta$ are kept within a viable range, determined via hyperparameters

Improving Training Stability

The *policy update* step rewritten:

$$\theta^{(t+1)} = \theta^{(t)} + \eta_{\theta} \nabla_{\theta} J(\pi_{\theta})$$

where:

$$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \log \pi_{\theta}(a_i|s_i) \, \hat{A}(s_i, a_i)$$

Introduce the *surrogate advantage* term, a measure of how a new policy $\,\theta\,$ performs relative to a current policy $\,\theta^{(t)}\,$:

$$\mathcal{L}(\theta, \theta^{(t)}) = \underset{s, a \sim \pi_{\theta^{(t)}}}{\mathbb{E}} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta^{(t)}}(a|s)} \hat{A}^{\pi_{\theta^{(t)}}}(s, a) \right]$$

It can be proven that:

$$\nabla_{\theta} J(\pi_{\theta}) \bigg|_{\theta^{(t)}} = \nabla_{\theta} \mathcal{L}(\theta, \theta^{(t)})$$

PPO-clip

In PPO clip, the term $J(\pi_{\theta})$

is replaced by the <u>clipped</u> surrogate advantage term:

$$L(\theta, \theta^{(t)}) = \mathbb{E}_{s, a \sim \pi_{\theta^{(t)}}} \left[\min \left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta^{(t)}}(a|s)} \hat{A}^{\pi_{\theta^{(t)}}}(s, a), \operatorname{clip}\left(\epsilon, \hat{A}^{\pi_{\theta^{(t)}}}(s, a)\right) \right) \right]$$

where:

$$\operatorname{clip}\left(\epsilon, \hat{A}\right) := \begin{cases} 1 + \epsilon & \text{if } A \ge 0\\ 1 - \epsilon & \text{otherwise} \end{cases}$$

and ϵ is a suitable hyperparameter value