Deep Learning

A course about theory & practice

Generative Networks: Diffusion Models

Marco Piastra

Deep Learning 2024–2025 Generative Networks [1]

Images from text

DALL-E2

Diffusion Models: generating images from text

«A teapot in the shape of an avocado»

[lmage from https://www.nytimes.com/2022/04/06/technology/openai-images-dall-e.html]

Deep Learning 2024–2025 Generative Networks [2]

Videos from text

SORA

Generating videos from text prompts

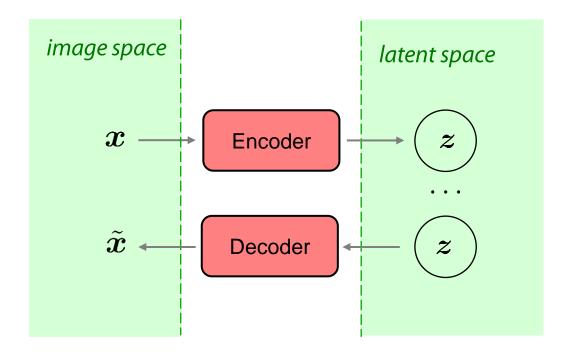
«A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.»

[Video clip from https://openai.com/index/sora/]

Deep Learning 2024–2025 Generative Networks [3]

Diffusion Models are <u>autoencoders</u>

The basic, intuitive idea is to perform diffusion in the *latent space*



Deep Learning 2024–2025 Generative Networks [4]

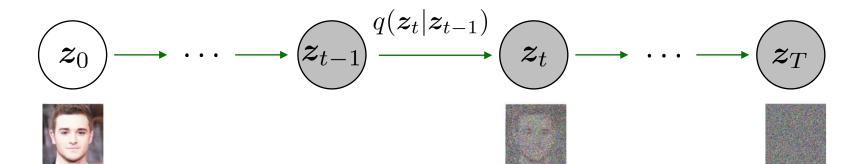
Diffusion Models

Deep Learning 2024–2025 Generative Networks [5]

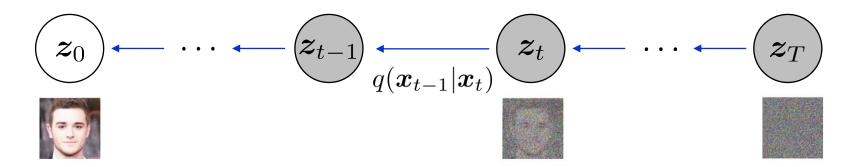
Basic idea

Forward Diffusion

Assume that images are corrupted by Gaussian noise with known parameters



The idea behind **Denoising Diffusion Probabilistic Models (DDPM)** is learning how to reverse the process



Deep Learning 2024–2025 Generative Networks [6]

Starting from the end: the DDPM training algorithm

Forward Diffusion

Assume that images are corrupted by Gaussian noise with known parameters

The idea behind **Denoising Diffusion Probabilistic Models** is learning how to reverse the process

Note that

The neural network $g(\boldsymbol{z}_t,\boldsymbol{\vartheta},t)$ is expected to predict the noise ε that has been applied

Algorithm 20.1: Training a denoising diffusion probabilistic model

```
Input: Training data \mathcal{D} = \{\mathbf{x}_n\}
          Noise schedule \{\beta_1, \dots, \beta_T\}
Output: Network parameters w
for t \in \{1, ..., T\} do
   \alpha_t \leftarrow \prod_{\tau=1}^t (1-\beta_\tau) // Calculate alphas from betas
end for
repeat
    \mathbf{x} \sim \mathcal{D} // Sample a data point
    t \sim \{1,\dots,T\} // Sample a point along the Markov chain
    \epsilon \sim \mathcal{N}(\epsilon|0, \mathbf{I}) // Sample a noise vector
    \mathbf{z}_t \leftarrow \sqrt{\alpha_t}\mathbf{x} + \sqrt{1-\alpha_t}\epsilon // Evaluate noisy latent variable
    \mathcal{L}(\mathbf{w}) \leftarrow \|\mathbf{g}(\mathbf{z}_t, \boldsymbol{\vartheta}, t) - \boldsymbol{\epsilon}\|^2 // Compute loss term
    Take optimizer step
until converged
return w
```

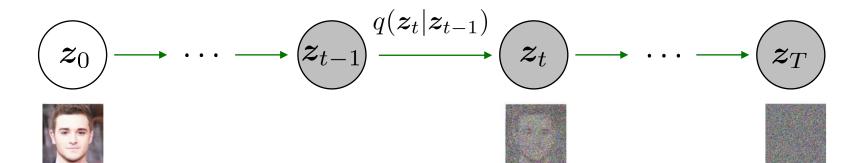
Neural network with suitable architecture

[Image from https://www.bishopbook.com/]

Forward diffusion

Forward Diffusion

Assume that images are corrupted by Gaussian noise with known parameters



$$q(oldsymbol{z}_t | oldsymbol{z}_{t-1})$$
 $oldsymbol{z}_t \sim \mathcal{N}\left(\sqrt{1-eta_t} \ oldsymbol{z}_{t-1}, eta_t oldsymbol{I}
ight)$ $eta_t \in (0,1), \ orall t$ $eta_t \in (0,1), \ orall t$ $eta_t \in (0,1), \ orall t$ $eta_t = \sqrt{1-eta_t} \ oldsymbol{z}_{t-1} + \sqrt{eta_t} oldsymbol{arepsilon}$ $eta_t \in \mathcal{N}(oldsymbol{0}, oldsymbol{I})$

Deep Learning 2024–2025 Generative Networks [8]

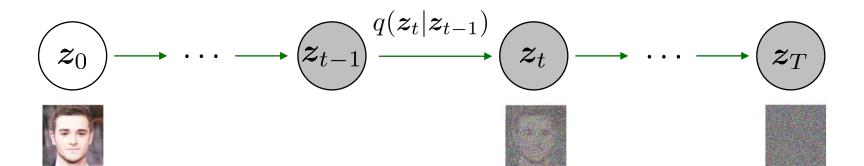
'Noise schedule':

Hyperparameters

Forward diffusion

Forward Diffusion

Assume that images are corrupted by Gaussian noise with known parameters



At any forward step $\,t$, the diffusion sequence can be compacted as

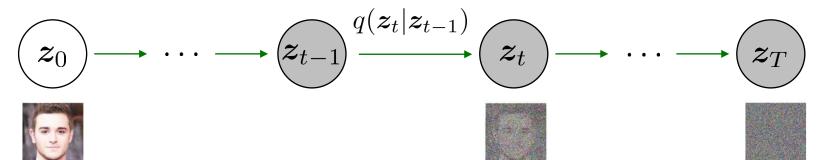
$$\boldsymbol{z}_t \sim \mathcal{N}\left(\sqrt{\alpha_t} \ \boldsymbol{z}_0, (1 - \alpha_t) \boldsymbol{I}\right)$$

where:

$$\alpha_t = \prod_{\tau=1}^{r} \left(1 - \beta_{\tau}\right)$$

Backward Denoising

A neural network is at the core of the backward process



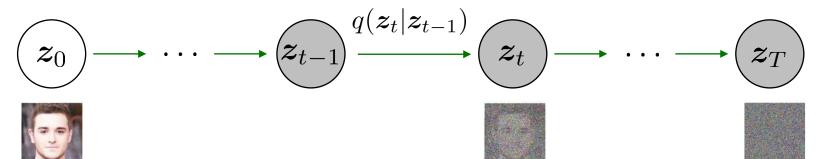
We assume that:

$$egin{aligned} oldsymbol{z}_{t-1} &= oldsymbol{\mu}(oldsymbol{z}_t, t; oldsymbol{artheta}) + \sqrt{eta_t} \; oldsymbol{arepsilon} \; oldsymbol{$$

Deep Learning 2024–2025 Generative Networks [10]

Backward Denoising

A neural network is at the core of the backward process



We assume that:

$$m{z}_{t-1} = m{\mu}(m{z}_t, t; m{artheta}) + \sqrt{eta_t} \; m{arepsilon}$$
 Neural Network $m{\mu}(m{z}_t, t; m{artheta}) = rac{1}{\sqrt{1-eta_t}} \left\{ m{z}_t - rac{eta_t}{\sqrt{1-lpha_t}} m{g}(m{z}_t, t; m{artheta})
ight\}$ $m{arepsilon} \sim \mathcal{N}(m{0}, m{I})$

How can the neural network be trained? (A suitable loss function is needed)

Deep Learning 2024–2025 Generative Networks [11]

 $q(oldsymbol{z}_{t-1}|oldsymbol{z}_t)$ An approximation to $q(oldsymbol{z}_{t-1}|oldsymbol{z}_t)$

We assume that:

$$\boldsymbol{z}_{t-1} \sim \mathcal{N}\left(\boldsymbol{\mu}(\boldsymbol{z}_t, t; \boldsymbol{\vartheta}), \beta_t \boldsymbol{I}\right)$$

During <u>training</u>, $oldsymbol{z}_0$ is known. Then we can sample $oldsymbol{arepsilon}_t$

$$oldsymbol{z}_t = \sqrt{lpha_t} \; oldsymbol{z}_0 + \sqrt{1-lpha_t} \; oldsymbol{arepsilon}_t$$
 Noise added at step t

Therefore, it can be proven that:

$$oldsymbol{m}(oldsymbol{z}_{t-1}) = rac{1}{\sqrt{1-eta_t}} \left(oldsymbol{z}_t - rac{eta_t}{\sqrt{1-lpha_t}} \; oldsymbol{arepsilon}_t
ight)$$

is the true mean of:

$$q(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t)$$

Then the Kullback-Leibler divergence is:

$$KL (q(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t) \parallel \tilde{q}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t))$$

$$= \frac{1}{2\beta_t} \|\boldsymbol{m}(\boldsymbol{z}_{t-1}) - \boldsymbol{\mu}(\boldsymbol{z}_t, t; \boldsymbol{\vartheta})\|^2 + \text{const}$$

$$KL (q(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t) \parallel \tilde{q}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t))$$

$$= \frac{1}{2\beta_t} \|\boldsymbol{m}(\boldsymbol{z}_{t-1}) - \boldsymbol{\mu}(\boldsymbol{z}_t, t; \boldsymbol{\vartheta})\|^2 + \text{const}$$

Therefore, given previous assumptions:

$$egin{aligned} m{m}(m{z}_{t-1}) &= rac{1}{\sqrt{1-eta_t}} \left(m{z}_t - rac{eta_t}{\sqrt{1-lpha_t}} m{arepsilon}_t
ight) \ m{\mu}(m{z}_t,t;m{artheta}) &= rac{1}{\sqrt{1-eta_t}} \left\{ m{z}_t - rac{eta_t}{\sqrt{1-lpha_t}} m{g}(m{z}_t,t;m{artheta})
ight\} \ \mathrm{KL}\left(ilde{q}(m{z}_{t-1}|m{z}_t) \parallel q(m{z}_{t-1}|m{z}_t)
ight) \propto \parallel m{g}(m{z}_t,t;m{artheta}) - m{arepsilon}_t \parallel^2 \ L(m{artheta}) &:= \parallel m{g}(m{z}_t,t;m{artheta}) - m{arepsilon}_t \parallel^2 \ &= 0 \end{aligned}$$

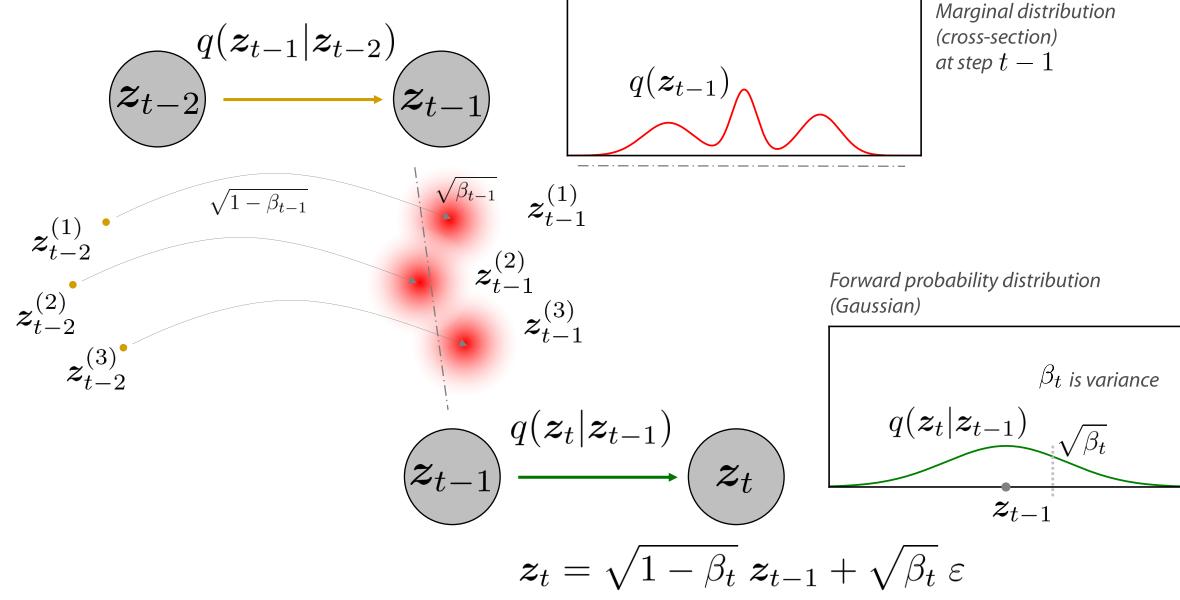
Fundamental: this line of reasoning works provided that $q(z_{t-1}|z_t), \ \tilde{q}(z_{t-1}|z_t)$ are Gaussians ...

Deep Learning 2024–2025 Generative Networks [13]

Diffusion Models: Why so many steps?

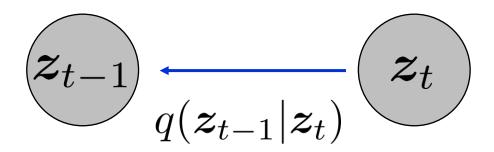
Deep Learning 2024–2025 Generative Networks [14]

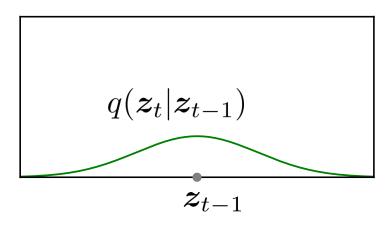
Going forward: adding noise

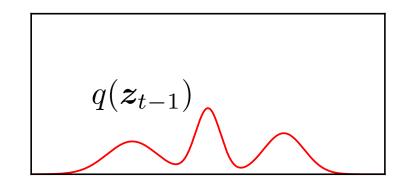


Deep Learning 2024-2025

The backward probability distribution can be computed from forward and marginals using Bayes' theorem





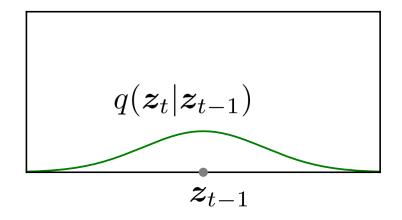


This is what we want to learn This

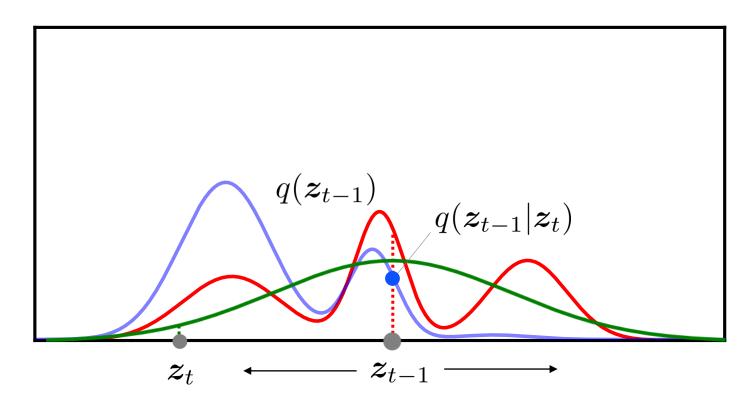
This is what we know, by design

$$\overline{q(oldsymbol{z}_{t-1}|oldsymbol{z}_t)} = rac{\overline{q(oldsymbol{z}_t|oldsymbol{z}_{t-1})}q(oldsymbol{z}_{t-1})}{q(oldsymbol{z}_t)}$$
Bayes' Theorem

Deep Learning 2024–2025 Generative Networks [16]



At training time, z_t is known (dataset + forward diffusion)

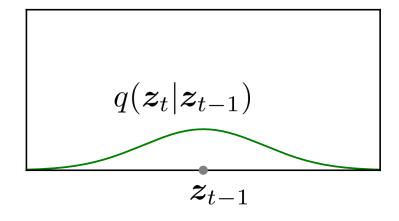


is the free variable, at this step

$$q(z_{t-1}|z_t) = \frac{q(z_t|z_{t-1})q(z_{t-1})}{q(z_t)} \propto q(z_t|z_{t-1})q(z_{t-1})$$

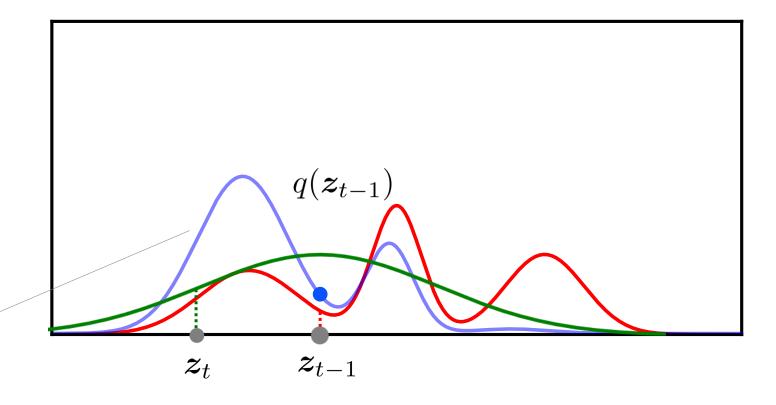
 z_t is known, hence this is constant

[Image from https://www.bishopbook.com/]



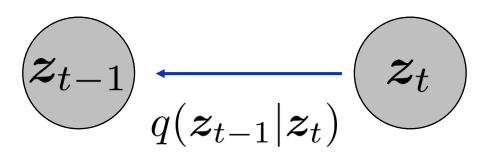
At training time, z_t is known (dataset + forward diffusion)

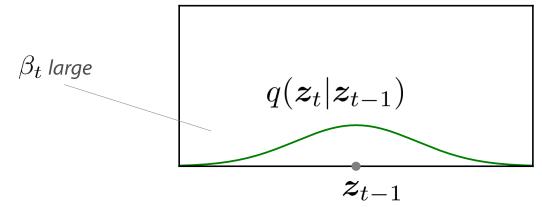
The reverse probability is the blue curve

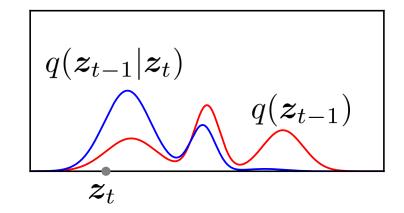


$$q(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t) = rac{q(\boldsymbol{z}_t|\boldsymbol{z}_{t-1})q(\boldsymbol{z}_{t-1})}{q(\boldsymbol{z}_t)}$$

When β_t is large $q(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t)$ becomes very different from a Gaussian, hence unsuitable for training

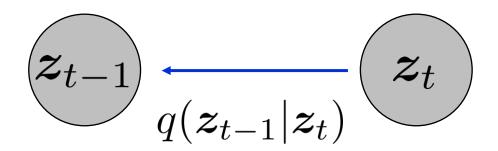


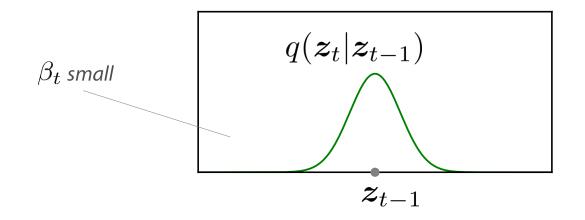




$$q(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t) = \frac{q(\boldsymbol{z}_t|\boldsymbol{z}_{t-1})q(\boldsymbol{z}_{t-1})}{q(\boldsymbol{z}_t)}$$

When eta_t is small $q(oldsymbol{z}_{t-1}|oldsymbol{z}_t)$ is approximately Gaussian







$$q(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t) = \frac{q(\boldsymbol{z}_t|\boldsymbol{z}_{t-1})q(\boldsymbol{z}_{t-1})}{q(\boldsymbol{z}_t)}$$

Deep Learning 2024–2025 Generative Networks [20]

Links

https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://www.superannotate.com/blog/diffusion-models

https://encord.com/blog/diffusion-models/

Deep Learning 2024–2025 Generative Networks [21]

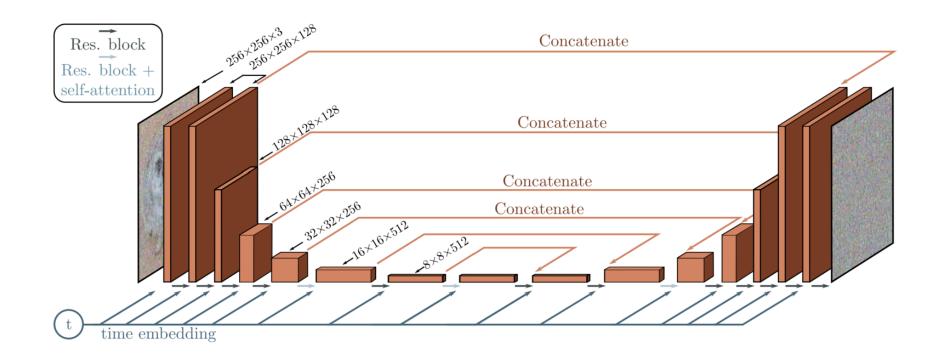
Practical Implementation

Deep Learning 2024–2025 Generative Networks [22]

Conditional V-Net as basic denoising block

Loss function: $L(oldsymbol{artheta}) := \parallel oldsymbol{g}(oldsymbol{z}_t, t; oldsymbol{artheta}) - oldsymbol{arepsilon}_t \parallel^2$

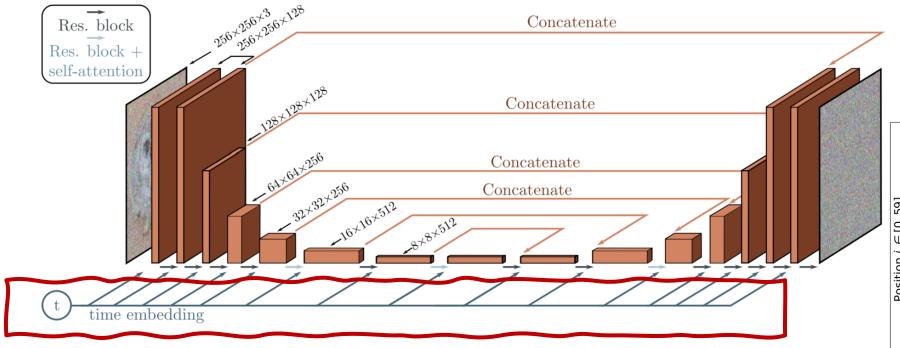
The network architecture for $~m{g}(m{z}_t,t;m{artheta})~$ is a <u>U-Net</u> with <u>time embedding</u>



Conditional V-Net as basic denoising block

Loss function: $L(oldsymbol{artheta}) := \| \, oldsymbol{g}(oldsymbol{z}_t, t; oldsymbol{artheta}) - oldsymbol{arepsilon}_t \|^2$

The network architecture for $~m{g}(m{z}_t,t;m{artheta})~$ is a <u>U-Net</u> with <u>time embedding</u>

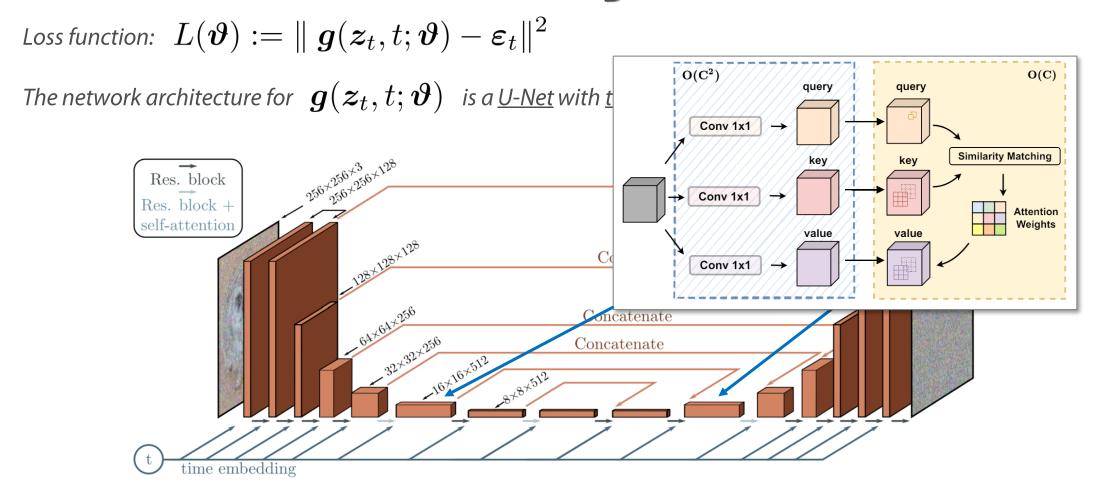


The U-Net is conditioned by the time parameter which is embedded with sinusoidal positioning and added to each residual block

Component $j \in [0, 31]$

[Ho, Jain & Abbeel, 2020 - https://arxiv.org/pdf/2006.11239]

Conditional V-Net as basic denoising block



Self- Attention modules are interspersed with convolutional blocks in the pipeline

[Ho, Jain & Abbeel, 2020 - https://arxiv.org/pdf/2006.11239]

Deep Learning 2024–2025 Generative Networks [25]

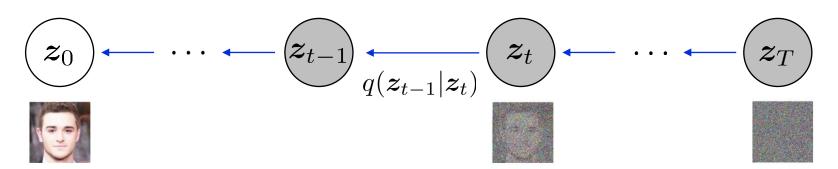
Latent Diffusion Models

Forward Diffusion

It is relatively easy and inexpensive (It can be performed in one step)

Backward Denoising

Must be performed in small steps and is quite expensive, in particular with high-resolution images

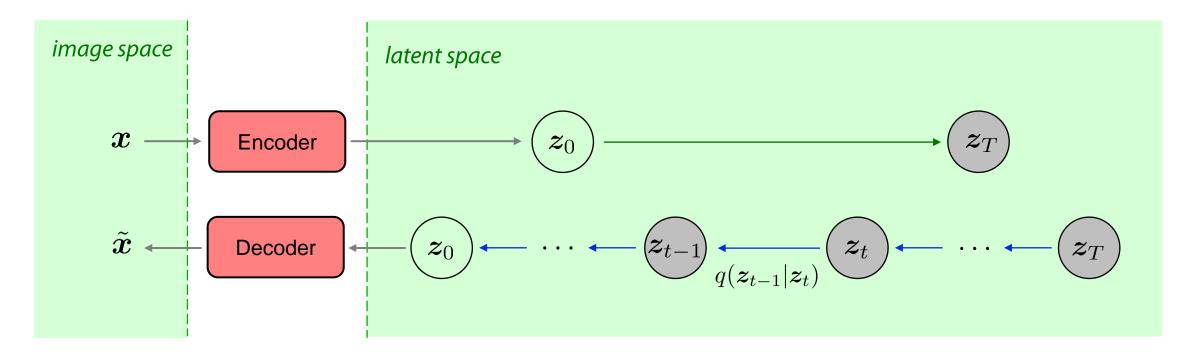


Deep Learning 2024–2025 Generative Networks [26]

Latent Diffusion Models

Latent Diffusion Model

The intuitive idea is to perform diffusion in the *latent space*

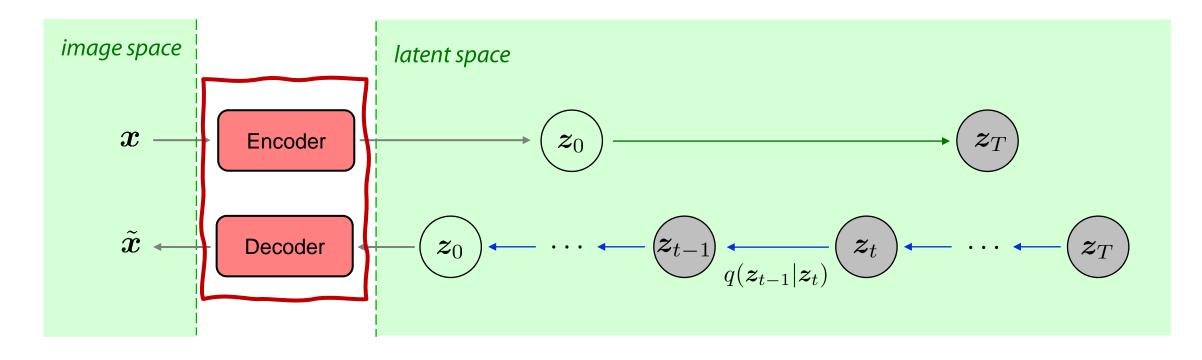


Deep Learning 2024–2025 Generative Networks [27]

Latent Diffusion Models

Latent Diffusion Model

The intuitive idea is to perform diffusion in the *latent space*

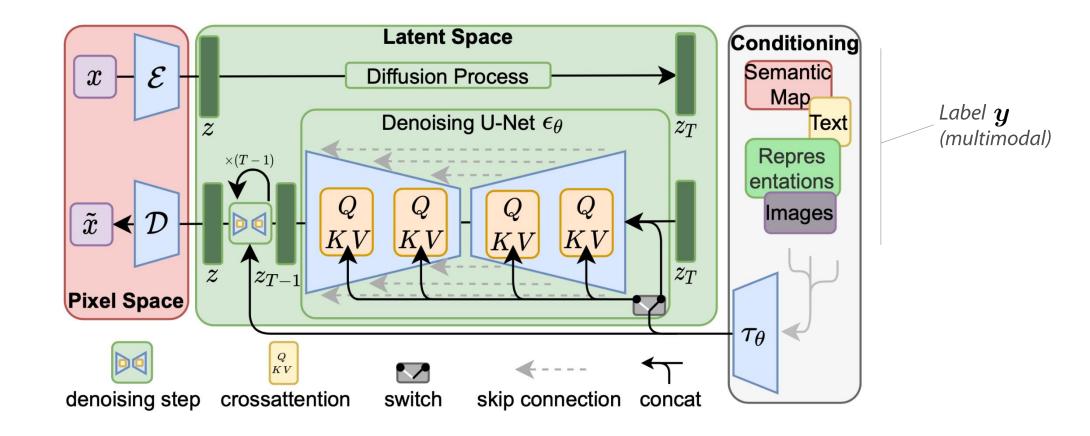


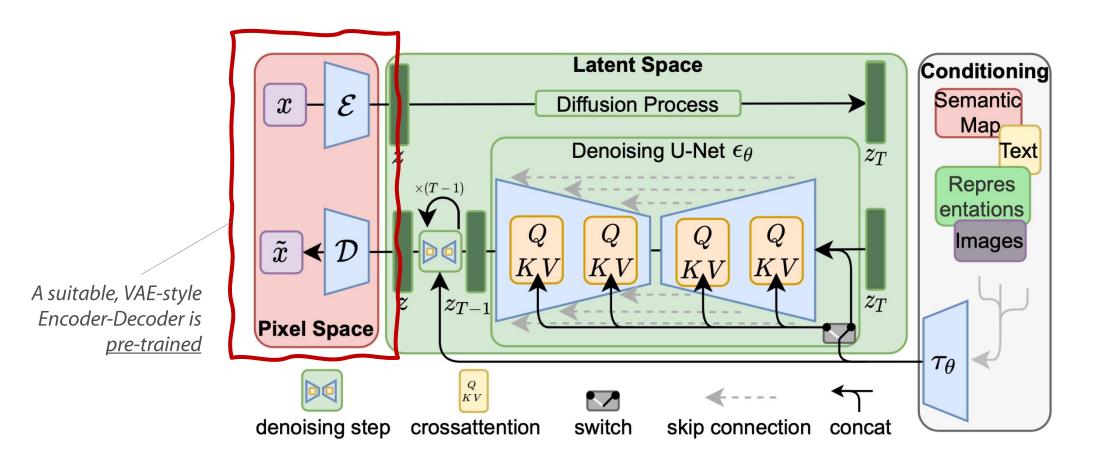
A pre-trained VAE is used to encode and decode high-resolution images into a suitable (reduced) latent format

Deep Learning 2024–2025 Generative Networks [28]

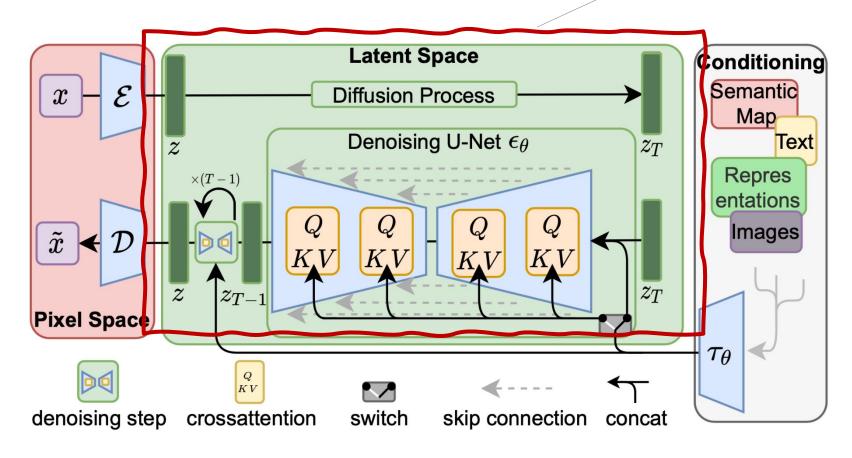
Conditioning on Multimodal Labels

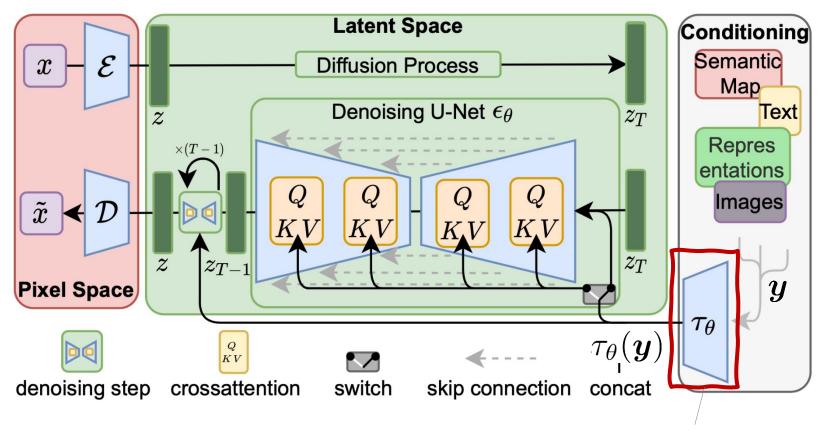
Deep Learning 2024–2025 Generative Networks [29]



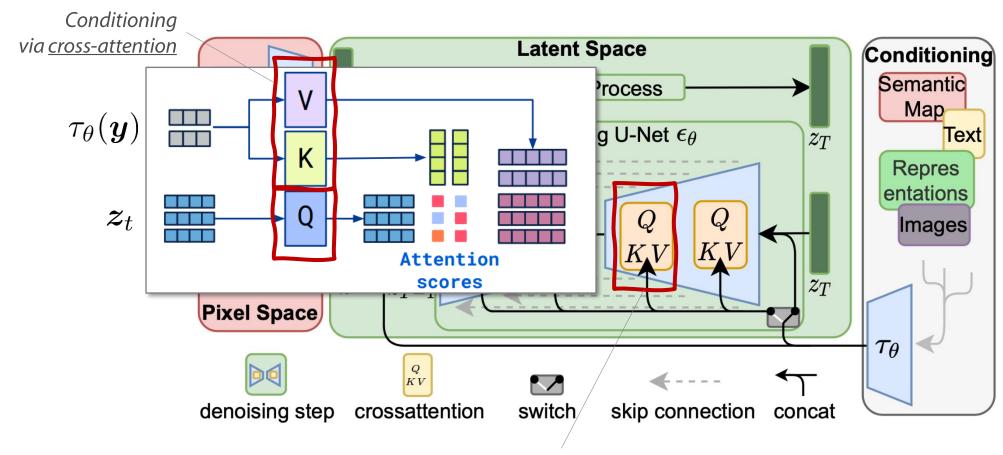


The latent diffusion model is then pre-trained (without conditioning)

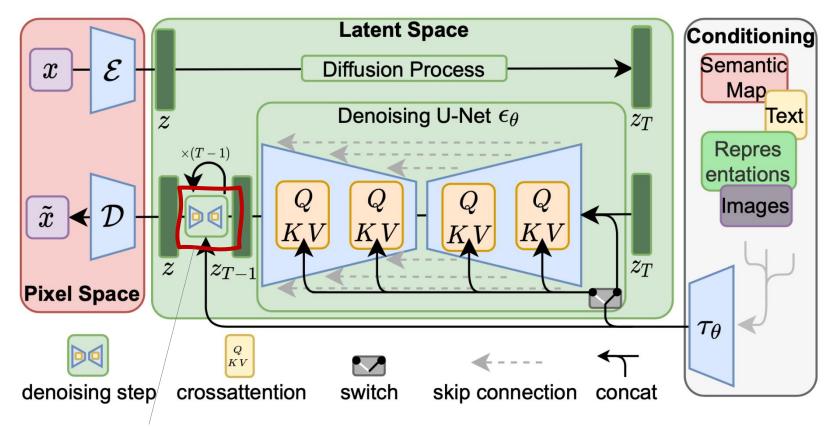




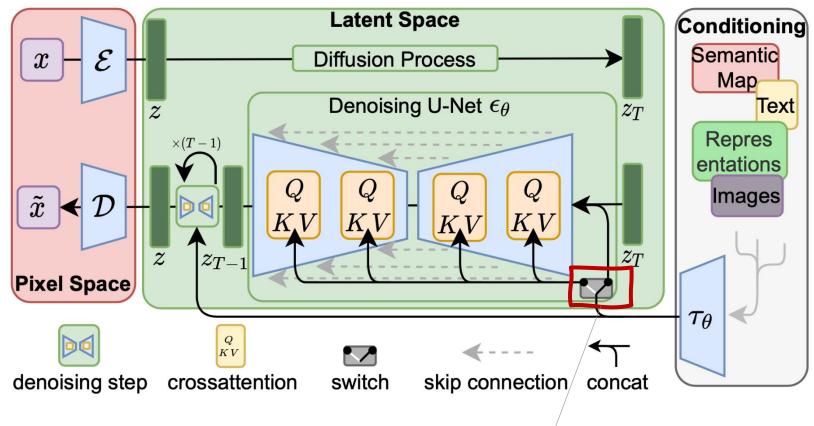
A suitable encoder of the conditioning elements is <u>pre-trained</u> separately



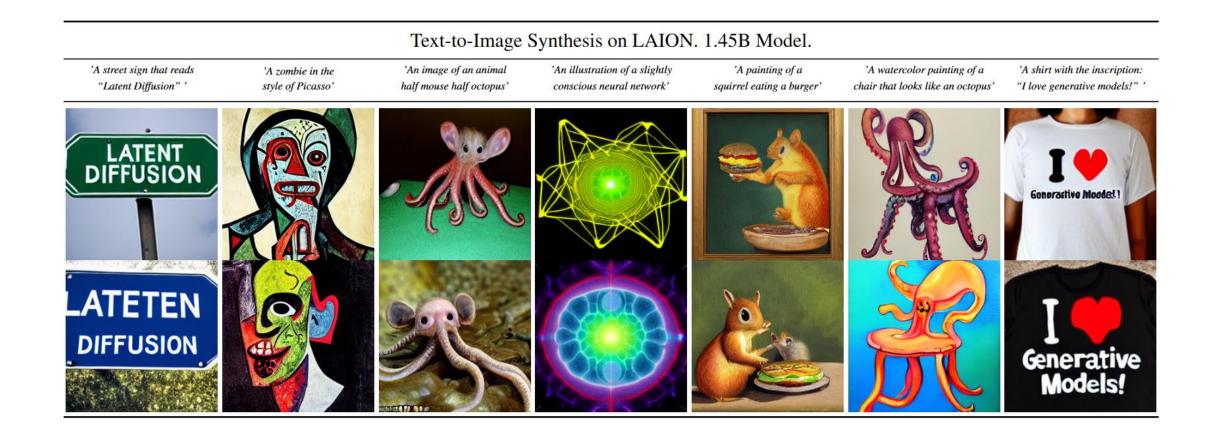
Latent-space representations and embedded condition elements are combined via <u>cross-attention</u>



The same step is iterated T-1 more times



The switch is for <u>multi-modality</u>: if the conditioning element is a class or text, use <u>cross-attention</u>, if the input is an image, use <u>concatenation</u>



Links

https://poloclub.github.io/diffusion-explainer/

https://blog.marvik.ai/2023/11/28/an-introduction-to-diffusion-models-and-stable-diffusion/

https://theaisummer.com/diffusion-models/

https://learnopencv.com/denoising-diffusion-probabilistic-models/

https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://www.superannotate.com/blog/diffusion-models

https://encord.com/blog/diffusion-models/

Deep Learning 2024–2025 Generative Networks [38]