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Images from text

= DALL-E2

Diffusion Models: generating images from text

«A teapot in the shape of an avocado»

[Image from https://www.nytimes.com/2022/04/06/technology/openai-images-dall-e.html]
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Videos from text

= SORA

Generating videos from text prompts

«A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage.
She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears
sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating
a mirror effect of the colorful lights. Many pedestrians walk about.»

[Video clip from https://openai.com/index/sora/]
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Ditfusion Models are autoencoders

The basic, intuitive idea is to perform
diffusion in the latent space
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Diffusion Models
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B3asic idea

q(z¢|ze—1)
Forward Diffusion —» ces —— @ > @_. e _>@
Assume that images

are corrupted by
Gaussian noise
with known parameters

)
_ 1

The idea behind
Denoising Diffusion Probabilistic Models (DDPM)
is learning how to reverse the process

@@ @ @
o
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Starting from the end: the DDPM training algorithm

Algorithm 20.1: Training a denoising diffusion probabilistic model

Forward Diffusion
Assume that images
are corrupted by
Gaussian noise

with known parameters

The idea behind
Denoising Diffusion Probabilistic Models
is learning how to reverse the process

Note that

The neural network g(zi,9,8) |

is expected to predict the noise ¢
that has been applied

Deep Learning 2024-2025

Input: Training data D = {x,, }
Noise schedule {5, ..., it}
Output: Network parameters w

fort € {1,..., T} do

| kg l_[rr=1[1 — B7) // calculate alphas from betas

end for

repeat
x~D ;/ Sample a data poant
f o~ {IT} {// Sample a point aleong the Markowv chain
E’“—'J"U'F[:Elﬂ,l} S/ Bample a nolse wectol

T — X+ \.-'1 — € J/ Evaluate nolsy latent variable
f:'lW:l — ”g(ﬂ-f 7, f:| — 'E”2 Ff Compute loss tCerm
Take optimizer step
.
until converged

return w

\\

Neural network
with suitable architecture

[Image from https://www.bishopbook.com/]
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Forward diffusion

q(z¢|ze—1)
Forward Diffusion —» ces —— @ > @_. e _>@
Assume that images

are corrupted by
Gaussian noise I:’ I
with known parameters

/Q(zt|zt—1)

Zt ~ N (\/ 1 — B zt—l:ﬁt-[)

.

BtE(O,l), vt \\zt:\/l_ﬁtzt_l—l—\/ae

Bl<52§---<6gp e ~N(0,1I)

Could be rewritten as

‘Noise schedule’:
Hyperparameters
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Forward diffusion

Forward Diffusion
Assume that images
are corrupted by
Gaussian noise

with known parameters

At any forward step t, the diffusion sequence can be compacted as

ze ~ N (Vo zo, (1 — ap)I)

where: t

at:H(l_ﬁT)

T=1

v
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Going backward: denoising

A neural network
is at the core

q(zt|z¢—1)
Backward Denoising — . — @ > @ — ...

of the backward process

We assume that:

Neural

21 =z 9) +\/Br e o

1 /
“’(ztat; 19) — \/1——/81; {zt T 1/8_t atg(ztat; 19)}
e ~N(0,I)
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Going backward: denoising

Q(Zt|zt—1)
Backward Denoising — s — @ > @ —— e — @
A neural network

is at the core
of the backward process I -l I
We assume that:

zi1 = (2, 59) +\/Br €

Network

u’(ztat; 19) — \/11_—615 {zt - 1/8_t o

e ~N(0,1I)

How can the neural network be trained?
(A suitable loss function is needed)

Deep Learning 2024-2025

g(zt,t; 19)}
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Going backward: denoising  a(zu-.|=)

An approximation to @ (Zt_ 1 | zt)
We assume that:

zi—1 ~ N (u(ze,t;9), B )
During training, Zq is known. Then we can sample €

zi = Jor zo+ V1 — o e

Therefore, it can be proven that:

Noise added at step t

is the true mean of:
q (Zt— 1 ‘ Zt)

Then the Kullback-Leibler divergence is:

KL (¢(zi-1|zt) || ¢(z1-1]2t))
1

= ——lm(zi-1) — p(z:, ;9)||” + const
26

Deep Learning 2024-2025
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Going backward: denoising

KL (q(zi-1|zt) || ¢(zt-1]2t))
1

= ——[Im(z:_1) — (21, t;9)||* + const
26

Therefore, given previous assumptions:

p(ze, t;9) = \/11——515 {Zt — Vlﬁi—%g(zt’t;ﬁ))

KL (q(zi-1]2¢) || ¢(zi—1]2t)) oc || g(2¢, 85 9) — &

W

2

L(9) = | gz, t;9) — &¢]|”

- To be minimized

Fundamental: this line of reasoning works provided that q(z;_1|2:), G(z¢—1|2¢) are Gaussians ...
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Diffusion Models:
Why so many steps?
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Going forward: adding noise

Marginal distribution
Z z (cross-section)
t—1 ‘ t— 2 atstept — 1
/Q('Zt\l)/\/\
1 _Bt : V/Bi—1 z(l)
( 1 ) o - ‘-\ t—1
29 | 0
o ‘ Z 1 Forward probability distribution
(2) —— ' (3) (Gaussian)
z, |
t—2 ) 2t 1
(3)° \
Zi_ o ‘.\ B¢ is variance

@Q(thtl) @ q(2t|z1-1) NG

zi=+/1—Brzi_1+ /B e
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Going backward: denoising

The backward probability distribution
can be computed from forward
and marginals using Bayes’ theorem

Q(zt—l‘zt)

Q(Zt‘zt—l) (](Zt—l)

Zt—1

This is what we want to learn  This is what we know, by design

Q(Zt |Zt—1)C_I(Zt—1)
Q(Zt)
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Bayes’ Theorem



Going backward: denoising

Q(Zt\zt—ﬂ

/\

Zt—1

At training time, Z¢ is known
(dataset + forward diffusion)

- isthe free variable, at this step

q(zt|2ze—1 )C](Zt—l)
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Going backward: denoising

Q(Zt\zt—ﬂ

/\

Zt—1

At training time, Z¢ is known
(dataset + forward diffusion)

The reverse probability
is the blue curve

C](Zt|zt—1)Q(Zt—1)

El) = T

[Image from https://www.bishopbook.com/]
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Going backward: denoising

When B, is large )
q(Z1-1]2¢) ‘
becomes very different q ( Zt—1 ‘ <t )

from a Gaussian, hence
unsuitable for training

B¢ large Q(zt—1|zt)
oo oot
/o\ =
Zt 1 ~t
0(zi_1|2;) = q(zt|zt—1)q(z¢-1)

C](Zt)

[Image from https://www.bishopbook.com/]
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Going backward: denoising

When 3; is small
q(z¢—1]2¢) ‘
is approximately Gaussian q (Z ¢
B+ small /\
®

q(zt|zi—1)q(zt-1)
q(zt)
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Links

https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://www.superannotate.com/blog/diffusion-models
https://encord.com/blog/diffusion-models/
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https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://www.superannotate.com/blog/diffusion-models
https://encord.com/blog/diffusion-models/

Practical Implementation
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Conditional U-Net 3s basic denoising block

Loss function: L(’l9) = ” g(zt,t; '19) — EtHz

The network architecture for g (zt , T ’19) is a U-Net with time embedding

— > P
Res. block o _’ero%:{b N Concatenate
SO
Res. block + /:L P

self-attention

Concatenate

o° Concatenate

Concatenate

///// e

time embedding

[Image from https://learnopencv.com/denoising-diffusion-probabilistic-models/]

[Ho, Jain & Abbeel, 2020 - https://arxiv.org/pdf/2006.11239]
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Conditional U-Net 3s basic denoising block

Loss function: L(’l9) = ” g(zt,t; '19) — EtHz

The network architecture for g (zt , T ’19) is a U-Net with time embedding

— 2 P
Res. block +‘o6+{f,)6+x Concatenate
rfo‘b o7
Res. block + -

self-attention

Concatenate

Concatenate

[Image from https://learnopencv.com/denoising-diffusion-probabilistic-models/]

1.0
Concatenate _
A 20 0.5
=)
w
~ 30 0.0
j
°
540 -0.5
t - -
time embedding 1.0
k 50 .

The U-Net is conditioned by the time parameter

0 10
which is embedded with sinusoidal positioning and added to each residual block Component j €10, 31]

[Ho, Jain & Abbeel, 2020 - https://arxiv.org/pdf/2006.11239]
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Conditional U-Net as basic denoising block
Loss function: L () := || g(z¢,t;9) — E?tHz

2

_________________ '
' o(C?) i 0(C) g

|
. . . o query | query 5
The network architecture for zi. t:19) isa U-Net with t : ! 2
ts Uy | ~

' = 2
| = I~ ;
—_ +‘,‘, «;L% X key : key [SimilarityMatching g—
I o
Res. block 166_;_’):10:#}%6{_ : g g Y il p| -/ l g
_onv X =4 3:_
Res. block + e ¥ T) : @ Attention _g
self-attention ) : I Weights e
\ value : value '8
\‘ﬁ’ I c
- < : 7 g ~ 8
' S
N
DN Ceficatenate =
Q.
/Concatenate 2
3
g
o
time embedding £

Self- Attention modules
are interspersed with convolutional blocks in the pipeline

[Ho, Jain & Abbeel, 2020 - https://arxiv.org/pdf/2006.11239]
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Latent Diffusion Models

Forward Diffusion
It is relatively easy and inexpensive

(It can be performed in one step)

1o

Backward Denoising

Must be performed in small steps

and is quite expensive,

in particular with high-resolution images
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Latent Diffusion Models

Latent Diffusion Model

The intuitive idea is to perform

diffusion in the latent space

image space

X —+

.’:i)<—l—

latent space

——

Deep Learning 2024-2025

(=) (=)
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Latent Diffusion Models

Latent Diffusion Model
The intuitive idea is to perform
diffusion in the latent space

| |
. |
Image space : : Iatentspace
. |
| |
| |
| |
| |
| |
l | -
j -- 4_ o T @ ) @4_ o @
|
: Q(zt—1|zt)
o
|
|

A pre-trained VAE is used to encode and decode
high-resolution images into a suitable (reduced) latent format
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Conditioning on Multimodal Labels
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Latent Diffusion Models with Conditioning

\Pixel Spac9

denoising step crossattention  switch  skip connection concat &

Denoising U-Net €g

Deep Learning 2024-2025

o

Diffusion Process emanti
Ma

Text

Repres
entations

Latent Space R 6onditionina

[Image from Rombach et al., 2022 - https://arxiv.org/pdf/21

12.10752]

~Label y
— (multimodal)
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Latent Diffusion Models with Conditioning

Latent Space ) (Conditioning)

Diffusion Process emanti
Ma

Denoising U-Net €g Text

@ - = = = - - - - - - - - - - - - - -

Repres
entations

A suitable, VAE-style
Encoder-Decoder is

pre-trained

\Pixel Spac9 |

denoising step crossattention  switch  skip connection concat & J

Deep Learning 2024-2025 [Image from Rombach et al., 2022 - https://arxiv.org/pdf/2112.10752]
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Latent Diffusion Models with Conditioning

) The latent diffusion model is then
~ pre-trained (without conditioning)

Latent Space ) (@onditioning)

Diffusion Process emanti
Ma

Denoising U-Net €g Text

e

Repres

X(T-1)
ﬂ entations
eI
z
\Pixel Spac£
KV B w;; - (—T \
denoising step crossattention  switch  skip connection concat . J

[Image from Rombach et al., 2022 - https://arxiv.org/pdf/2112.10752]
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Latent Diffusion Models with Conditioning

Latent Space | (Conditioning

Diffusion Process emanti
Ma

Denoising U-Net € Text

Repres
entations

e

u
—1

A suitable encoder
of the conditioning elements

is pre-trained separately

gixel Spac9

denoising step crossattention  switch  skip connection concat

[Image from Rombach et al., 2022 - https://arxiv.org/pdf/2112.10752]
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Latent Diffusion Models with Conditioning

Conditioning
via cross-attention 7\ Latent Space ) €on ditionina
N rocess emanti
Ma
To (y) Text
’H E Repres
oo - entations
2t |
OONE = =

Attention

scores

Pixel Spacgk W*L w - r

denoising step crossattention

Deep Learning 2024-2025

switch/ skip connection concat - 4

/
/

Latent-space representations
and embedded condition elements
are combined via cross-attention

[Image from Rombach et al., 2022 - https://arxiv.org/pdf/2112.10752]
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Latent Diffusion Models with Conditioning

Latent Space R 6onditionina

Diffusion Process emanti
Ma

Text

Repres
entations

Denoising U-Net €g

\Pixel Spac9

\_ o
G <---- T
denoising steq”/ crossattention  switch  skip connection concat & J

The same step is iterated
T — 1 more times

[Image from Rombach et al., 2022 - https://arxiv.org/pdf/2112.10752]
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Latent Diffusion Models with Conditioning

Diffusion Process

Denoising U-Net €

gixel Spac9

Latent Space )

6onditionina

emanti
Ma

Text

Repres
entations

g

denoising step crossattention  switch  skip connection/,/ concat

76

\ 4

The switch is for multi-modality:

if the conditioning element is a class or text, use cross-attention,
if the input is an image, use concatenation

Deep Learning 2024-2025

[Image from Rombach et al., 2022 - https://arxiv.org/pdf/2112.10752]
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Latent Diffusion Models with Conditioning

Text-to-Image Synthesis on LAION. 1.45B Model.

"A street sign that reads ’A zombie in the "An image of an animal "An illustration of a slightly "A painting of a "A watercolor painting of a 'A shirt with the inscription:

“Latent Diffusion” ’ style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!” *

—
(" LATENT
DIFFUSION

Generative
Models!

[Image from Rombach et al., 2022 - https://arxiv.org/pdf/2112.10752]
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Links

https://poloclub.github.io/diffusion-explainer/
https://blog.marvik.ai/2023/11/28/an-introduction-to-diffusion-models-and-stable-diffusion/
https://theaisummer.com/diffusion-models/
https://learnopencv.com/denoising-diffusion-probabilistic-models/

https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://www.superannotate.com/blog/diffusion-models
https://encord.com/blog/diffusion-models/
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https://poloclub.github.io/diffusion-explainer/
https://blog.marvik.ai/2023/11/28/an-introduction-to-diffusion-models-and-stable-diffusion/
https://theaisummer.com/diffusion-models/
https://learnopencv.com/denoising-diffusion-probabilistic-models/
https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://www.superannotate.com/blog/diffusion-models
https://encord.com/blog/diffusion-models/
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