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About why they did not use
Deep Networks
from the beginning
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Problem: vanishing or exploding Gradients

The gradient descent method implies updating the parameters at each step:
making sure that the gradient does not either vanish or explode is not easy

For instance, in

AW — OL

(50 ()

: : o 0
the gradient contains a multiplicative term P g(x)
which canbe <« 1.0 o

e.g. for the sigmoid function:

-10 -5 0 5 10
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Problem: vanishing or exploding Gradients

The gradient descent method implies updating the parameters at each step:
making sure that the gradient does not vanish or explode is not easy ...

Consider a special deep network
jg=w-gWH...gWllg 4 plty... 4 bl 1 p
in which

* g istheidentity function and all bl and b are zero;

« all hidden layers have the same size d of the input (i.e., al matrices are square);

« all W areidentical and diagonalizable, with eigenbasis (1, ,eq)

This means that eigenvalue raised to the k-th power

/
W oWl = Whe = A(er - x)er + - MNi(eq - ey
— )\]fazlel + - )\gazded

Moral:any A; > 1 leads to explosion whileany A; < 1 leads to vanishing
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Problem: initial values of the parameters

However, the main problem of training is that of initial values...
Gradient Descent can only discover minima that are close to the initial values

x=3.00000, y=3.00000, f(x,y)=34.20000

Using deep networks
can only make this problem worse:
intuitively, with deeper networks, 100
the 'surface' can be even rougher... 80
60 .
e
40 b
20 “
0
-20
4
[Image from http://cpmarkchang.logdown.com/posts/434534-optimization-method-momentum]

Deep Learning 2024-2025 Learning as Optimization [5]



Improving optimization
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Improving optimization
= SGD (or MBGD)

Standard, decaying learning rate

Update step:
90 — 9t _p 9 pip glt-1)
N
decaying mini-batch,
learning rate possibly a singleton
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Improving optimization
= SGD (or MBGD)

Standard, decaying learning rate

Update step:
90 — 9t _p 9 pip glt-1)
N
decaying mini-batch,
learning rate possibly a singleton

Many different ways to improve performance and speed rate:
* add some momentum
* take in account 2" order derivatives
* make the learning rate adaptive

Deep Learning 2024-2025 Learning as Optimization [8]



Improving optimization
= SGD (or MBGD)

Standard, decaying learning rate
Update step:

0
9t — 9t=1) _
rr
0
91 — 9t=1) — —n
N 09
“velocity”
Loss
(“potential
energy”)
\ [
L(B,?9)!

—L(B,ﬁ(t_l))

— L(B,9" 1)
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. .
—n —L(B.9®D
“force felt by the ball”
. 0
=——L(B,Y
] = 09 ( ) o
“acceleration
S
f=ma
0
a o« ——L(B, ")
oY
... the gradient directly affects the velocity
(not the position)
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Momentum

= Mlomentum momentum term:

" ot the ball run” / tendency to keep running at the same velocity and direction

u® =40y LB gty O Z g

e
9B — 9t=1) 4 4, ®) O0<y <1

“coefficient of friction”

Loss
(“potential
energy”)
\ |
L(B,?9)!
: >
v
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Momentum

= Momentum

"Let the ball run”
5,
ut) = ’Yu(t_l) — 7N a—ﬁL(B,ﬁ(t_l)), u® =0
9 = U= 4 4 ()
0 (t-1)
-1 aﬁL(B A

Consider 13 as a position ...

Loss /OCity”
(“potential / 0 Y9 ~ ﬁ(t) ﬁ(t_ 1)
energy”) T Ot
\ | “acceleration”
|
L (B ) 79) | S ol (t 1) O
] > a ~ U xX — —L(B ’19)
9 09
... the gradient directly affects the velocity
(not the position)
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NAG

= Momentum
“Let the ball run”

3,
w® = D) _

n a—ﬁL(B,ﬁ(t_l)), ul® =0

90 — 9t=1) | 4, ®

= Nesterov Accelerated Gradient (NAG)
"Let the ball run but be predictive"”

0
—n —L(B, ,19(15 1) 4 (t—1)
N 5Lt yu ) o

ﬁ(t) — ﬁ(t—l) 4 ’U;(t) ________

w® = gt

... the gradient
being computed
as if the position was

- 0 9 1B, ﬂ(t 1)) a bit forward in time
o9
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2d order method's

In this example (geometric view)

Gradient Descent
? . e —— —— S —_—__
The level curves of - ‘«WWW [ _.;
a quadratic formin 2D Y — — 11/ /R

are ellipses centered
in the origin

Deep Learning 2024-2025

Newton-Raphson
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2d order method's

= Taylor’s expansion

0
819(

All terms in blue are constant

L(B,¥) = L(B,9" " Y)+

where:

o (0 . .
H = L(B 19(75—1) — The Hessian Matrix

09

— The argmin

= Differentiate both sides and take 9 = 9*

B%L(B 9*) = £9L(B 9D 4 H(9* — 91~ Y)
set this equal to 0
e 9 —9t-1 — _p—19 —L(B,9% V)
o9
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/ The Hessian Matrix

B?ﬁ(t—l)).(ﬁ_ﬁ(t—l))+%(ﬁ_ﬁ(t—l)).H (ﬁ_ﬁ(t_1))+
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2d order method's

= Gradient Descent
0

9t — =1 _ ,
790

L(B,9"Y)

= Newton-Raphson's optimization method

0
90 = g9t= _p g1 (B,9Y
1 59 LB )

where:

o (0
. (t—1)
H 09 (819[’(3’19 ))

Why is the Newton-Raphson's method better than GD?

Deep Learning 2024-2025

Learning as Optimization [15]



2d order method's

= Newton-Raphson's optimization method

_ 1 0 _ o (0
9 =9 g H S L(B,9""Y)  H:= -5 (819L(B,19(t 1>))
Example _~a quadratic form, centered in the origin
L(B,9) =19 - A9
w 0] cdemaemedinean
A= , a; >0Vi=1,...,d
i 0 ce. Qg
9 1(B.9) = 249
L, ’ (1/a; ... 0 ]
Hza(aL(Bﬁ)):QA Hlolao 1
09 \ 0V ’ 9 9 ; : ;
0 .. 1/agq

1
9 = 9t=b _y §A_12A19(t_1) =90~ — 9= — (1 — )9tV
What??
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2d order method's

In this example (geometric view)

L(B,®) =9 AV

a 0

with A = [0 a

Gradient Descent

The level curves of

a quadratic formin 2D
are ellipses centered

in the origin

9 = 9t=b _ p2 4g9¢-1)

Deep Learning 2024-2025

]7a’l<<a’2

Newton-Raphson

9 = glt=b _ pg(t=1)
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2d order method's

= Newton-Raphson's optimization method
0 0
90 =9t=b _p g1 (B, 90tV -

The (inverse of the) Hessian Matrix considers the curvature

0
oV

L(B, 19“-1)))

Newton-Raphson XO

Gradient Descent
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AdaGrad

= Newton-Raphson's optimization method
0 o (0
9 =9t _p g1 (B, 9¢V - (t=1)
nH - 5g LB, ) Hi= g5 gt B0

However
* Computing the inverse Hessian matrix is not easy, in general

+ ltrequires O(d?) time versus O(d) of the gradient — d is the number of parameters
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AdaGrad

= Newton-Raphson's optimization method
0 0
90 =9t=b _p g1 (B, 90tV -
i 59 (B, ) H 59

0
oV

L(B,ﬁ(t‘l)))

However
* Computing the inverse Hessian matrix is not easy, in general

+ ltrequires O(d?) time versus O(d) of the gradient — dis the number of parameters

* AdaGrad approximation

t 2 _th) ... 0
(t) . J - & . | - -
G = (B, 9) GO = | : .
—1 ) ;
J 0 ... GV
9 — 9= _ (G(t_l))_la% (B9t
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AdaGrad

Gradient Descent

9 _ gt-1 O

L(B,9* b
59 ( )

Newton-Raphson

90 — 9= _ g1 9

(t-1)
S5 L(B,9Y)

AdaGrad
0

9 = glt=b _ (G(t—l)) 8—19L(B 9t~ 1))

— | ————— = >
- gli— — T j
L """NWMWWMM - - - B e

Gradient Descent ) _ ‘Newton-Raphson " AdaGrad
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RMSprop

* AdaGrad approximation

t o 2
GV = > (819_1,(3,19(3')))

=1

= RMSprop approximation

The overall sum is replaced by the exponential moving average (EMA)

®._ 9 15 g®
gi‘, * 8191 ( ? )

EMA(g9)® = (g;")” + (1~ 1)EMA(g7) "

Deep Learning 2024-2025
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AdaDeltg

= RMSprop approximation

O ._ 9 1p 90
g?, : 879@ ( Y )
EMA(g9) " i= 7(g,")* + (1 — 1) EMA(g7)* "
G\ =\ [EMA(g2) G =
———— Hessian approximation
0
91 — 9= _ o (at-0\-1_9 1 g gt-1)
1 (GUD) S L(B, 9 Y)
* AdaDelta approximation
D" = \/EMA(AG2)® D® .=
——— 'momentum’ factor
0
9B — 9t=1) _ o pt-D(qt—-—1\-1_9% 1 p gt-1)
1 DUD(GU) L (B, 9 )

Deep Learning 2024-2025

Dy

Learning as Optimization [23]



Improving optimization

—  SGD
- Momentum
- NAG
w1y - Adagrad
S o l%’@f};&? p— Adadelta
4 //,,’,: 5 ,o,,’/, ',"?',"I,?g,’g,& — Rmsprop
S L 'l,'l',’l,'l"' 7

1.0

Image from https://imgur.com/a/Hqolp
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Improving optimization

- SGD

-  Momentum
-  NAG

- Adagrad
Adadelta
Rmsprop

\
]
l|"
Ry
)

T
1
i
T
THIT

Image from https://imgur.com/a/Hqolp
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Improving optimization

\\ ——  Momentum
m— NAG
- Adagrad
Adadelta

Rmsprop

MITrrrrrrir

Image from https://imgur.com/a/Hqolp
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Adam

* Replace components with their EMAs ...

_mgt)_
(t) (t) (t—1)
= Pilgi) + Brym, me - | =———EMA of the gradient
g
_Tgt)_
r@(t) — B ( (t)) + (1 - B2)"°§t—1) T(t) = . —————EMA of the Hessian
(' " approximation
T4 (vector form)
m(t) -7
m)
1 —(1— 1)t~ bias corrections (decay with time)
A0 . r(t)
1—(1— /)t
~(t—1
9t — 9t—1) _ (Y

U, \/ﬁ —— (elementwise)

Deep Learning 2024-2025 Learning as Optimization [27]



Adam

= Experimentally

MNIST Logistic Regression

0.7 T

0.5

0.2

] !

AdaGrad
SGDNesterov
Adam

O O N O S e

10

i i i i
15 20 25 30

35 40 45

iterations over entire dataset

Deep Learning 2024-2025

10 MNIST Multilayer Neural Network + dropout
1 T 1
' ' — AdaGrad
— RMSProp
—  SGDNesterov |
AdaDelta
—  Adam
i i i
50 100 150 200

iterations over entire dataset

Learning as Optimization [28]



Improving optimization

* Messages to take home

* Improved optimizers adopt a combination of intuition and mathematical modeling
* In particular, some of them are approximators to 2" order optimization methods

* Assuch, there is no formal guarantee that they will be effective in all cases

Moral: in general, their effectiveness will depend on the optimization problem
and the representation being used
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A bag of wonderful tricks

Deep Learning 2024-2025 Learning as Optimization [30]



Why RelLV is better (sometimes)

The gradient descent method implies updating the parameters at each step:
making sure that the gradient does not either vanish or explode is not easy

For instance, in

oL . :
AW = —1 oW (y(Z)a y(z))
. . o 0
the gradient contains a multiplicative term o g(x)
) X
which can be < 1.0

In general, T
the derivative of ReLU 08
does not suffer 07
from the same problem 08

0.5

04F

03}

02}

01F
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Why RelV is better (sometimes)

In experimental practice (sometimes):

* ReLU alleviates the problem of initial values
(i.e. when initial values are too far away and cause sigmoid or tanh to saturate)

In general, | —meweraw| oo
the derivative of RelLU 08
does not suffer 07

0.6

from the same problem

0.5

04F

03}

02}

01F
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Why RelLV is better (sometimes)

In experimental practice (sometimes):

* ReLU alleviates the problem of initial values
(i.e. when initial values are too far away and cause sigmoid or tanh to saturate)

* RelLU may accelerate the training process

. ReLU
g / Saturatmg
E’ ——RelU
£ —_— - = derivative-RelLU 0.9
® 0254 o
= 0.8
07
0.6
D T T T T T T T
1] 5 10 15 20 25 30 35 40 05
Epochs 04}
Image from [Krizhevsky, Sutskever & Hinton, 2012] 0|
02Ff
01F
1 0.5 0 0.5 1
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Xavier (Glorot) Initialization

* The problem of initialization

Have a look to the demo at: https://www.deeplearning.ai/ai-notes/initialization/index.html
See what happens when the initial weights are either too small or too large

= Objectives
1. The mean of the activations should be zero

2. Thevariance of the activations should stay the same across layers

= Strategy
wlil ~ N (0 ! or wll <~ N (0 .
=] BT 1 10
bl = 0 where: Wl ¢ RFATT

Under some simplifying assumptions, this makes all layers have the same variance
(see the link above for a complete mathematical justification)

Deep Learning 2024-2025 Learning as Optimization [34]


https://www.deeplearning.ai/ai-notes/initialization/index.html

Input Normalization

* Intuition
Consider the (very simple) layer

h(zx) == g(wzx +b) = g(wrx1 + waxo + b)

X1 and To arein
and suppose x1 € [10007 2000], T2 € [O-L 0-2]/ completely different scales

0.5
* w; influences i alot more than wo
* training w2 is challenging and slow

®
©

T T T 1
500 1000 1500 2000

wp

level curves of loss function

-
< / \g®> (during training)
=~

w1
Image from https://https://www.jeremyjordan.me/batch-normalization/
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Input Normalization

* Input normalization

1) compute mean u and (component-wise) variance o >of inputs over dataset D

1 1
- 2 . (2 2 - 2 . 2
M= E T o”:=(o],...,03,) with o := — E (x; — ;)
| D D)
xcD xcD
2) normalize all inputs, component-wise 05
. . . 1. A Li — Hi " s Ry e edar
w :: (.CE]-’ te 7:Ed)7 Wlth 'CB?/ :: 2 :t oz":.“:""‘}v:?%"
V T + € y > 500 1000 1500 2000
2_
. to avoid division by zero
. rescale > shift by (4
— : ‘oiw . > each component
_ L . ) .0 \ .. bl )
~ . by WW
t:.: 1
-0.5
- o2 +¢€

Deep Learning 2024-2025 Learning as Optimization [36]



Input Normalization

* Input normalization
1) compute mean p and (component-wise) variance o’ of inputs over dataset D

1 . 1
u::mZm 02::(0%,...,03,) WlthU?Z:ﬁZ(xi_ﬂiy
xeD xeD

2) normalize all inputs, component-wise
Li — [y

\/O‘,Lz + €

3) apply h(ﬁ?) = g('wcfc + b) = g(wli'l + woZo + b)

T .= (T1,...,2q), with z; =

Deep Learning 2024-2025 Learning as Optimization [37]



Input Normalization

* Input normalization
1) compute mean p and (component-wise) variance o’ of inputs over dataset D

1 . 1
u::mZm 02::(0%,...,03,) WlthU?Z:ﬁZ(xi_ﬂiy
xeD xeD

2) normalize all inputs, component-wise
Li — [y

\/O‘,Lz + €

3) apply h(ﬁ?) = g('wcfc + b) = g(wli'l + woZo + b)

T .= (T1,...,2q), with z; =

wo
e training becomes
faster and more stable
(also allowing higher learning rates)

level curves of the loss function
(during training)

w

Image from https://https://www.jeremyjordan.me/batch-normalization/
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Batch Normalization

= Normalizing in between layers

nabNN Rl (R (R R (2))) )

each layer !’ has an input of its own, which should be normalized

AN

How?

Deep Legrning 2024-2025 Legrning as Optimization [39]



Batch Normalization

* Normalizing in between layers

In a DNN g = R (R (B (R (). )

each layer !’ has an input of its own, which should be normalized

Normalizing in between layers during training would require:

e pre-computing the input to each layer, for each data itemin D
« applying normalization before proceeding further upwards

« doing it again after each updating the DNN parameters

Moral: it’s impossible

Deep Learning 2024-2025 Learning as Optimization [40]



Batch Normalization

= For each mini-batch:
B = {w(i)}m
1=1

BNB,V(w(i)) = ’753(1) + 0
N

trainable parameters

(all operations are performed element-wise)

5(1) — ) — g

O'2B—|‘E\

avoid division by zero

1 — .
of = EZ("L‘(@) — p1B)
=1

1o
m 2

=
oy
1
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Batch Normalization

* Training
e atstep t: ppw and 0']29(,5) are computed over the current mini-batch B(*)

* parameters v and 3 (for each BN-layer) are trained
in the same way as the other parameters in the DNN

* exponential moving averages of mean and variance of the mini-batches B are collected

MA(p)" := 6 ppew + (1 =0) - MA()""", MA()"Y := pga
MA(e®) W =602, + (1 —6)-MA(e®)D MA(e®)WV = o2,

= Inference

Inference is typically performed for fewer inputs, possibly just one ...

Deep Learning 2024-2025 Legrning as Optimization [42]



Batch Normalization

* Training
e atstep t: ppe and a%m are computed over the current mini-batch B

* parameters v and 3 (for each BN-layer) are trained
in the same way as the other parameters in the DNN

* exponential moving averages of mean and variance of the mini-batches B are collected
MA()'" =6 ppew + (1=6)- MA(u)"~1, MA(w)"Y := pga
MA(e®) W =602, + (1 —6)-MA(eH)D  MA(e®)W := 0%,

= Inference

Normalize using the moving averages collected during training

© pi=MA(wW"

as collected during the training process
« o2:=MA(eH)D)

Deep Learning 2024-2025 Legrning as Optimization [43]



Batch Normalization

= Does it work? How good is the approximator when applied to data items
that are not in the dataset?

2
[#s]
|

Validation Accuracy
)
\

L

)
\
1
\

-
— =
-

- = = |nception
= = BN-Baseline
------- BN-x5
! BN-x30
- 4 -+ BN-x5-Sigmoid
I' # Steps to match Inception

5M 10M 15M 20M 25M 30M
Training steps

0.4

» Batch normalization acts as a reparametrization of the optimization process that

1. makes the loss function smoother

2. allows higher learning rates

3. reduces chances to getting stuck into local minima
Image from [loffe and Szegedy 2015]
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Fighting
Overfitting

Deep Learning 2024-2025 Learning as Optimization [45]



Dropout

= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 1

Deep Learning 2024-2025 Learning as Optimization [46]



Dropout

= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 2

Deep Learning 2024-2025 Learning as Optimization [47]



Dropout

= Knocking-out at random

For each mini-batch, a small percentage of 'units' is de-activated

Training: mini-batch 3

Deep Legrning 2024-2025 Legrning as Optimization [48]



Dropout

= Knocking-out at random

, @ small percentage of 'units' is de-activated

i-batch

For each mini

OOy
RN
sy ¥
[/

p ON
£ X

\/
g
/\

At runtime

(or validation time),
when making predictions,

dropout is not active

o,

(D
«\
te
Y/

Prediction

Training

Learning as Optimization [49]
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Contrasting Overfitting
= Applying Dropout

In a typical experiment
* initially, the performance on D),,; improves slowly
* then it becomes better and more resilient to overfitting (to be explained next)

Validation set
Training set ||

RMSE

-h-
-
--———————-———--

0.5

0 100 200 300 400 500
Epoch

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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