Deep Learning

UNIVERSITA
DI PAVIA

A course gbout theoty & practice

Flow Graphs
& Automatic Differentiation

Marco Piastra

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [1]

Learning with
Feed-Forward Neural Networks

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [2]

Learning with FF Neural Networks

» Approximating a target function
y=[f"(z), zeR”
with feed-forward neural network / parameters
j=w -ReLUWz +b) +b, 9= (W cR" w,becR"becR)
ReLU has been chosen in this example

Objective: minimizing the loss function
1 . .
_ - : (4) _ ()2
L(D,9) = ; (w - ReLUW ") + b) 4+ b — ¢V
with respect to a dataset A set of data items

D = {(@®, y)Y,

To apply gradient descent (any variant), we need to compute:

0 ~ (1)

09 " That is, the gradient of the loss function with respect to a data item

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [3]

Flow Graphs
(3.ka. C omputaﬂon Graphs)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [4]

Flow Graph

L(7,y) = (w-ReLUWzx 4+ b) + b — y)°

Item-wise loss function, FF neural network with ReLU as non-linearity

The above expression translates into this flow graph

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [5]

Flow Graph

ol
C L(7,y) = (w-ReLUWzx 4+ b) + b — y)°
@ Item-wise loss function, FF neural network with ReLU as non-linearity
ReLU(x) := max(0, x)
1
ReLU(x) = 5(:19 + |z|)

(equivalent expression)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [6]

Flow Graph

L(§,y) = (w - ReLU(Wz + b) + b — y)’

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning 2024-2025 Flow Graphs & Automatic Differentiation [7]

Flow Graph

L(7,y) = (w-ReLUWzx 4+ b) + b — y)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [8]

Flow Graph

L(§,y) = (w - ReLU(Wz + b) + b — y)’

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning 2024-2025 Flow Graphs & Automatic Differentiation [9]

Flow Graph

= Computing the Flow Graph

[]
Temporary value: L(g, y) = (’LU . ReLU(W:c + b) +b— y)Q

a vector
Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [10]

Flow Graph
= Computing the Flow Graph

This is no longer
necessary

L(7,y) = (w-ReLUWzx 4+ b) + b — y)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning 2024-2025 Flow Graphs & Automatic Differentiation [11]

Flow Graph

= Computing the Flow Graph

L(§,y) = (w - ReLU(Wz + b) + b — y)’

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [12]

Flow Graph

= Computing the Flow Graph

L(§,y) = (w - ReLU(Wz + b) + b — y)’

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [13]

Flow Graph
= Computing the Flow Graph

L(7,y) = (w-ReLUWzx 4+ b) + b — y)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning 2024-2025 Flow Graphs & Automatic Differentiation [14]

Flow Graph
= Computing the Flow Graph

L(7,y) = (w-ReLUWzx 4+ b) + b — y)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [15]

Flow Graph
= Computing the Flow Graph

L(7,y) = (w-ReLUWzx 4+ b) + b — y)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [16]

Flow Graph
= Computing the Flow Graph

L(§,y) = (w - ReLU(Wz + b) + b — y)’

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Learning 2024-2025 Flow Graphs & Automatic Differentiation [17]

Flow Graph
= Computing the Flow Graph

L(§,y) = (w - ReLU(Wz + b) + b — y)’

Item-wise loss function, FF neural network with ReLU as non-linearity

Temporary value:
ascalar

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [18]

Flow Graph
= Computing the Flow Graph

L(7,y) = (w-ReLUWzx 4+ b) + b — y)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Temporary value:
ascalar

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [19]

Flow Graph
= Computing the Flow Graph

L(7,y) = (w-ReLUWzx 4+ b) + b — y)°

Item-wise loss function, FF neural network with ReLU as non-linearity

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [20]

Flow Graph
= Computing the Flow Graph

L(7,y) = (w-ReLUWzx 4+ b) + b — y)°

Item-wise loss function, FF neural network with ReLU as non-linearity

(Simplified)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [21]

Flow Graph
= Computing the Flow Graph

L(7,y) = (w-ReLUWzx 4+ b) + b — y)°

Item-wise loss function, FF neural network with ReLU as non-linearity

(Simplified)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [22]

Flow Graph
= Computing the Flow Graph

L(7,y) = (w-ReLUWzx 4+ b) + b — y)°

Item-wise loss function, FF neural network with ReLU as non-linearity

(Simplified)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [23]

ograd:
A m‘omaz‘lc Dlﬁ%renfla tion
of Flow Graphs

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [24]

Computing Gradients

SRC -‘- = Computing one gradient of the flow graph
0 —(w-ReLUW=x 4+ b) + b —y)?

This is the gradient we want to compute
(remember this is just one of the four)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [25]

Computing Gradients

@ = Computing one gradient of the flow graph
2 -ReLU(Wz + b) + b — y)?

Is Is the gradient we want to compute
(remember this is just one of the four)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [26]

Computing Gradients

@ -‘- = Computing one gradient of the flow graph

Com) 8182[/ (w-ReLU(Wx + b) + b — y)*

This is the gradient we want to compute
(remember this is just one of the four)

Chain rule for derivatives (single argument)

(9(0)) = 555 (0)) 55.9(9)

Chain rule for derivatives (multiple arguments)

~of(9(9), h(D)) =

5oty @), H(0)) 550(9) + 5o 1(al®).h(9)) 5 5h(9)

Deep Learning 2024-2025 Flow Graphs & Automatic Differentiation [27]

Computing Gradients

b] G ? :

All nodes dependingon W are marked in blue

Let's start from here (i.e. backpropagation, a.k.a. reverse accumulation)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [28]

Computing Gradients

xr

i('w -ReLUWx +b) +b—y)?

Apply the chain rule to the sqr node

4 >_ 0 2 0
G—Wf(W) _8f(W)f(W) W (W)
9,
g S :2'f(W)'Wf(W)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [29]

Computing Gradients

xr

i('w -ReLUWx +b) +b—y)?

Apply the chain rule to the sqr node

4 o0 2 0
G—Wf(W) _8f(W)f(W) W (W)
9,
g S :2'f(W)'Wf(W)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [30]

Computing Gradients

xr

i('w -ReLUWx +b) +b—y)?

Apply the chain rule to the sqr node

9 , 0 L, 0
G—Wf(W) _8f(W)f(W) W (W)
9,
g S :2'f(W)'Wf(W)

Deep Learning 2024-2025 Flow Graphs & Automatic Differentiation [31]

Computing Gradients

xr

i('w -ReLUWx +b) +b—y)?

Apply the chain rule to the sqr node

9 , 0 L, 0
G—Wf(W) _8f(W)f(W) W (W)
0
e :2'f(W)'Wf(W)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [32]

Computing Gradients

xr

0

— . —— 2
P (w-ReLUWx 4+ b) + b — y)
0 0 0
8—W(f(W) —y) = TF W) (f(W) — y)a—Wf(W)
0
=1 8—Wf(W)

A 4
| L| |gradL|

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [33]

Computing Gradients

xr

0 2
0 0 0
8_W(f(w) +b) = IF (W) (f(W) + b)a—Wf(W)
9,
=1 8—Wf(W)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [34]

Computing Gradients

8 2
b 0 0)
a—W(’w'f(W)) = of (W) (w f(W))a—Wf(W)
0
y —w 8—Wf(W)
L L]

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [35]

Computing Gradients

El B,

——(w-ReLUWx + b) + b — y)°

0 0 0
0

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [36]

Computing Gradients

Deep Learning 2024-2025 Flow Graphs & Automatic Differentiation [37]

Computing Gradients

FOW)| = 77 1OV 7 £ (W)
W) 0
~irowlaw !)

Clearly, this term is not defined for any W;; = 0

(Typically, this is a protected division § := 1)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [38]

Computing Gradients

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [39]

Well, this is tricky....

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [40]

/
(i (W :1:)) _ Y (W - x)
oW ijk Wy Z
/ \
Its 17 k-th component Note the inversion of indices

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [41]

0 0
(8W e OWi;
/ \
Its 17 k-th component Note the inversion of indices
9,
— WIL .t £r

The 1-thline in the matrix

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [42]

Putting it all together. ..
G, [0 ki
(aw(W'$)).. _{xj k=i

This 'thing’ (tensor) is a cube having copies of @
on one diagonal ‘plane’ and zeros elsewhere

k,
1
1

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [43]

Computing Gradients

——(w-ReLUWx + b) + b — y)°

Adjoint Graph

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [44]

Computing Gradients

The representation of this can be optimized too

%(m - ReLUWx +b) +b—y)?

Still lots of useless operations

Adjoint Graph

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [45]

Computing Gradients

%(m - ReLUWx +b) +b—y)?

Same graph, after some pruning

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [46]

Computing Gradients

W(w - ReLU(Wzx +b) + b —y)?

Primal Graph

. In forward accumulation mode
we would have started from here

pruned Adjoint Graph

~ This is autograd with reverse (backward) accumulation:
we started from here and we proceeded in reverse

Deep Learning 2024-2025 Flow Graphs & Automatic Differentiation [47]

(Mini) Batches
in Matrix Form

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [48]

More on Matrix Forms

Say it with matrices...

We may want to get rid of the summation when computing the loss function

1 . %.
L(D) = > (w-g(Waz +b) +b—y)
D

Let's focus firston Wx

by defining
X =

Then we can write

wx?l =

Deep Learning 2024-2025

_:Bgl)

(N)

L1

W (1)

W (V)

___—— inputdata in matrix form (item index first)

Flow Graphs & Automatic Differentiation [49]

More on Matrix Forms

Say it with matrices...

We may want to get rid of the summation when computing the loss function

1 . %.
L(D) = > (w-g(Waz +b) +b—y)
D

Consider then (Wx + b)

by defining A zp' e ozl) |
X = W = W b
ng) scElN) 1 |
Then we could write
| | ___— Matrix W
WXT _ | wae® b W) b includes two parameters: W and b

| | this may be inconvenient for Autograd,
due to the lack of modularity
(more to follow)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [50]

More on Matrix Forms

Say it with matrices...

We may want to get rid of the summation when computing the loss function

1 . %.
L(D) = > (w-g(Waz +b) +b—y)
D

Considerthen (Wx + b)

and let’s keep the definition 1 Tq
X = :
EC—)

It could be convenient to redefine the operator + such that is interpreted as

| | | |
WX +b:= w2 ... W™ | +|b ... b

— Ntimes—

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [51]

More on Matrix Forms

Say it with matrices...

We may want to get rid of the summation when computing the loss function

1 . %.
L(D) = > (w-g(Waz +b) +b—y)
D

Considerthen (Wx + b)

ey MEON
and let’s keep the definition 1 d
X =)

B

It could be convenient to redefine the operator + such that is interpreted as

| | | |
WX +b:= w2 ... W™ | +|b ... b

— Ntimes—

\ This is called broadcasting

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [52]

More on Matrix Forms

Say it with matrices...

We may want to get rid of the summation when computing the loss function

1 . Z.
L(D) = > (w-g(Waz +b) +b—y)
D

Using broadcasting, we would express the above as

L(D) = i(’w-g(VVXT +b)+b—y)°

N \ But it does NOT work

Matrix WXT € RN andvector b € R" are not aligned
(for broadcasting, the operands’ shapes must be right-aligned)

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [53]

More on Matrix Forms

Say it with matrices...

We may want to get rid of the summation when computing the loss function

1 . Z.
L(D) = > (w-g(Waz +b) +b—y)
D

Using broadcasting, we would express the above as

1
L(D) = + (w - g(XWT+b) +b—y)?
But it does NOT work yet

Now matrlx WXT € RV*" gndvector b € R" are right-aligned in shape
Moreover, the resulting matrix is data item index first

Vector w € R” cannot be left-multiplied with a matrixin RY <"

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [54]

More on Matrix Forms

Say it with matrices...

We may want to get rid of the summation when computing the loss function
1

L(D) =+ 3" (w- g(Wal) +b) +b—y)’

Using broadcasting, we can express the above as

L(D) = —((g(XWT + bjw +b) — y)?

= L

The result is a vector in RY This is a vectorin RYY
Broadcasting applies
A similar behavior of operators is standard in O
| ﬁ NumPy b Yy
2 Tancor PyTorch Q&

Deep Legrning 2024-2025 Flow Graphs & Automatic Differentiation [55]

	Slide 1
	Slide 2: Learning with Feed-Forward Neural Networks
	Slide 3: Learning with FF Neural Networks
	Slide 4: Flow Graphs (a.k.a. Computation Graphs)
	Slide 5: Flow Graph
	Slide 6: Flow Graph
	Slide 7: Flow Graph
	Slide 8: Flow Graph
	Slide 9: Flow Graph
	Slide 10: Flow Graph
	Slide 11: Flow Graph
	Slide 12: Flow Graph
	Slide 13: Flow Graph
	Slide 14: Flow Graph
	Slide 15: Flow Graph
	Slide 16: Flow Graph
	Slide 17: Flow Graph
	Slide 18: Flow Graph
	Slide 19: Flow Graph
	Slide 20: Flow Graph
	Slide 21: Flow Graph
	Slide 22: Flow Graph
	Slide 23: Flow Graph
	Slide 24: Autograd: Automatic Differentiation of Flow Graphs
	Slide 25: Computing Gradients
	Slide 26: Computing Gradients
	Slide 27: Computing Gradients
	Slide 28: Computing Gradients
	Slide 29: Computing Gradients
	Slide 30: Computing Gradients
	Slide 31: Computing Gradients
	Slide 32: Computing Gradients
	Slide 33: Computing Gradients
	Slide 34: Computing Gradients
	Slide 35: Computing Gradients
	Slide 36: Computing Gradients
	Slide 37: Computing Gradients
	Slide 38: Computing Gradients
	Slide 39: Computing Gradients
	Slide 40: Computing Gradients
	Slide 41: Computing Gradients
	Slide 42: Computing Gradients
	Slide 43: Computing Gradients
	Slide 44: Computing Gradients
	Slide 45: Computing Gradients
	Slide 46: Computing Gradients
	Slide 47: Computing Gradients
	Slide 48: (Mini) Batches in Matrix Form
	Slide 49: More on Matrix Forms
	Slide 50: More on Matrix Forms
	Slide 51: More on Matrix Forms
	Slide 52: More on Matrix Forms
	Slide 53: More on Matrix Forms
	Slide 54: More on Matrix Forms
	Slide 55: More on Matrix Forms

