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Feed-Forward Neural Networks
(recap)
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Feed-Forward Neural Network

» Approximating a target function
y= f*(x), xR

Universal approximator: feed-forward neural network

j=w-gWx+b)+b WecR"™ wbecR"becR

output layer

input layer
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Feed-Forward Neural Network

» Approximating a target function
y= f*(x), xR

Universal approximator: feed-forward neural network

j=w-gWx+b)+b WecR"™ wbecR"becR

Popular choices for the non-linear function:

1
g(x) =o(x) = P g(x) = tanh(z) g(z) = max(0, x)
0s oe [—rau]
iy o =
Sigmoid Hyperbolic Tangent RelLU
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Training Feed-Forward Neural Networks

= Stochastic Gradient Descent (SGD)

1.
2.

Assign initialvaluestothefourparameters 17 74N ARG

Pick up a data item (zx @ 4@ from D with uniform probability
and update the four parameters (with 7 < 1.0, 1 — 0 as iterations progress)

9 | 9 |

AW = —n -2 10,y Ap— OO

W= —n 2010,y ) 1 LG,y )

Aw = — 21O 4 Ab = —n 2 LD, 0
Ow Ob ’

Unless complete, return to step 2.
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The Quest for
Deeper Networks
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Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth

A feed-forward neural network with one hidden layer

J=w - g(W[l]a: i b[l]) + b
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Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth

A feed-forward neural network with two hidden layers

j=w- - gWEgWllzg 4 bl 42 11
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Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth

A feed-forward neural network with three hidden layers

j=w- - gWBgWlgwllz 4 bl 4 62 4 6B 11
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Shallow vs. Deep Feed-Forward Neural Networks

* Increasing network depth
A feed-forward neural network with three hidden layers

j=w- - gWBgWlgwllz 4 bl 4 62 4 6B 11

OK, but what is there to gain from
such increase in depth?

After all, the universal approximation theorem
says that one layer is enough...

...and each layer brings in some extra
complexity and further parameters.
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Parity Circuits

XOR T1 To xr1 D X9
A logical circuit whose output 0 0
is T whenever the number 1 1
of 1sin input is odd
1 0 1
1 1 0
For instance:

z=100,1,1,00 = y =0
r=1[1,1,01—>y=1

This is an implementation using XOR | | | |
components L1 T2 T3 T4
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Parity Circuits

An implementation of the same parity
circuit using AND, OR and NOT OR NOT Y

@m '

(((331 N _'33’2) \V4 (_'331 A\ $2)) A\ _'(($3 A\ _135'4) V (_'33'3 A 334)))
\Y4 (_l((.I'l A _132'2) V (_1515‘1 A\ 35‘2)) A ((333 A _135'4) V (_135'3 A 334)))

2

Note that, discounting NOTs, the depth
of this circuit is 4

T X9 X3 L4
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Parity Circuits

= Disjunctive Normal Form (DNF)

Any logical formula (1 Axg Axz A—x4) V(21 A =29 A3 A T4)
can be expressed VI(xi ANxo Az Axa)V (mx1 AXxo ANxa A X
as an OR of ANDs ( ! ° ) 4) ( ! ’ ’ 4)

V (.’L‘l A\ ) A X3 A\ _ICE4) V (_IZB1 A 2 N X3 N _IZB4)

of the inputs
V (_lélil N\ —xo A x3 N _ICC4) V (—liCl N\ —xo A a3 N 113'4)

and their negations

This circuit is equivalent
to the previous ones

'

Note that this circuit
has depth 2
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Parity Circuits

Any logical circuit can be re-implemented in shallow mode (i.e. with depth 2)

= Question

Which way is better?
(deep vs. shallow)

'
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Parity Circuits

Any logical circuit can be re-implemented in shallow mode (i.e., with depth 2)

= | ower Bound (Hastad, 1986)

For the implementation of parity circuits
the number of AND, OR components required is

1 d isthe number of bits in input
Q) (eXp (dk—l))

k is the maximum depth allowed

The above quantity becomes polynomial for
B log(d — 1)
~ loglog(d — 1) + O(1)

k

In English: there exists a threshold Kin (d) beyond which
an exponential number of components w.r.t. d isnolonger required
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Depth and piecewise linear functions

Example: a zig-zag target function:

Intuitively, the accuracy of the approximation depends on input space partitioning: unless we have a
sufficient number of 'pieces’ (i.e. regions in the partition)
the approximation will be inaccurate

Assume we want to use a deep neural network with ReLU

J = w - max(0, w k.. - max (0, willy 4+ bll]) T b[k]) + b
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Depth and piecewise linear functions

Construct two scalar functions using ReLU and parameters

pF = wl*l . max(0, h* ) h!* .= max (0, Wklz 4 pl*)
plY = [pM Al ! SRy
h[ll] := max(0, x) . hy'
1
A = max(0, z) — max(0,2(z — 1)) / -
0 1 N 2
2 assume x € [0, 2]
h[z] f— [hl ?h2 ] A h[lz}//ll;h[;}
h[12] := max(0, 2x)
1,,
h = max(0,4(z — 1/2)) oo
~ '\ h
A= max(0, 2z) — max(0, 4(x — 1/2)) F O\ R
0 1 2
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Depth and piecewise linear functions
Construct two scalar functions using ReLU plus parameters

pF = wl*l . max(0, h* ) h!* .= max (0, Wklz 4 pl*)

By nesting the two scalar functions:

A .
o — humber of ‘pieces’

p=2
o p=2°
B2 (R () /\
A Y : |
AR (R () ) p=2"
0 1 9 |
B2 (R2 (R (R (2))) MMMM
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Depth and piecewise linear functions

Deeper networks can make more 'pieces’ with the same number of units

= Alower bound that grows with depth [Montufar et al. 2014]

For a network with one hidden layer of ReLU units of size h
the max number of pieces for the piecewise linear approximator is

d h input dimension
g
Pmax — E (Z) < h

1=0

For a network with k& hidden layers of ReLU units, each of size h,
the max number of such pieces is

1 (k=1)d
Pmax — O(Qk)a Pmax — 9 ((d) hd)

Moral: p,. ... grows polynomially with layer size h but exponentially with depth k
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Layerwise differentiation
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Generalizing Deep Feed-Forward Neural Networks

» A feed-forward neural network with three hidden layers
j=w- gWBgwWlgwlle + bt + b2y + b3 4+
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Generalizing Deep Feed-Forward Neural Networks

» A feed-forward neural network with three hidden layers
j=w- gWBgwWlgwlle + bt + b2y + b3 4+
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Generalizing Deep Feed-Forward Neural Networks

» A feed-forward neural network with three hidden layers
j=w- gWBgwWlgwlle + bt + b2y + b3 4+
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Generalizing Deep Feed-Forward Neural Networks
» A feed-forward neural network with three hidden layers

L(g,y) = (7 —v)°
g(h[3] , 19[@])

I NEl (h[2]’ ,9[3])
hl2 (h[1]’ ,,9[2])

R (z, ﬁ[l])
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Generalizing Deep Feed-Forward Neural Networks

= Computing gradient (layerwise)

L(y,y) = (4 — y)° ag[@] (7 —y)* =2(5—y) 8?9%]
G(hl3), 1) 8?9%]
hBl(R2 9B
hi2 (Rl 92
h (x, 9!
T
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Generalizing Deep Feed-Forward Neural Networks

= Computing gradient (layerwise)

e o N
o 2 2 __
L(y, y) — (y _ y) 5913l (y - y) - 2(y - y) ERIE

. 07 07 Ohl3

Y [3] [y] —
y(h, 9%) 0931 — ORhl3] Hu13]
Oh!3!
Bl (R!2] 9l3]
RO (RPL 9P
h[2](h[1]’,9[2])
h[l](wjﬁ[l])

Deep Learning 2024-2025 Deep Neural Networks [26]



Generalizing Deep Feed-Forward Neural Networks

= Computing gradient (layerwise)

L(ga y) — (g - y)2

Deep Learning 2024-2025

0
092l

Yy
o92]
Ohl3
O92]
Oh 2]
o912

(T—y)*=2(1—y)

9y Ohb

O3l Y2
ohBl onl2l

~ 9hll 99l

9y
o912
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Generalizing Deep Feed-Forward Neural Networks

= Computing gradient (layerwise)

N N o . 3 0y
_ . 2 o 2 _ L
Lwy) =W —-y)" o5 —y)"=20-y) 550
i1 iy, O
hE(RIH M) Som, =
Oh ohll opli-1
v ] <1

99Ul — dRli-1 oyl
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Generalizing Deep Feed-Forward Neural Networks

= Computing gradient (layerwise)

L(ga y) - (g - y)2

NG (h[’i—l] 7 15;[%'])

0

O]

Ohl)
oVl

Deep Learning 2024-2025

Ohl)
oY)

-y =21-y)

-

'needs to know'
, ] — 1 / just these two derivatives

Ohl)

Ohli—1]

Ohli—1]

O]

9y
H9l]

Each layer

, )<t
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Function approximation (3.k.a. regression)
vs. classification
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Classification: Softrmax
= Function approximation (a.k.a. regression)
y=f"(z), zecR
Feed-forward neural network

y=w-g(Wa+b)+0
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Classification: Softmax
= Classification
y= f*(x), xeR? ye{class;}",

Feed-forward neural network with a Softmax layer

exp(w@- . g(WZL‘ -+ b) + bz)

P(y = class; | @) :=

S exp(w; - g(Wa + b) + b))

lion fish monkey elephant

From now on
P(y = class; | )

will be written as h

P(y=i|x)
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Classification: Softmax

= Classification

y= f*(x), xeR? ye{class;}",

The Softmax layer can be rewritten as:
exp(wi - h -+ bz,;)

P(y = class; | h) :=
2521 exp(w; - h + b;)

where, in thiscase: h := g(Wx + b)

(yet, more in general, h. can be anything)
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Classification: Softmax

= Softmaxas a layer

The entire Softmax layer can be rewritten as:

P((5 = )f | b) = VSR D)
/ > exp(Wgsh + bg)
Probability distribution . Sum of all components
(a vector)
where: — w; — by |
Wg := bg =
| Wi — _bk_

Thevector Wgh + bg is sometimes referred to as the logit
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Classification: Softmax

= Cross-entropy in general
P and () are probability distributions on a discrete random variable Yy € {1, IR k}

E:Q j)log P(j = j)

= As aloss function for Softmax

Q in this case is the 'true' classification, i.e. the one in the dataset
Qly =7) =4y =j)

while P is the output of the Softmax layer

T Kronecker delta

P(j=j|h) e
Hence, the loss is: L °
L(h®,y D) = =" 6(yD = j)log P(5 = jlpD) 1|
J=1 1
—log P(j =y |nt") !

0.0 0.2 0.4 0.6 0.8 1.0
predicted probability
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Classification: Softmax

= Cross-entropy for Softmax
k

L(h,y ") == d(y™ = j)log P(j = jlh)
j=1
Expressing the loss function in vector form:

Y1 P1
y= |1,y =0y=j) p=1|:|,p:=Ply=3lh)

| Yk | ‘one hot'representation | Pk_
L(hD,y) = —y™ - log(p™)

which implies that also the dataset has to be transformed in the 'one hot' representation

D= {(z", y")} L = = {(", y")} L

1=1 1=1
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Classification: Softmax

* Gradient of Softmax (layerwise)

Z LR, y®) Zyw log(p®)

o , O N~ () () = i) ()
prts :_ﬂz L(hY .y Zy log(p

N
Z 2 1og(p™)

/ This is a matrix

8191 10g(p1) %log(pl)_ _ %log(pl) B

=g log(p) = ; 5 _ :

" 59~ log(pr.) 21 — 9 _
|99, 08\WPk) -+ Fg, og(pr)_ 2 log(pr)
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Classification: Softmax

* Gradient of Softmax (layerwise)

0 0

a—ﬂlog( p;) = 8—1910gP( y=7jlh)

—ﬂlog exp(w; - h + b;)

09 Zl:l exp(’wl -h + bl)

d
~ 09

k
(log exp(w; - h +b;) logz exp(w; - h + bl))
=1

0 logZeXp w; -h+ b))

Wj-h+bj) 8’19
=1

EL
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Classification: Softmax

* Gradient of Softmax (layerwise)

0 0 0

%log( pj) = %(Wj‘h"‘bj) 59 log;exp wy - h+ by)
[¢]
Casel: Y =w, or ¥ =0, 8h'
ol
Ohli
Case2: h(19) ie. isageneric parameter on which h depends 590)
J

Let's compute the two contributions separately

0

81 Z h+b)
59 og exp(w; - I

=1

Deep Learning 2024-2025
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Classification: Softmax

* Gradient of Softmax (layerwise)

0
EL

'wjh+bj)

Casel: 9 =w, or UJ=0,

0

ow,

Ob,.

0
—('wj-h—l—bj):<

r

0 ifr#j

\ h otherwise

(0 if r # j

1 otherwise

Case2: h(19) ie. ¥ isageneric parameter on which h depends

0

09

Deep Learning 2024-2025

0

(wj -h+bj) =w;-—<h

oV
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Classification: Softmax

* Gradient of Softmax (layerwise)

0

k
59 log ; exp(w; - b + b;)

Casel: 9 =w, or ¥=0,

0

Jw,

k
logZexp(wl ch+b) =
=1
1

0

anzl exp(w,, - h + b,,) OW;

1

anzl exp(w,, - h + b,,)

exp(w, - h +b,.)

B anzl exp(w,, - h + by,)

Deep Learning 2024-2025

- %
Zexp(wl -h + bl)@w

=1

h

k
Z exp(wy - h + b;)

=1

prh

r

(wl -h—l—bl)
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Classification: Softmax

* Gradient of Softmax (layerwise)

k
0

9 :

59 .08 ;21 exp(w; - h + b;)

Casel: 9 =w, or ¥=0,

0

k
5y 108 >_explwi - h+b) =

= 1 § &
— exp(w; - h + b;)
an:l exp(w,, - h + b,,) 0b, lz:;
1 K B,
= -h+b -h+b
an:l exp(w,, - b+ b)) ;eXP(’wz + l)abr (wy + b;)

B exp(w, - h +b,.)
Zﬁlz1 exp(w,, - h + b,,)

= Pr
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Classification: Softmax

* Gradient of Softmax (layerwise)

0

59 logZexp w; - h + b))

=1

Case2: h(19) ie. 1 isageneric parameter on which h depends

0
a1910gZ:eXp w;-h+b) =
=1
; O S explun-h 1 by
p— l. l
S exp(wy, - h+by,) 09 S
1 k 5
i bt by) oo (wi - h b
an:l eXp(wm h+bm) ;exp(wl + l)aﬂ(wl + l)
- . . )
- —h
Z: m 1exp(wm h—l—b )wl 819 (Zplwl )8’!9
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