Deep Learning

A course about theory & practice

Generative Networks

Marco Piastra

Deep Learning 2023–2024 Generative Networks [1]

Generative Adversarial Networks

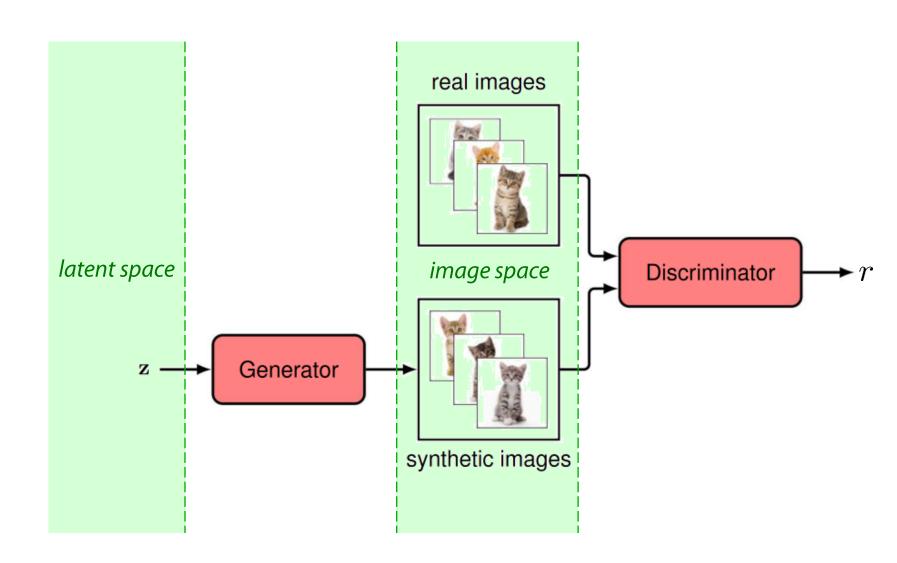
Basic idea

Objective:

creating a non-linear transformation from a <u>latent space</u> to a <u>data space</u>

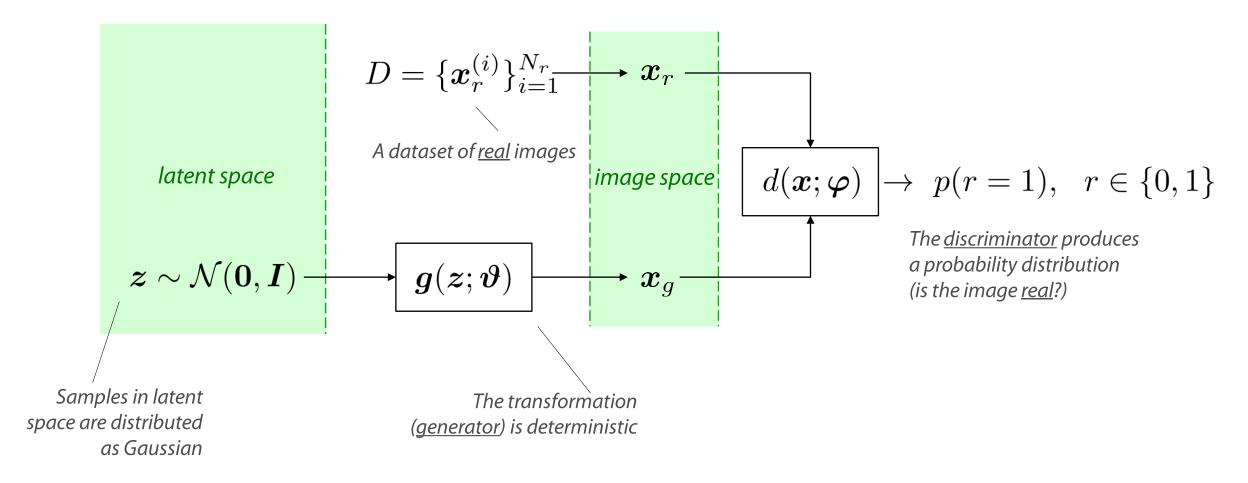
Method:

training together a <u>generator</u> and a <u>discriminator</u> using a <u>real</u> dataset

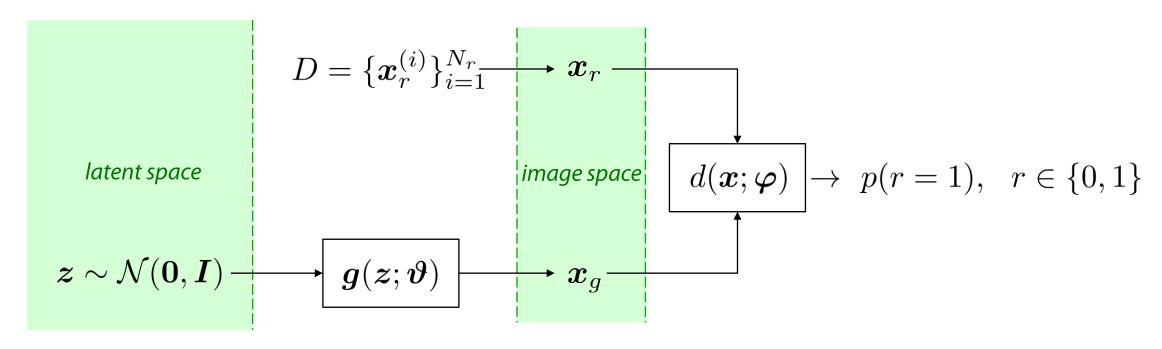


[Image from https://www.bishopbook.com/]

Deep Learning 2023–2024 Generative Networks [3]



Deep Learning 2023-2024 Generative Networks [4]



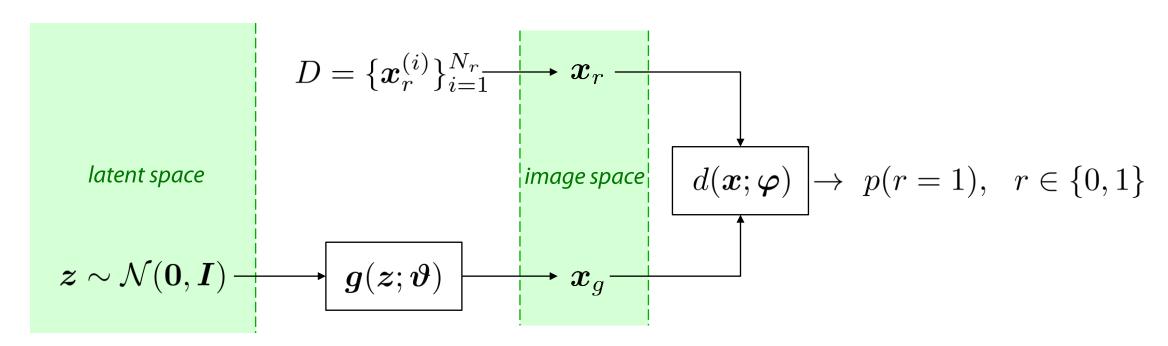
Loss function

$$L(\boldsymbol{\vartheta}, \boldsymbol{\varphi}) := -\frac{1}{N_r} \sum_{i \in \mathcal{R}} \ln(d(\boldsymbol{x}_r^{(i)}; \boldsymbol{\varphi})) - \frac{1}{N_g} \sum_{j \in \mathcal{G}} \ln(1 - d(\boldsymbol{g}(\boldsymbol{z}^{(j)}; \boldsymbol{\vartheta}); \boldsymbol{\varphi}))$$

Cross-entropy (d should recognize real images)

Cross-entropy (d should recognize 'false' images)

Deep Learning 2023-2024 Generative Networks [5]



Loss function

$$L(\boldsymbol{\vartheta}, \boldsymbol{\varphi}) := -\frac{1}{N_r} \sum_{i \in \mathcal{R}} \ln(d(\boldsymbol{x}_r^{(i)}; \boldsymbol{\varphi})) - \frac{1}{N_g} \sum_{j \in \mathcal{G}} \ln(1 - d(\boldsymbol{g}(\boldsymbol{z}^{(j)}; \boldsymbol{\vartheta}); \boldsymbol{\varphi}))$$

Gradients

$$\Delta \boldsymbol{\varphi} = -\eta \frac{\partial}{\partial \boldsymbol{\varphi}} L(\boldsymbol{\vartheta}, \boldsymbol{\varphi})$$

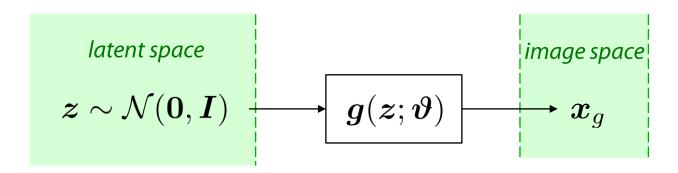
Make the discriminator smarter

$$\Delta \boldsymbol{\vartheta} = + \eta \frac{\partial}{\partial \boldsymbol{\vartheta}} L(\boldsymbol{\vartheta}, \boldsymbol{\varphi})$$

Make the <u>generator</u> smarter: the <u>discriminator</u> should be fooled

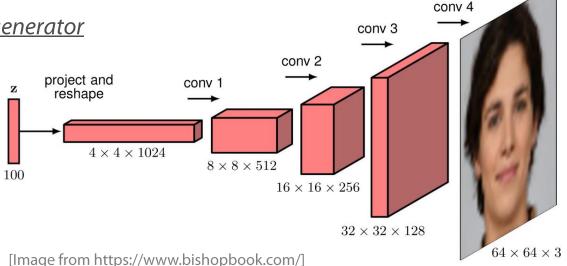
After training

The generator can be used to transform <u>random samples</u> in latent space into realistic data items



ImageGAN

Typically, a (de)convolutional network is used for the *generator*



Deep Learning 2023-2024 Generative Networks [7]

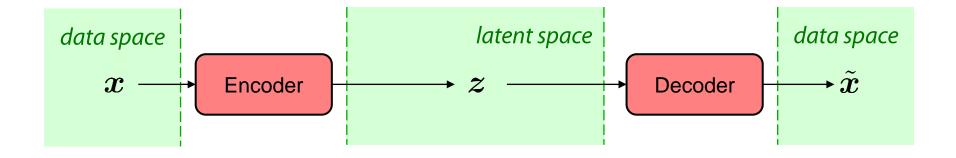
Variational Auto-Encoders

Deep Learning 2023–2024 Generative Networks [8]

Basic idea

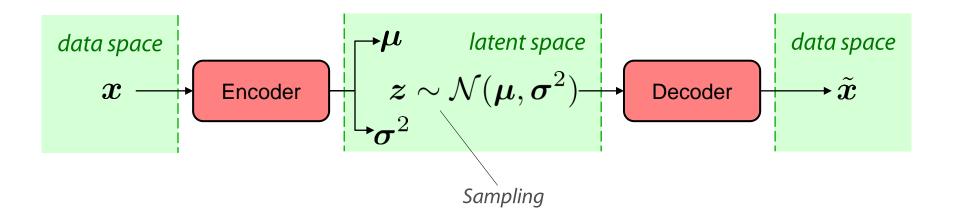
Auto-Encoder:

from data space into latent space then back



Variational Auto-Encoder:

use a Gaussian spread function to <u>organize</u> the latent space



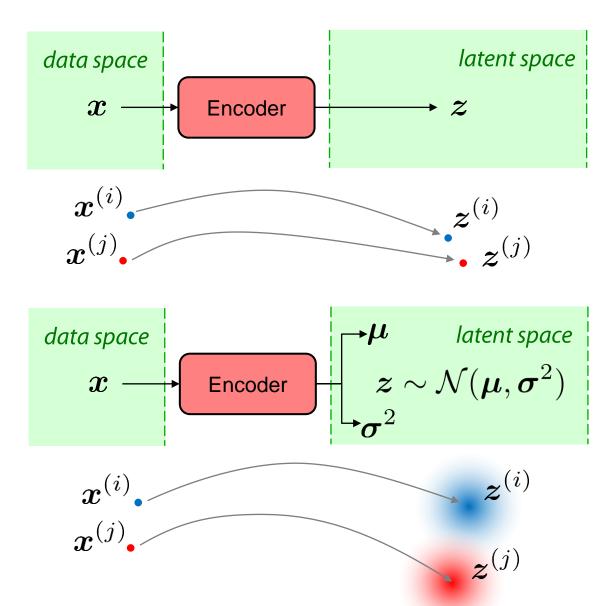
Deep Learning 2023–2024 Generative Networks [9]

Basic idea

Auto-Encoder:

the correspondence between data space and latent space is one to one

Variational
Auto-Encoder:
the correspondence
is one to many

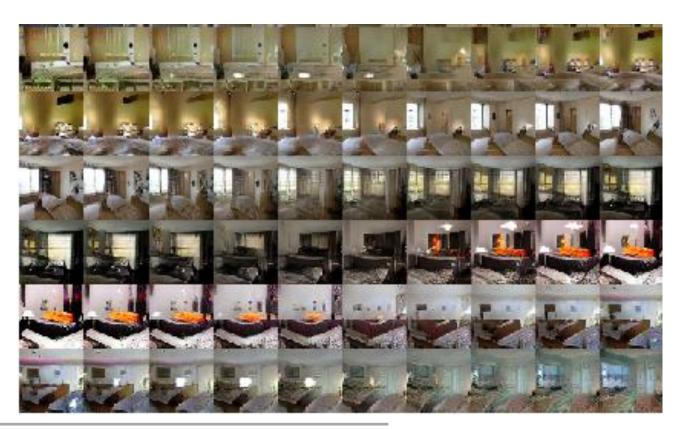


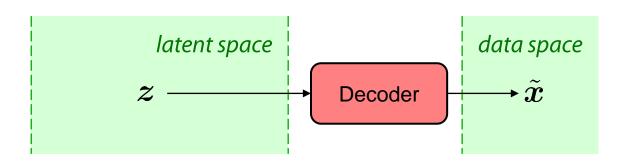
Deep Learning 2023–2024 Generative Networks [10]

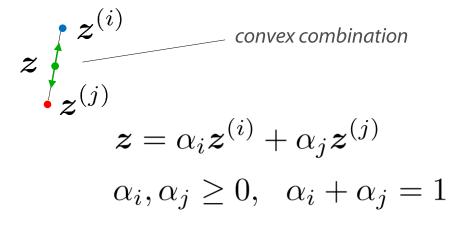
Smooth generation

Variational Auto-Encoder:

after training, any convex combination of two points in latent space will generate a data item that changes smoothly from one extreme to the other

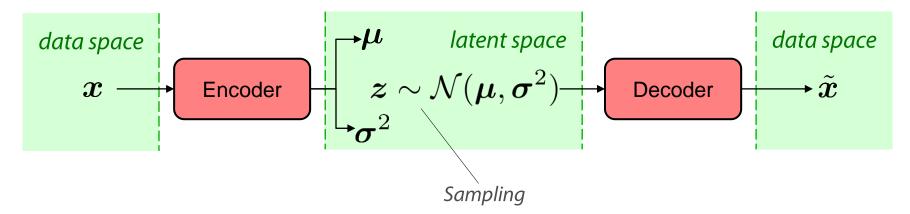






Deep Learning 2023-2024 Generative Networks [11]

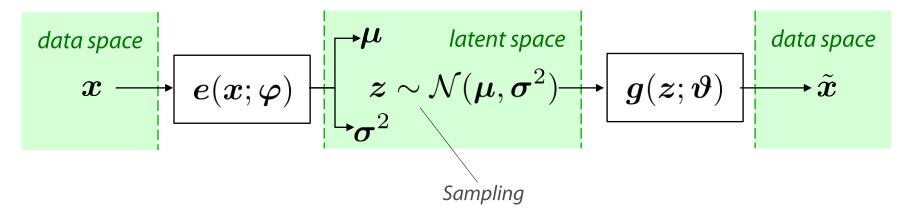
Variational
Auto-Encoder:
use a Gaussian spread
function to <u>organize</u>
the latent space



This is what we want to train from a real dataset $D = \{oldsymbol{x}_r^{(i)}\}_{i=1}^{N_r}$

Deep Learning 2023-2024 Generative Networks [12]

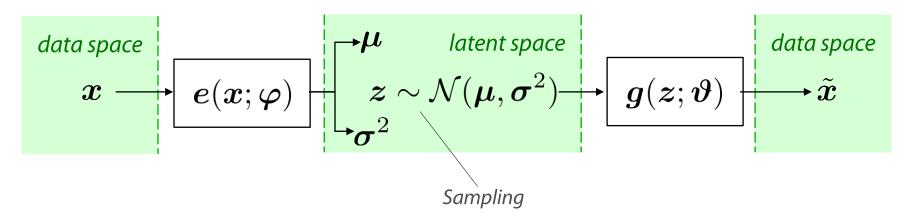
Variational
Auto-Encoder:
use a Gaussian spread
function to <u>organize</u>
the latent space



This is what we want to train from a real dataset $D = \{oldsymbol{x}_r^{(i)}\}_{i=1}^{N_r}$

Deep Learning 2023-2024 Generative Networks [13]

Variational Auto-Encoder: use a Gaussian spread function to <u>organize</u> the latent space



This is what we want to train from a real dataset $D = \{oldsymbol{x}_r^{(i)}\}_{i=1}^{N_r}$

$$D = \{ \boldsymbol{x}_r^{(i)} \}_{i=1}^{N_r}$$

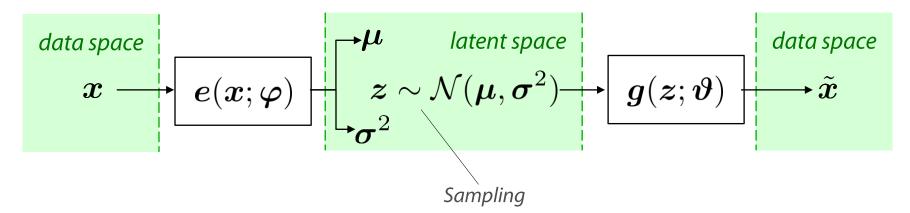
This is similar to the loss of a standard autoencoder

$$L(m{x};m{artheta},m{arphi}) := \mathrm{KL}(q(m{z}\midm{x},m{arphi})\parallel p(m{z})) \ + \ rac{1}{2}rac{\|m{x}- ilde{m{x}}\|^2}{c}$$
 This is an hyperparameter (see later)

Kullback-Leibler divergence

Deep Learning 2023-2024 Generative Networks [14]

Variational
Auto-Encoder:
use a Gaussian spread
function to <u>organize</u>
the latent space



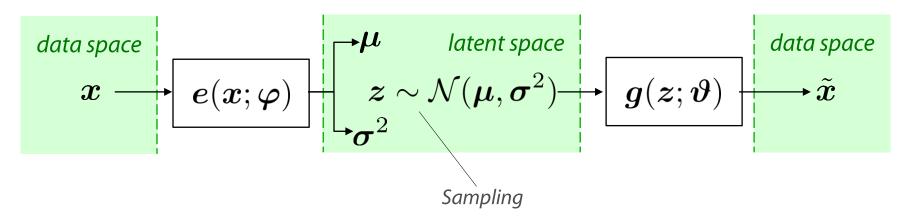
This is what we want to train from a real dataset $D = \{oldsymbol{x}_r^{(i)}\}_{i=1}^{N_r}$

$$L(\boldsymbol{x};\boldsymbol{\vartheta},\boldsymbol{\varphi}) := \mathrm{KL}(q(\boldsymbol{z} \mid \boldsymbol{x},\boldsymbol{\varphi}) \parallel p(\boldsymbol{z})) + \frac{1}{2} \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|^2}{c}$$

Design choices
$$q(m{z} \mid m{x}, m{arphi}) := \mathcal{N}(m{\mu}(m{x}; m{arphi}), m{\sigma}^2(m{x}; m{arphi})m{I})$$
 Normalization constraint: a soft limit against overspreading latent values

Deep Learning 2023-2024 Generative Networks [15]

Variational
Auto-Encoder:
use a Gaussian spread
function to <u>organize</u>
the latent space



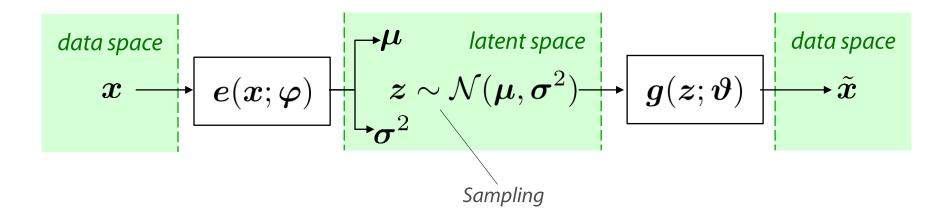
In general
$$\mathrm{KL}(q(m{z}) \parallel p(m{z})) := \int q(m{z}) \ln \frac{q(m{z})}{p(m{z})} \, \mathrm{d} m{z}$$
 — Kullback-Leibler divergence; always positive, zero when the two distributions are identical

Under the conditions adopted

$$\mathrm{KL}(q(\boldsymbol{z} \mid \boldsymbol{x}, \boldsymbol{\varphi}) \parallel p(\boldsymbol{z})) = -\frac{1}{2} \sum_{j=1}^{\dim(\boldsymbol{z})} \left(1 + \ln \sigma_j^2(\boldsymbol{x}; \boldsymbol{\varphi}) - \mu_j^2(\boldsymbol{x}; \boldsymbol{\varphi}) - \sigma_j^2(\boldsymbol{x}; \boldsymbol{\varphi}) \right)$$

Deep Learning 2023-2024 Generative Networks [16]

Variational
Auto-Encoder:
use a Gaussian spread
function to <u>organize</u>
the latent space



With a bit more of mathematics (omitted:)) it can be shown that the second term in the loss function

$$\frac{1}{2} \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|^2}{c}$$

relates to an assumption of:

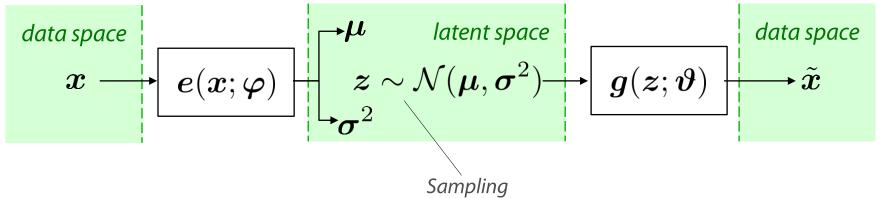
$$p(ilde{m{x}}) := \mathcal{N}(m{x}, cm{I}), \ c > 0$$
Design choice (hyper) spherical normal

Deep Learning 2023-2024 Generative Networks [17]

Reparametrization Trick

Variational Auto-Encoder:use a Gaussian spread function to <u>organize</u>

the latent space



$$L(\boldsymbol{x};\boldsymbol{\vartheta},\boldsymbol{\varphi}) := -\frac{1}{2} \sum_{j=1}^{\dim(\boldsymbol{z})} \left(1 + \ln \sigma_j^2(\boldsymbol{x};\boldsymbol{\varphi}) - \mu_j^2(\boldsymbol{x};\boldsymbol{\varphi}) - \sigma_j^2(\boldsymbol{x};\boldsymbol{\varphi})\right) \; + \; \frac{1}{2} \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|^2}{c}$$

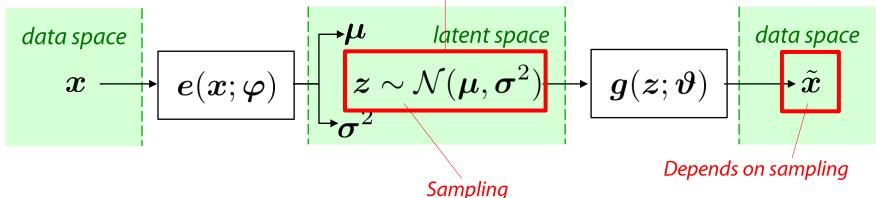
$$\Delta \boldsymbol{\varphi} = -\; \eta \frac{\partial}{\partial \boldsymbol{\varphi}} L(\boldsymbol{x};\boldsymbol{\vartheta},\boldsymbol{\varphi}) \qquad \qquad \Delta \boldsymbol{\vartheta} = -\; \eta \frac{\partial}{\partial \boldsymbol{\vartheta}} L(\boldsymbol{x};\boldsymbol{\vartheta},\boldsymbol{\varphi})$$

Deep Learning 2023-2024 Generative Networks [18]

Reparametrization Trick

 $ilde{m{x}}$ depends on both $m{artheta}$ and $m{arphi}$ via $m{z}$ yet, when $m{z}$ is sampled, the derivative in $m{arphi}$ is blocked

Variational Auto-Encoder:use a Gaussian spread function to <u>organize</u>
the latent space



$$L(\boldsymbol{x};\boldsymbol{\vartheta},\boldsymbol{\varphi}) := -\frac{1}{2} \sum_{j=1}^{\dim(\boldsymbol{z})} \left(1 + \ln \sigma_j^2(\boldsymbol{x};\boldsymbol{\varphi}) - \mu_j^2(\boldsymbol{x};\boldsymbol{\varphi}) - \sigma_j^2(\boldsymbol{x};\boldsymbol{\varphi}) \right) + \frac{1}{2} \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|^2}{c}$$

The trick is assuming:

$$oldsymbol{z} = oldsymbol{\mu}(oldsymbol{x};oldsymbol{arphi}) + arepsilon oldsymbol{\sigma}^2(oldsymbol{x};oldsymbol{arphi})$$

where:

$$\varepsilon \sim \mathcal{N}(0,1)$$

is a parameter, therefore it is <u>constant</u> to the derivative.

In plain words, during training and per each data item $m{x}^{(i)}$ the system draws one random value arepsilon and computes the derivatives

Links

https://johfischer.com/2022/09/18/denoising-score-matching/

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://en.wikipedia.org/wiki/Variational autoencoder

https://mbernste.github.io/posts/vae/

Deep Learning 2023–2024 Generative Networks [20]

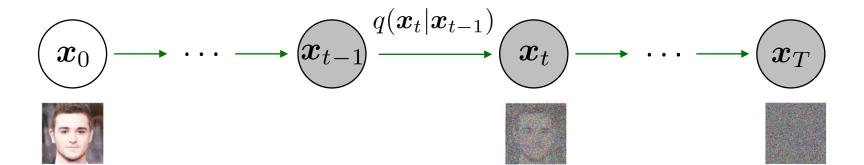
Diffusion Models

Deep Learning 2023-2024 Generative Networks [21]

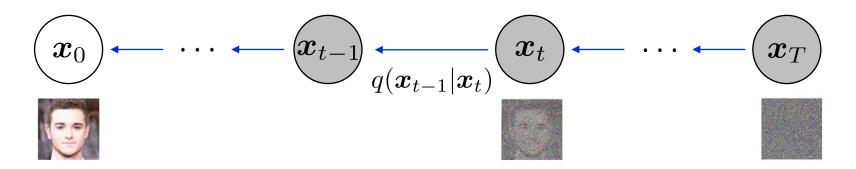
Basic idea

Forward Diffusion

Assume that images are corrupted by Gaussian noise with known parameters



The idea behind **Denoising Diffusion Probabilistic Models** is learning how to reverse the process



Deep Learning 2023-2024 Generative Networks [22]

Starting from the end: training algorithm

Forward Diffusion

Assume that images are corrupted by Gaussian noise with known parameters

The idea behind **Denoising Diffusion Probabilistic Models** is learning how to reverse the process

Algorithm 20.1: Training a denoising diffusion probabilistic model

Input: Training data $\mathcal{D} = \{\mathbf{x}_n\}$

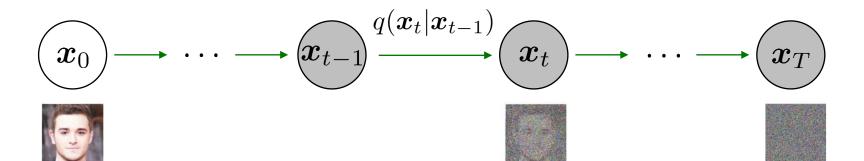
```
Noise schedule \{\beta_1, \dots, \beta_T\}
Output: Network parameters w
for t \in \{1, ..., T\} do
    \alpha_t \leftarrow \prod_{\tau=1}^t (1-\beta_\tau) // Calculate alphas from betas
end for
repeat
    \mathbf{x} \sim \mathcal{D} // Sample a data point
    t \sim \{1, \ldots, T\} // Sample a point along the Markov chain
     \epsilon \sim \mathcal{N}(\epsilon|0, \mathbf{I}) // Sample a noise vector
    \mathbf{z}_t \leftarrow \sqrt{\alpha_t}\mathbf{x} + \sqrt{1-\alpha_t}\epsilon // Evaluate noisy latent variable
    \mathcal{L}(\mathbf{w}) \leftarrow \|\mathbf{g}(\mathbf{z}_t, \boldsymbol{\vartheta}, t) - \boldsymbol{\epsilon}\|^2 // Compute loss term
    Take optimizer step
until converged
return w
```

Neural network with suitable architecture

Forward diffusion

Forward Diffusion

Assume that images are corrupted by Gaussian noise with known parameters



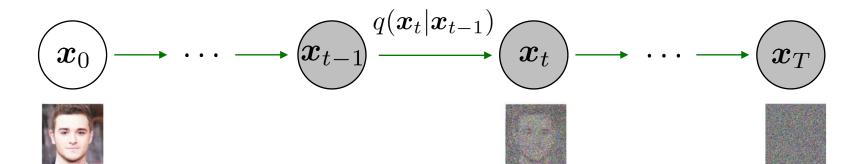
$$egin{aligned} q(m{x}_t | m{x}_{t-1}) \ m{x}_t &\sim \mathcal{N}\left(\sqrt{1-eta_t} \; m{x}_{t-1}, eta_t m{I}
ight) \ eta_t \in (0,1), \; orall t \ m{x}_t = \sqrt{1-eta_t} \; m{x}_{t-1} + \sqrt{eta_t} m{arepsilon} \ m{eta}_1 < eta_2 < \cdots < eta_T \ m{arepsilon} \ m{arepsilon} \sim \mathcal{N}(m{0}, m{I}) \end{aligned}$$

Deep Learning 2023-2024 Generative Networks [24]

Forward diffusion

Forward Diffusion

Assume that images are corrupted by Gaussian noise with known parameters



At any forward step $\,t$, the diffusion sequence can be compacted as

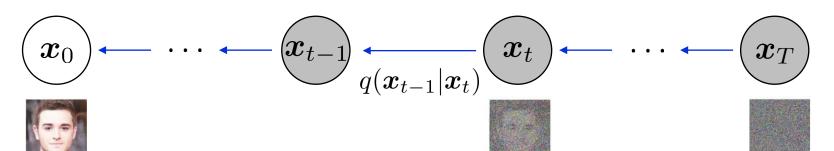
$$\boldsymbol{x}_t \sim \mathcal{N}\left(\sqrt{\alpha_t} \ \boldsymbol{x}_0, (1 - \alpha_t) \boldsymbol{I}\right)$$

where:

$$\alpha_t = \prod_{\tau=1}^{c} \left(1 - \beta_{\tau}\right)$$

Backward Denoising

A neural network is at the core of the backward process



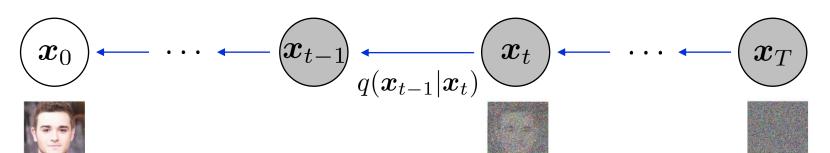
We assume that:

$$m{x}_{t-1} = m{\mu}(m{x}_t, t; m{artheta}) + \sqrt{eta_t} \; m{arepsilon}$$
 Neural Network $m{\mu}(m{x}_t, t; m{artheta}) = rac{1}{\sqrt{1-eta_t}} \left\{ m{x}_t - rac{eta_t}{\sqrt{1-lpha_t}} m{m{g}}(m{x}_t, t; m{artheta})
ight\}$ $m{arepsilon} \sim \mathcal{N}(m{0}, m{I})$

Deep Learning 2023-2024 Generative Networks [26]

Backward Denoising

A neural network is at the core of the backward process



We assume that:

$$m{x}_{t-1} = m{\mu}(m{x}_t, t; m{artheta}) + \sqrt{eta_t} \; m{arepsilon}$$
 Neural Network $m{\mu}(m{x}_t, t; m{artheta}) = rac{1}{\sqrt{1-eta_t}} \left\{ m{x}_t - rac{eta_t}{\sqrt{1-lpha_t}} m{m{g}}(m{x}_t, t; m{artheta})
ight\}$ $m{arepsilon} \sim \mathcal{N}(m{0}, m{I})$

How can the neural network be trained? (A suitable loss function is needed)

Deep Learning 2023-2024 Generative Networks [27]

 $q(oldsymbol{x}_{t-1}|oldsymbol{x}_t)$ An approximation to $\ q(oldsymbol{x}_{t-1}|oldsymbol{x}_t)$

We assume that:

$$\boldsymbol{x}_{t-1} \sim \mathcal{N}\left(\boldsymbol{\mu}(\boldsymbol{x}_t, t; \boldsymbol{\vartheta}), \beta_t \boldsymbol{I}\right)$$

During <u>training</u>, $oldsymbol{x}_0$ is known. Then we can sample $oldsymbol{arepsilon}_t$

$$oldsymbol{x}_t = \sqrt{lpha_t} \; oldsymbol{x}_0 + \sqrt{1-lpha_t} \; oldsymbol{arepsilon}_t$$
 Noise added at step t

Therefore, it can be proven that:

$$\mathbf{m}(\mathbf{x}_{t-1}) = \frac{1}{\sqrt{1-\beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}} \, \boldsymbol{\varepsilon}_t \right)$$

is the true mean of:

$$q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)$$

Then the Kullback-Leibler divergence is:

$$KL (q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) \parallel \tilde{q}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t))$$

$$= \frac{1}{2\beta_t} \|\boldsymbol{m}(\boldsymbol{x}_{t-1}) - \boldsymbol{\mu}(\boldsymbol{x}_t, t; \boldsymbol{\vartheta})\|^2 + \text{const}$$

$$KL (q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) \parallel \tilde{q}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t))$$

$$= \frac{1}{2\beta_t} \|\boldsymbol{\mu}(\boldsymbol{x}_t, t; \boldsymbol{\vartheta}) - \boldsymbol{m}(\boldsymbol{x}_{t-1})\|^2 + \text{const}$$

Therefore, given (see before):

$$m(\boldsymbol{x}_{t-1}) = \frac{1}{\sqrt{1-\beta_t}} \left(\boldsymbol{x}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}} \boldsymbol{\varepsilon}_t \right)$$
$$\mu(\boldsymbol{x}_t, t; \boldsymbol{\vartheta}) = \frac{1}{\sqrt{1-\beta_t}} \left\{ \boldsymbol{x}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}} \boldsymbol{g}(\boldsymbol{x}_t, t; \boldsymbol{\vartheta}) \right\}$$

$$\mathrm{KL}\left(\widetilde{q}(oldsymbol{x}_{t-1}|oldsymbol{x}_{t}) \parallel q(oldsymbol{x}_{t-1}|oldsymbol{x}_{t})\right) \propto \parallel oldsymbol{g}(oldsymbol{x}_{t},t;oldsymbol{artheta}) - oldsymbol{arepsilon}_{t} \parallel^{2}$$

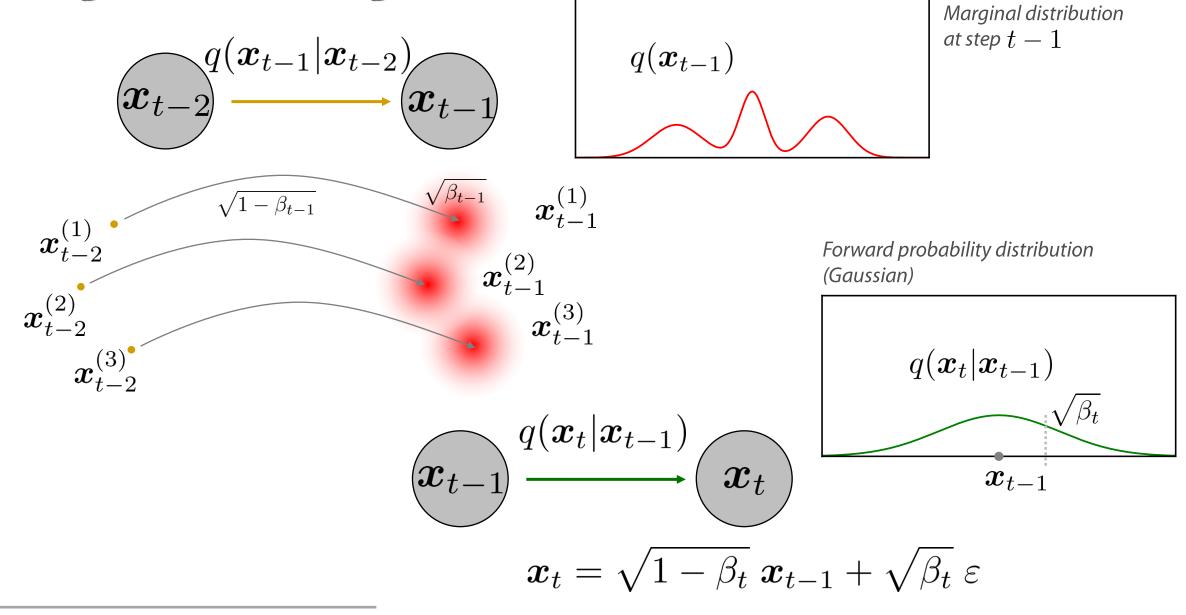
$$L(oldsymbol{artheta}) := \parallel oldsymbol{g}(oldsymbol{x}_t, t; oldsymbol{artheta}) - oldsymbol{arepsilon}_t \parallel^2$$
 _____ To be minimized

Deep Learning 2023-2024 Generative Networks [29]

Diffusion Models: Why so many steps?

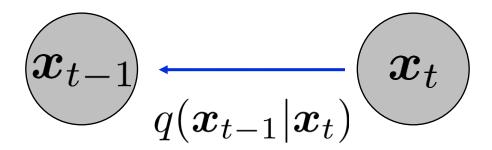
Deep Learning 2023–2024 Generative Networks [30]

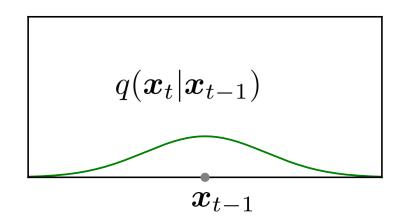
Going forward: adding noise

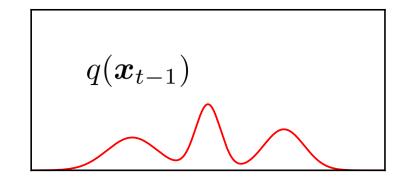


Deep Learning 2023-2024 Generative Networks [31]

The backward probability distribution can be computed from forward and marginals using Bayes' theorem





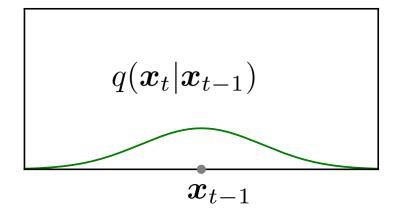


This is what we want to learn

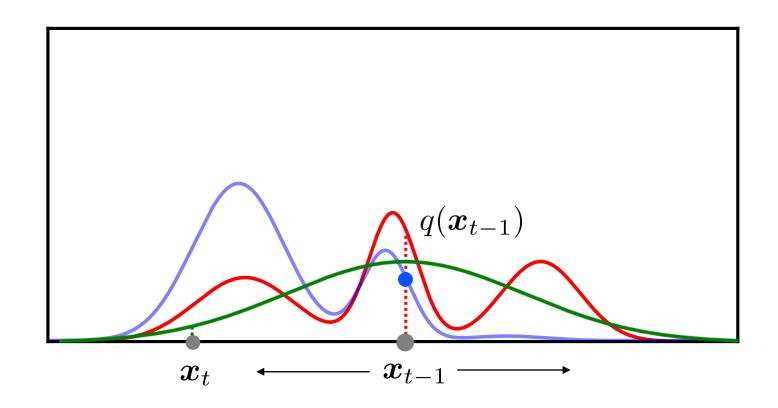
$$\overline{q(oldsymbol{x}_{t-1}|oldsymbol{x}_t)} = rac{q(oldsymbol{x}_t|oldsymbol{x}_{t-1})q(oldsymbol{x}_{t-1})}{q(oldsymbol{x}_t)}$$

Bayes' Theorem

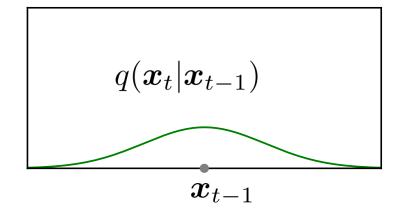
Deep Learning 2023-2024 Generative Networks [32]



At training time, \boldsymbol{x}_t is known (dataset + forward diffusion)

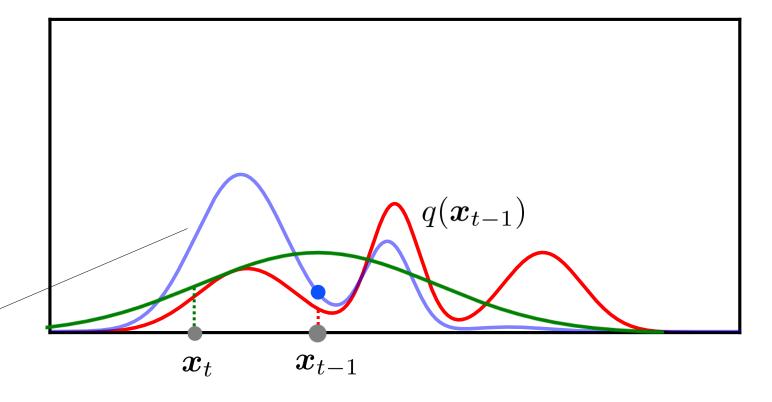


$$q(oldsymbol{x}_{t-1}|oldsymbol{x}_t) = rac{q(oldsymbol{x}_t|oldsymbol{x}_{t-1})q(oldsymbol{x}_{t-1})}{q(oldsymbol{x}_t)}$$
Bayes' Theorem



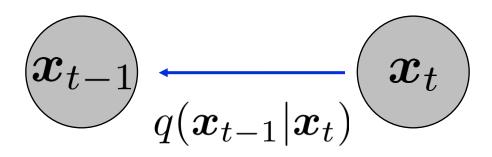
At training time, $oldsymbol{x}_t$ is known (dataset + forward diffusion)

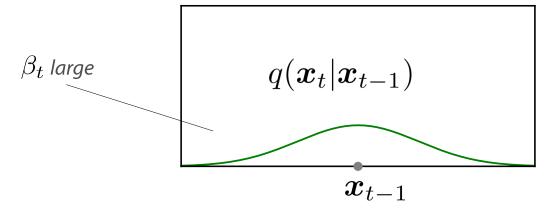
The reverse probability is the blue curve

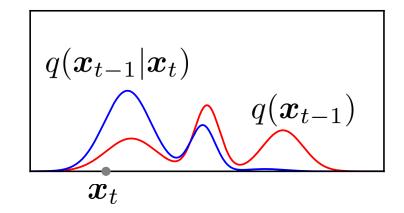


$$q(oldsymbol{x}_{t-1}|oldsymbol{x}_t) = rac{q(oldsymbol{x}_t|oldsymbol{x}_{t-1})q(oldsymbol{x}_{t-1})}{q(oldsymbol{x}_t)}$$
Bayes' Theorem

When β_t is large $q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)$ becomes very different from a Gaussian, hence unsuitable for training

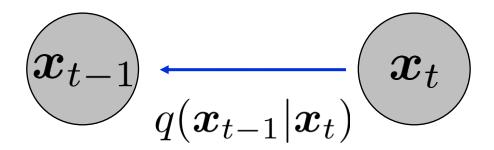


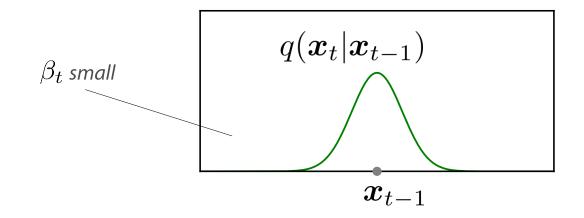


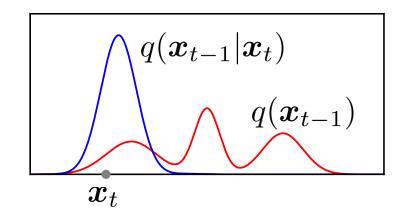


$$q(oldsymbol{x}_{t-1}|oldsymbol{x}_t) = rac{q(oldsymbol{x}_t|oldsymbol{x}_{t-1})q(oldsymbol{x}_{t-1})}{q(oldsymbol{x}_t)}$$
Bayes' Theorem

When eta_t is small $q(m{x}_{t-1}|m{x}_t)$ is approximately Gaussian







$$q(oldsymbol{x}_{t-1}|oldsymbol{x}_t) = rac{q(oldsymbol{x}_t|oldsymbol{x}_{t-1})q(oldsymbol{x}_{t-1})}{q(oldsymbol{x}_t)}$$
Bayes' Theorem

Deep Learning 2023-2024 Generative Networks [36]

Links

https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://www.superannotate.com/blog/diffusion-models

https://encord.com/blog/diffusion-models/

Deep Learning 2023–2024 Generative Networks [37]

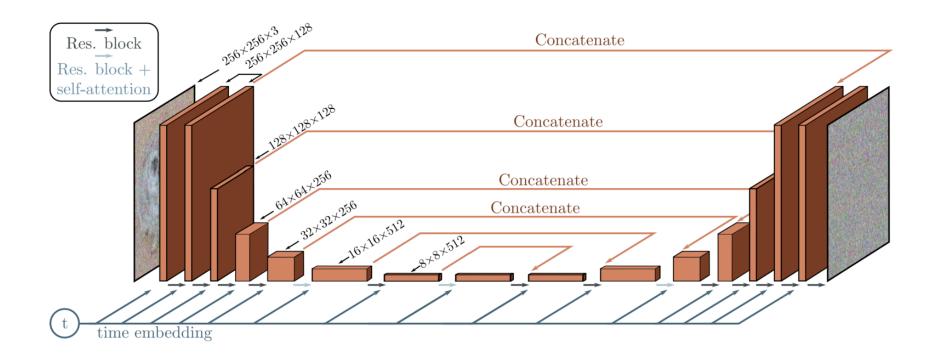
Practical Implementation

Deep Learning 2023-2024 Generative Networks [38]

Conditional V-Net as basic denoising block

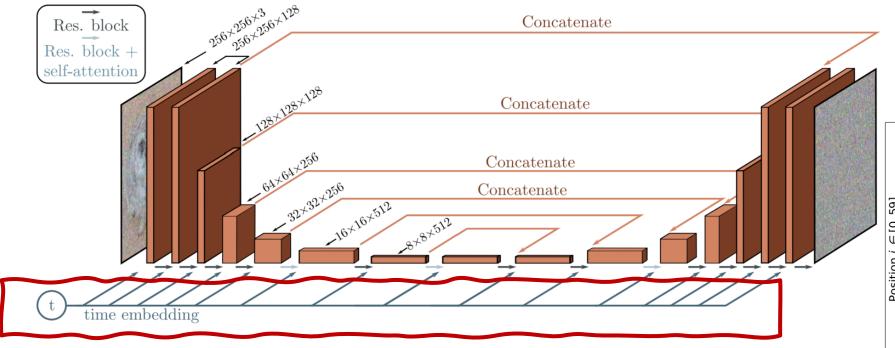
Loss function: $L(oldsymbol{artheta}) := \parallel oldsymbol{g}(oldsymbol{x}_t, t; oldsymbol{artheta}) - oldsymbol{arepsilon}_t \parallel^2$

The network architecture for $~m{g}(m{x}_t,t;m{artheta})~$ is a U-Net



Loss function: $L(oldsymbol{artheta}) := \parallel oldsymbol{g}(oldsymbol{x}_t, t; oldsymbol{artheta}) - oldsymbol{arepsilon}_t \parallel^2$

The network architecture for $~m{g}(m{x}_t,t;m{artheta})~$ is a U-Net

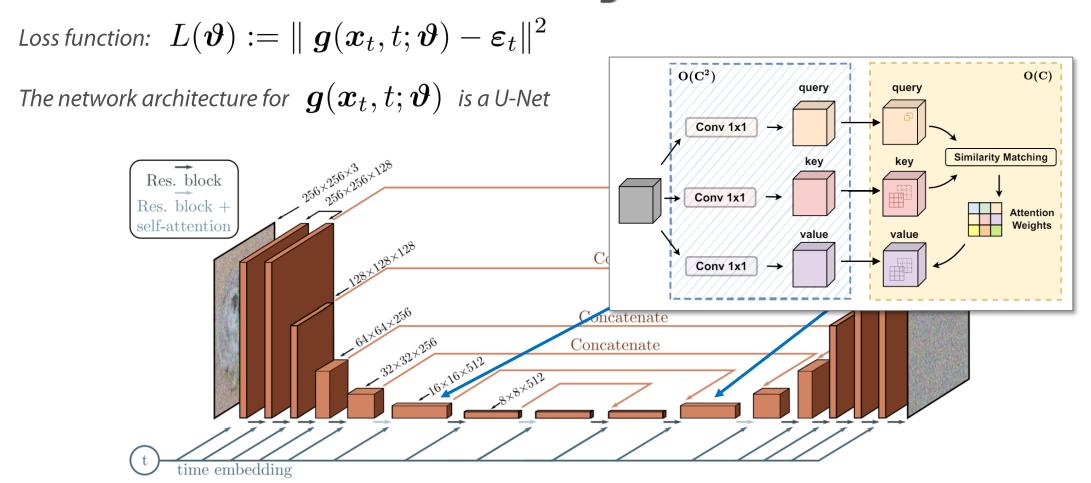


The U-Net is conditioned by the time parameter which is embedded with sinusoidal positioning and added to each residual block

[Ho, Jain & Abbeel, 2020 - https://arxiv.org/pdf/2006.11239]

Deep Learning 2023-2024 Generative Networks [40]

Conditional V-Net as basic denoising block



Self- Attention modules are interspersed with convolutional blocks in the pipeline

[Ho, Jain & Abbeel, 2020 - https://arxiv.org/pdf/2006.11239]

Deep Learning 2023-2024 Generative Networks [41]

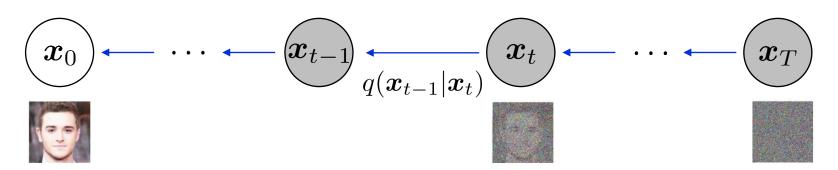
Latent Diffusion Models

Forward Diffusion

It is relatively easy and inexpensive (It can be performed in one step)

Backward Denoising

Must be performed in small steps and is quite expensive, in particular with high-resolution images

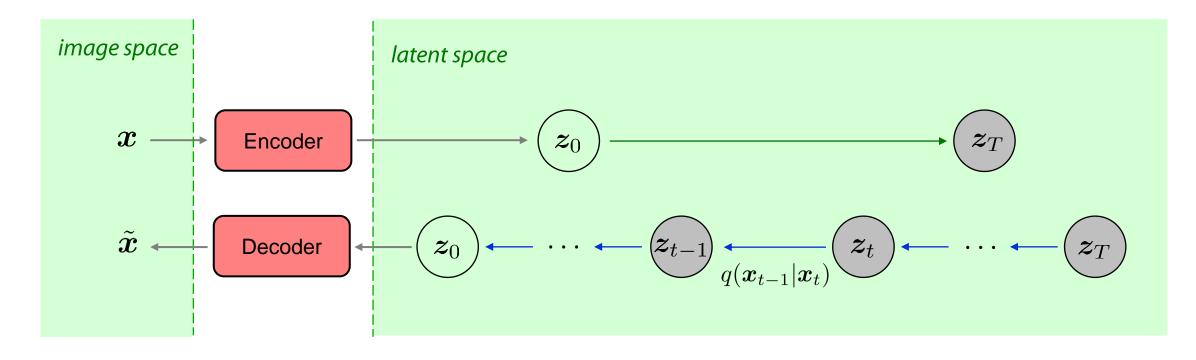


Deep Learning 2023-2024 Generative Networks [42]

Latent Diffusion Models

Latent Diffusion Model

The intuitive idea is to perform diffusion in the *latent space*



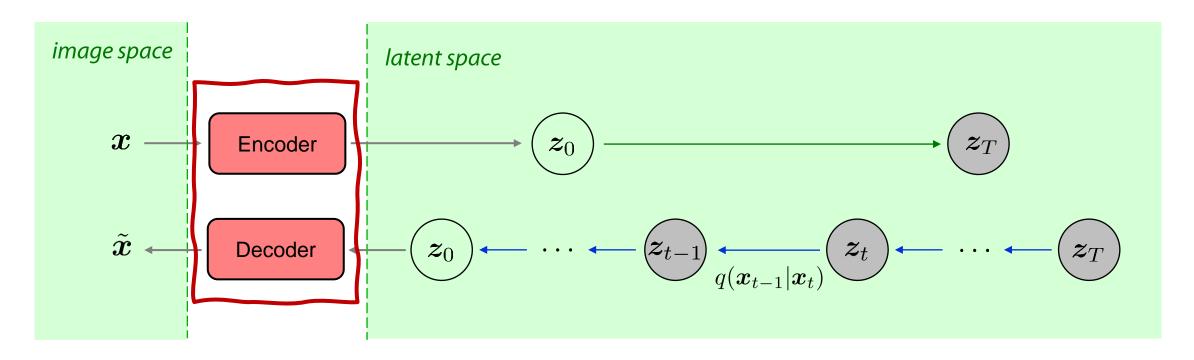
[Rombach et al., 2022 - https://arxiv.org/pdf/2112.10752]

Deep Learning 2023–2024 Generative Networks [43]

Latent Diffusion Models

Latent Diffusion Model

The intuitive idea is to perform diffusion in the *latent space*



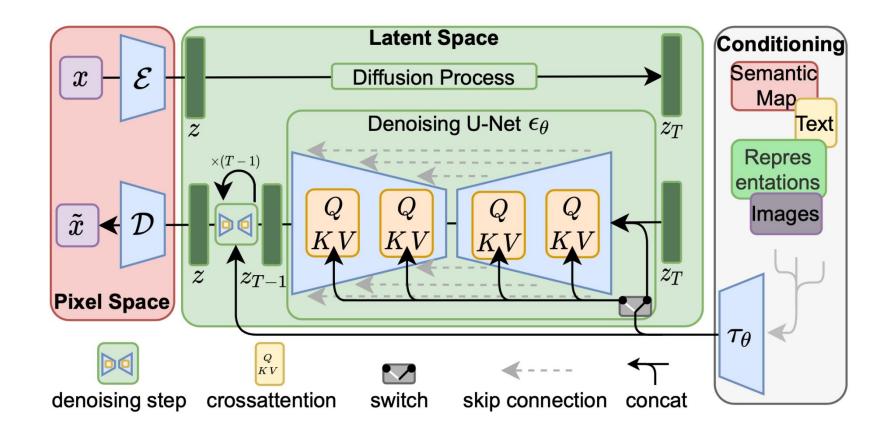
A pre-trained VAE is used to encode and decode high-resolution images into a suitable (reduced) latent format

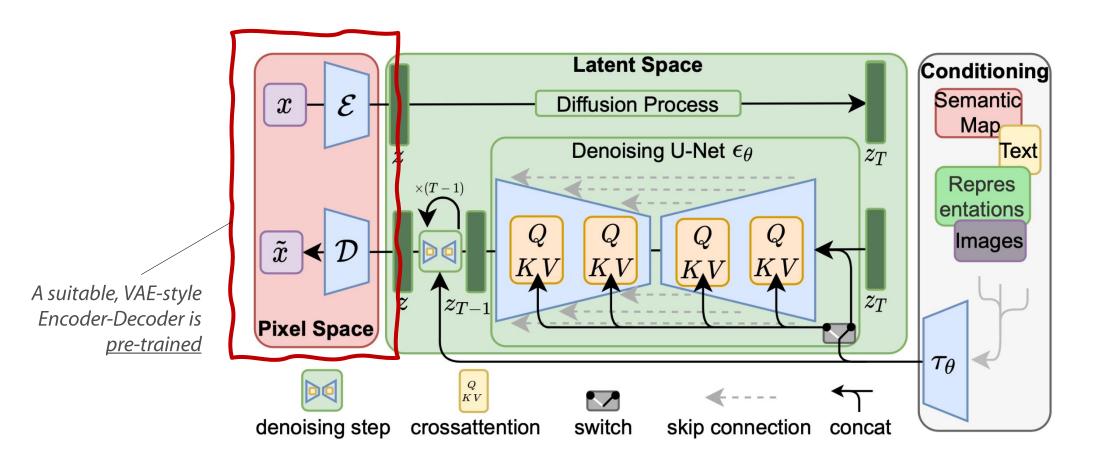
[Rombach et al., 2022 - https://arxiv.org/pdf/2112.10752]

Deep Learning 2023-2024 Generative Networks [44]

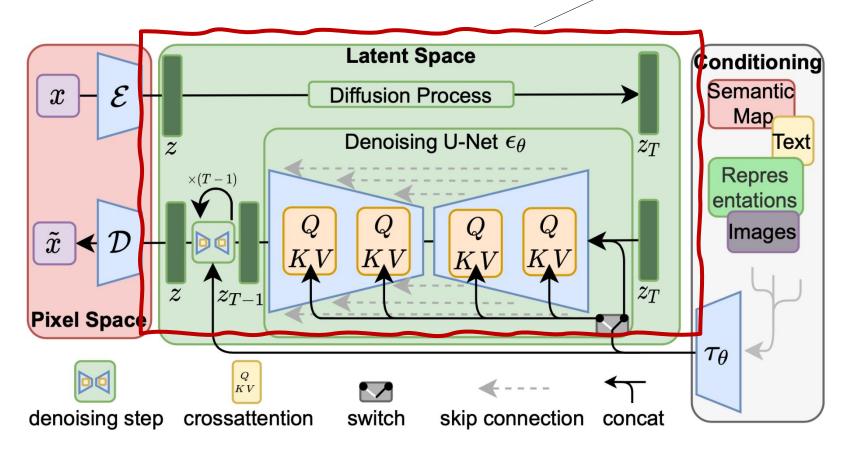
Conditioning on Labels

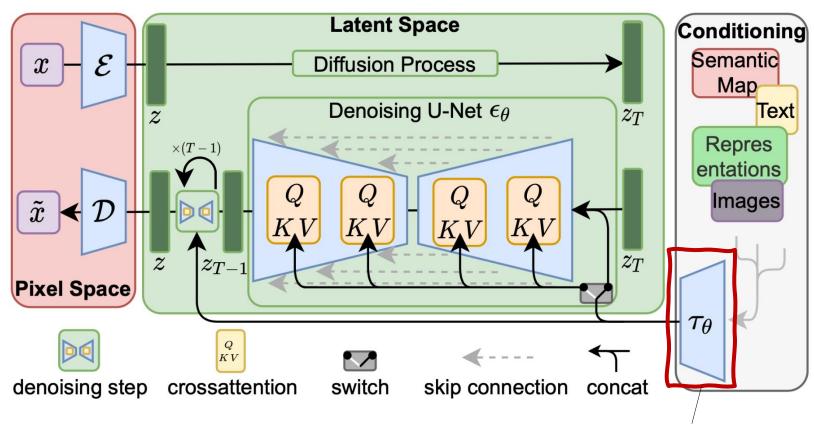
Deep Learning 2023–2024 Generative Networks [45]



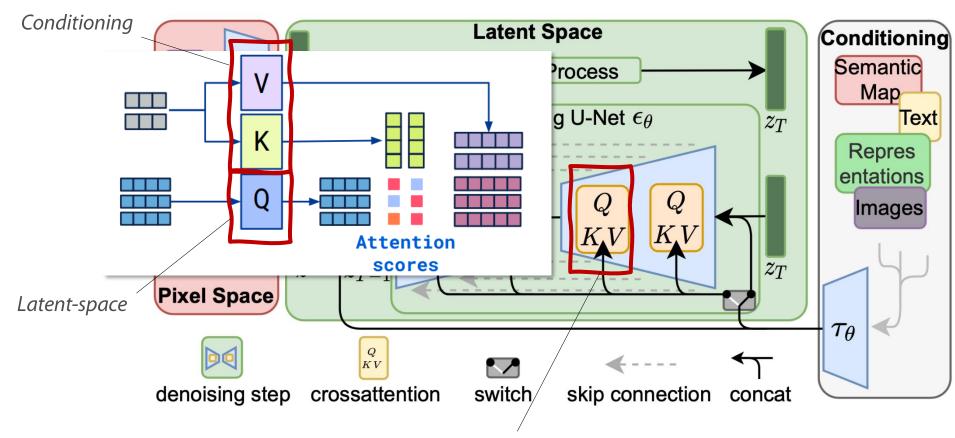


The latent diffusion model is then <u>pre-trained</u> (without conditioning)

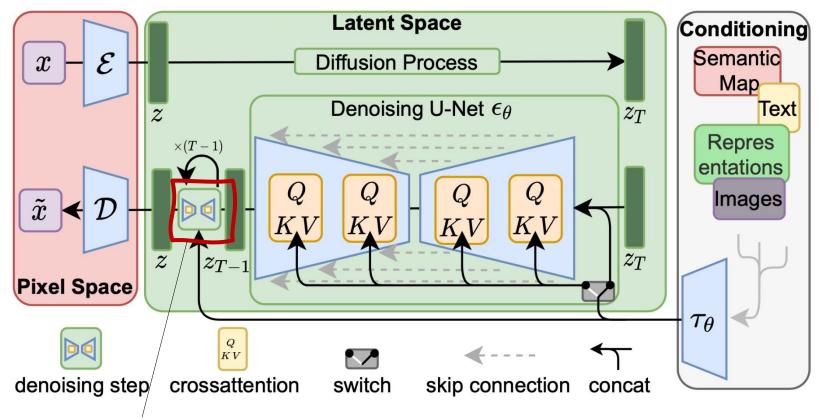




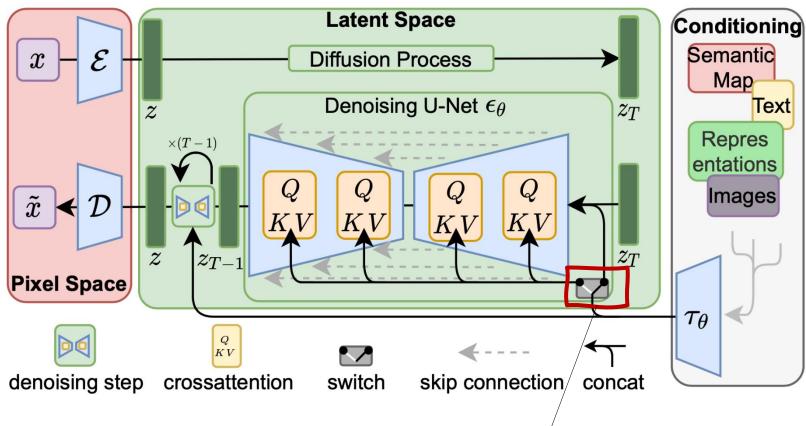
A suitable encoder of the conditioning elements is <u>pre-trained</u> separately



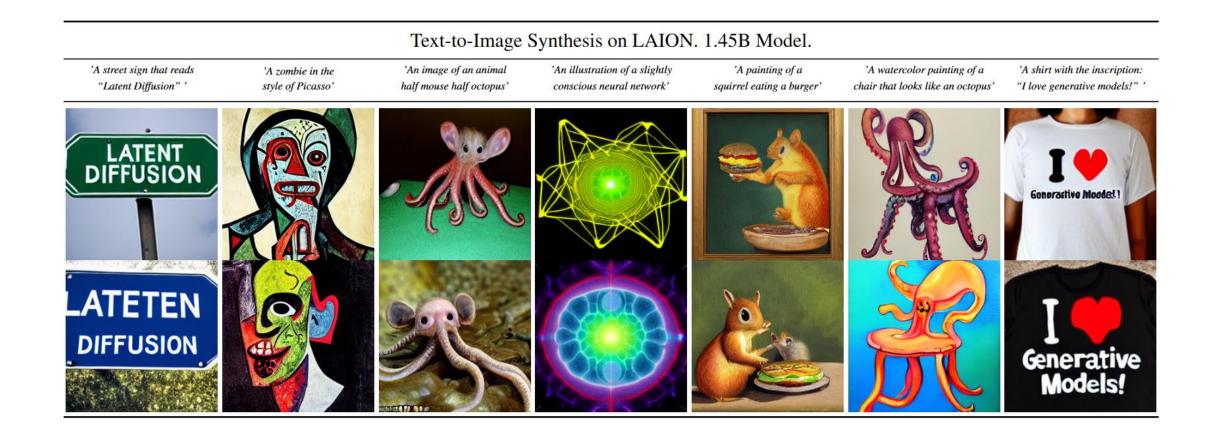
Latent-space representations and embedded condition elements are combined via <u>cross-attention</u>



The same step is iterated T-1 more times



The switch is for multi-modality: if the conditioning element is a class or text, use cross-attention, if the input is an image, use concatenation



Links

https://poloclub.github.io/diffusion-explainer/

https://blog.marvik.ai/2023/11/28/an-introduction-to-diffusion-models-and-stable-diffusion/

https://theaisummer.com/diffusion-models/

https://learnopencv.com/denoising-diffusion-probabilistic-models/

https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://www.superannotate.com/blog/diffusion-models

https://encord.com/blog/diffusion-models/

Deep Learning 2023-2024 Generative Networks [54]