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Function gpproximation:
linear combination
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Function Approximation: linear combination

» Approximating a target function
y= f*(x), xR

a.k.a. "single layer perceptron”

A first approximator: linear combination
j=w-x+b weRLbeR

\ i.e. this is a vector of dimension d

Note that, when the input is scalar, the approximator becomes
y=wxr+b

i.e. a straight line

Deep Learning 2024-2025 Artificial Neural Networks [3]



Function Approximation: linear combination

» Approximating a target function
y= f*(x), xR

A first approximator: linear combination
j=w-x+b wecRLHeR

dataset
A set of input and output pairs (data items) is what know about the target function

D:={(z", y N}, oW =),

\

A set of data items Item index
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Function Approximation: linear combination

» Approximating a target function
y= f*(x), xR

A first approximator: linear combination

j=w-x+b wecRLHeR

dataset
A set of input and output pairs (data items) is what know about the target function

D:={(z", y N}, oW =),

Three fundamental aspects:

* representation: which parametric approximator for a given target function?

» evaluation: how could you tell that some parameter values are better than others?

* optimization: how can we learn optimal values for the parameters?
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Function Approximation: linear combination
= Example: XOR

T1 T2 T1 D T2
y = XOR(z), x € {0,1}? - 0 L
0 1 1
Approximator: linear combination 1 0 1
j=w-x+b, weRLbeR 1 1 0
Dataset: this is our datasé(N = 4)
D = {($(i)a y(i)) ij\il
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Function Approximation: linear combination

= Example: XOR T1 o r1 D xo
y = XOR(z), x € {0,1}? L L g
0 1 1
Approximator: linear combination 1 0 1
j=w-x+b weRLbeR 1 1 0
Dataset: | - this is our dataset (N = 4)
D = {(m(%)a y(%)) ij\il

Loss function (evaluation):
. . . . ____— Squared Error (one data item)
L(z™,y") = (g(z™) — y)?
1 . : ____— Mean Squared Error (MSE - entire dataset)
LD) =5 > Lay?)
(x(¥) ,y())eD

Deep Learning 2024-2025 Artificial Neural Networks [7]



Function Approximation: linear combination

= Example: XOR T1 o r1 D xo
y = XOR(z), x € {0,1}? L L g
0 1 1
Approximator: linear combination 1 0 1
j=w-x+b weRLbeR 1 1 0
Dataset: this is our datasé(N = 4)
D:={(z", y")}Y,

Optimization problem:

We need to find parameter values that minimize the loss w.r.t. to the dataset

(w, b)* := argmin L(D)
(w,b)

Deep Learning 2024-2025 Artificial Neural Networks [8]



Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR
Loss function:

_ % > () — y19)?
— % Z (w -z +b) — y)?

Can we express this summation by using linear algebra?

Matrix representation leads to a better parallelization of computations (more on this, later on)
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Function Approximation: linear combination

= | .oss minimization
Approximator: linear combination
j=w-x+b wecRLHeR

Loss function:

N
1 : _
S () _ ()2
LD) = 5 2 ((w- = +4) = y)
define:
wgl) x((il)
X — . ____—— Inputdata in matrix form (item index first)
B
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Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination

j=w-xz+b weRYbeR

Loss function:

N
1

_ () _ (@)

L(D) = ;:1 w -z +b) —y)?

define;

The loss function becomes:

L(D) =

1
N

(X9 —y)?
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w
1 . Y

loss function in matrix form

~— Thisis a positive-definite quadratic form

Artificial Neural Networks [11]



Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination

j=w-xz+b weRYbeR

Loss function:

define;

1 N
ﬁ§:@0$m+b y )2
1=1

(D)

Lq

o

The loss function becomes:

L(D) =

1
N

(X9 —y)?

Deep Learning 2024-2025
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loss function in matrix form

~— Thisis a positive-definite quadratic form
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Function Approximation: linear combination

= Loss minimization XOR T To r1 B To
Approximator: linear combination 0 0 0
j=w-x+b wcRLHCR 0 1 :
Loss function: 1 0 1
L(D) = — (X0 —y)? : : >
(D) = (X9 — y) y

For XOR: this is our dataset (N = 4)

0 0 1 . 0]

- 0 1 1 . 1

=1 9 V= “22 471

11 1 0]
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Function Approximation: linear combination

= | .oss minimization
Approximator: linear combination
j=w-x+b wecRLHeR

Loss function:

_ 1 % 2
L(D) = + (X0 —y)
Optimization:
0
—819L(D) =0

AN

this loss function is convex:

by solving this equation, we can find 9"

i.e. the optimal parameter values
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Function Approximation: linear combination

= |0oss minimization
Approximator: linear combination
j=w-x+b wecRLHeR
Optimization:

9 19 ,
aﬂL(D) ﬁa—ﬁ(Xﬁ - y)
1 0 , 4 A 1 0 . .
- (X9 — T X9 — _— TxT A A X9 —
= N g X9 —¥) (X0 —y) = Z-o(F y' ) (Xd —y)
1 0 N . .
=< a—ﬁ(ﬁTXTXﬁ — 9T XTy —yT X9+ yTy)
1 o all these terms are scalars
= 8—ﬁ(ﬁT XTX09 - 29" XTy +yTy)
%(QXTX'L‘) —2XTy)
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Function Approximation: linear combination

= |Loss minimization

Approximator: linear combination
j=w-x+b wecRLHeR

Optimization:
a 1 A A ~
—L(D)= —=(2XTXy9 -2X"
S5 L(D) = -(2X" X9 —2XTy)

%, o .
a—ﬁL(D) =0 = 2XTXv9-2XTy=0

XTX9=XTy

v = (XTX)_IXTy this is what we need

this matrix is SQUARE and SYMMETRIC
and, typically, with actual datasets
is invertible (i.e. full rank)
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Function Approximation: linear combination

= Loss minimization XOR T1 To 1 P xo
Approximator: linear combination 0 0 0
j=w-x+b wecRLHeR 0 1 1
For XOR: 1 0 1
. . 1 1 0
9= (XTX)"' X1y
0 0 1] . [0
; 0 1 1 ! 1
X=11 o9 1| YU “;)2 Y= h
11 1 0]
2121 10 05 o 0
X'xX=11 2 2| X™X)"'=]0 1 05 (XTX)" ' XTy=10
2 2 4 0.5 0.5 0.75 0.5
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Function Approximation: linear combination

= |Loss minimization XOR

T1 T2 T1 D T2
Approximator: linear combination 0 0 0
j=w-x+b wcR bR 0 1 :
For XOR: 1 0 1
w1 0 1 1 0
I = Wo | = 0
b 0.5

hence the XOR linear approximator becomes:

j=0.5

What 7??
A constant function?
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Function gpproximation:
Feed-Forward Neural Network
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Feed-Forward Neural Network
» Approximating a target function
y=f"(z), zecR
Second attempt: (shallow) feed-forward neural network
j=w-gWx+b)+b WecR"™ wbecR"becR

\ this is a matrix of dimensions h X d

this is a non-linear scalar function, applied elementwise
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Feed-Forward Neural Network

» Approximating a target function
y= f*(x), xR

Second attempt: (shallow) feed-forward neural network

j=w-gWx+b)+b WecR"™ wbecR"becR

Popular choices for the non-linear function:

1
g(x) =o(x) = 7 11 g(x) = tanh(z) g(z) = max(0, x)
oe [—rRey]
o=
Sigmoid Hyperbolic Tangent Rectified Linear Unit (ReLU)
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Feed-Forward Neural Network

» Approximating a target function
y= f*(x), xR

Second attempt: (shallow) feed-forward neural network

j=w-gWx+b)+b WecR"™ wbecR"becR

Popular choices for the non-linear function: this is somewhat specidl..
1
glz)=o(x) = —— g(z) = tanh(z) g(z) = max(0, z)
N [—rau]
==
Sigmoid Hyperbolic Tangent Rectified Linear Unit (ReLU)
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Feed-Forward Neural Network

» Approximating a target function
y= f*(x), xR

Second attempt: (shallow) feed-forward neural network

j=w-gWx+b)+b WecR"™ wbecR"becR

output layer

h4 hidden layer

input layer

NOTE: biases b and b are NOT represented in the graph
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Feed-Forward Neural Network

» Approximating a target function
y= f*(x), xR

Second attempt: (shallow) feed-forward neural network

j=w-gWx+b)+b WecR"™ wbecR"becR

NOTE: biases b and b are NOT represented in the graph
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Universality of FF Neural Networks

= Universal approximation theorem (cybenko, 1989; Hornik, 1991; Leshno et al. 1991)
For any target function

Y = f *(33), €T c Rd (which is continuous and Borel measurable)

andany ¢ > 0 there exists parameters

h\e Zt. W e R4 w.beR"beR

such that the (shallow) feed-forward neural network

this is the dimension of the hidden layer: it is a parameter in the theorem

g=w- -gWx+b)+10

approximates the target function by less than ¢

sup | (@) = (w-g(Waz +b) + ) <e

(on any compact subset of R%)

This theorem holds with any of the non-linear functions seen before

Deep Learning 2024-2025 Artificial Neural Networks [25]



Universality of FF Neural Networks

* Universal approximation theorem (cybenko, 1989; Hornik, 1991; Leshno et al. 1991)

Intuitive rationale

Any continuous target function
y=f"(x), v€R

can be approximated arbitrarily well by a stepwise function

y“ *(z) this is the largest difference
/%\ /sup!f*(w)—(w-g(W$+b)+b)
/ \ £
AN /
~N__ “~
$>

for simplicity, assume now that z is scalar (hence W is vector)

g=w- -gWx+b)+1b
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Universality of FF Neural Networks

* Universal approximation theorem (cybenko, 1989; Hornik, 1991; Leshno et al. 1991)

Intuitive rationale

Consider the step function as the non-linearity;
g=w step(Wz+b)+b

then, by expanding the scalar product:
g = wy step(Wix +by) + -+ + wp step(Wpx + bp,) + b

where each step occurs at

g(x) = step(x)

b.
WZ.CU—FbZ:O — Wzill‘:—b@ — :L_:__z
W;
. . . . . — w;step(Wix + b;)
Consider pairs of steps i and j and impose Y — wstep(Wia + by)
b; b;
_Wz <_Wj’ W/,;,Wj>0, ’UJz:—’UJJ w;
. h : >
in this way we can construct 5 such function steps b by
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Learning with
Feed-Forward Neural Networks
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Learning with FF Neural Networks

» Approximating a target function
y= f*(x), xR

Second attempt: (shallow) feed-forward neural network

j=w-gWx+b)+b WecR"™ wbecR"becR

Optimization problem (learning)
Givenadataset D := {(zV,y )NV | ¢y = (D), Vi

1=1>
/ the dimension of the hidden layer is pre-defined

we want to find parameter values W € R"4 w. b e R" b e R
1 . ‘
C o . = ~(¢) _,(1)\2
that minimize the loss function L(D) := N %: (y y\*)
where: 7 .= w . g(Waz'D +b) +b
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Learning with FF Neural Networks

» Approximating a target function
y= f*(x), xR

Second attempt: (shallow) feed-forward neural network

j=w-gWx+b)+b WecR"™ wbecR"becR

Difficulty
In general, minimizing the loss function
1 i i
L(D) =+ > ((w-g(Wz') +b) +b) — )2
D
cannot be done directly since [ — this loss function is not convex, in general
0
—L(D)=0
59 L(D)

cannot be solved analytically We need to find another way
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Gradient Descent (GDP): intuition

= Optimization problem
¥* := argming L(D, )
Just niaking the dependence explicit
= Minimizing a generic function
L p \ tangent lines

with slope
given by

gradient
at 90

Follow the opposite of the gradient!
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Gradient Descent (GD): intuition =

= Optimization problem "
¥* := argming L(D, ) .
/

Just making the dependence explicit

= [terative methOd/ Step in the method

1. Initialize 9 at random

0

2. Update 9 = 9(t=1) _ 8_19[4(1)719(75—1))
3. Unless some termination criterion has been met, go back to step 2.
where
0 1 O _ N
59 LD 0) =+ A a—ﬁL(y(’), y',9)
<1 The gradient of the loss over the dataset D is the average of gradients over each data item

A learning rate, it is arbitrary (i.e., an hyperparameter)
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Gradient Descent (GD): convergence

= Convergence

When L(D, ) is convex, derivable, and its gradient is Lipschitz continuous, that is

H—L (D,9,) — a%L(D 95)

‘gcm%—ﬁﬂ,c>o

the gradient descent method converges to the optimal 9" for t — oc
provided that 7 < 1/C

When L(D, ) is derivable but not convex, and its gradient is Lipschitz continuous,
the gradient descent method converges to a local minimum of L(D, 1)
under the same conditions
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Gradient Descent (GD): practicalities

= Convergence in practice
The choice of the learning rate 7 is crucial

Cost . Cost ; . .
learning rate too low learning rate too high (i.e. no convergence)

> 1
Start 6 Start > 8
Cost
A learning rate just right
\ \ Learning step
|
1
]
: Minimum
|
1
1 1 >
Random 8
initial value A

Images from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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Gradient Descent (GD): practicalities

= Convergence in practice
When L(D, 1) is not convex, the initial estimate 99 is crucial

Cost

A

Plateau X

0

i
(0) 0)
4 Global v

Local minimum .
minimum

The outcome of the method will depend on which ) (0) is picked

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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Learning
Feed-Forward Neural Networks
(contd.)
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Gradient Descent for FF Neural Networks

Recall that the item-wise loss for a specific data item in the dataset is

LGP, y) = (3 =y )2
then

Z LD,y

and the gradient of the loss function is

G, o 1 o
~SL(D) = == 3 LG,y )
D

1 0 : :
= =3 S,y

Moral: we need to compute the gradient on each data item

Deep Learning 2024-2025
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Gradient Descent for FF Neural Networks

Suppose we can compute the four item-wise gradients, w.r.t. to the parameters:

0

LD 4
Py T )

then we can apply a gradient descent method

= Gradient Descent

1. Assign initial values to the four parameters
2. Update the four parameters by adding

1
AW = —n

1 0
_ () (%)
Aw nN g S0 — L(y )

3. Unless complete, return to step 2.

Deep Learning 2024-2025
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Computing Gradients

All we need to apply the descent method is computing the item-wise gradients

For instance:
%, - 0 -
9 1 a® 0 G0 (002
aw LY = a0 = v
%,

8W((w gWax® +b) +1b) — yV))?

(similar expressions hold for the other three gradients)

Assume =)

g(x) = ReLU(x) := max(0, x)

i.e., the non-linearity is ReLU
Easy, huh?
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FF Neural Networks

&
L]

Function Approximation

T D xo
0
1

QO -

L2

QO -

XOR

tion
forward neural network

inimiza
Approximator
(shallow) feed-

= [ ossm

ReLUWx +b) + b

j=w-

\dimension of the hidden layer

imal values for XORand h = 2

Opt

A
R
SEREREN

A
AasEN
SRR

R
SRR
Ry =
T
e e B
RN
TR
AR
SRRESTiTaTEEY
SRRRRRNRNRN
T
ERER

R
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Stochastic and Mini-Batch
Gradient Descent
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Function Approximation: FF Neural Networks

= Loss minimization XOR T1 To 1 P xo
Approximator: 0 0 0
(shallow) feed-forward neural network 0 1 1
gy =w-ReLUWx +b) + b 1 0 1
1 1 0
In this case our dataset was tiny... (N =4 ) /

this is our dataset

What if the dataset was very large?
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Stochastic Gradient Descent (SGD): intuition

= Objective
Y := argming L(D,)

= [terative method
1. Initialize 9% at random

2. Pick a dataitem (:L'(i), y(i)) € D with uniform probability

3. Update 9 — g(t=1) _ p(® a% LD, 4@, 9t

4. Unless some termination criterion has been met, go back to step 2.

n(t) <1

Note that the learning rate may vary across iterations...

Deep Learning 2024-2025
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Stochastic Gradient Descent for FF Neural Networks

With very large datasets, the sum in:
1 0
819

AY = -0~ —L(j (@), (i))

may take very long to compute (and this must be repeated at each iteration)

= Stochastic Gradient Descent (SGD) Ge. "you don't actually need to sum up them all")
1. Assign initial values to the four parameters W) (0 ) p0)

2. Pickupadataitem (x @)y ) from D with uniform probability
and update the four parameters (with 1 < 1.0, 1 — 0 asiterations progress)

0 : 0 .

A —n ——L(§®, y¥ Ab = — gDy
W = =y oo LG,y ) 1 55 L0,y )
0 %) N

S gy — o — LG @
Aw = —n 5 L(§ ) Ab = =1 = LG, y™)

3. Unless complete, return to step 2.

Deep Learning 2024-2025

Artificial Neural Networks [44]



Stochastic Gradient Descent (SGD): convergence

= Convergence

When L(D, ) is convex, derivable, and its gradient is Lipschitz continuous, that is

H—L (D,9,) — a%L(D 95)

‘gcm%—ﬁﬂ,c>o

the stochastic gradient descent method converges to the optimal 9" for t — oo
provided that |

(t) < — Note that n(t) — 0 for t — o0
—Ct

When L(D, 19) is derivable, and its gradient is Lipschitz continuous but not convex
the stochastic gradient descent method converges to a local minimum of L(D, 1)
under the same conditions
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Speed of Convergence

Perhaps surprisingly, stochastic gradient descent shares the same properties

and could be faster than GD ...

Consider a generic loss function L(ﬁ) which is convex in the parameter 19

Define accuracy as an upper bound:
optimal value

L(9%) — L(9)| < p

[Bottou & Bousquet, 2008]

current parameter estimate

N size of the dataset
" q number of (scalar) parameters in U

Algorithm Cost per Iterations to reach Time to reach
iteration accuracy p accuracy p
Gradient descent 1 1
(GD) O(N q) O (log —) O (quog —)
P P

Stochastic gradient 1 1
descent (SGD) O(q) O <_) O (q_>

P P

Deep Learning 2024-2025
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Qualitative comparison of GD methods

Typical traces 381 g m Stochastic i

of the three methods 36| — Mini-batch |
(batch = GD)

3.4} | == Batch .

61 3.2F
3.0}

2.8}
26}

2.4+
2.5 3.0 3.5 4.0 4.5

In general:
* GDis more regular but slower (with large datasets)
« SGD is faster (with large datasets) but noisy

 MBGD is often the right compromise in practice...

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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Mini-batch Gradient Descent (MBGD): intuition

= Objective
Y* := argming L(D,19)

= [terative method

1. Initialize 8@at random

2. Pickaminibatch B C D with uniform probability

n® 1B 9t=D)

3. Update 9t =9t _
paate (919

4. Unless some termination criterion has been met, go back to step 2.

where:

0
— () 9
aﬁLBﬁ |B| E Dy )

This method has the same convergence properties of SGD

Deep Learning 2024-2025
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Mini-batch Gradient Descent for FF Neural Networks

= Mini-batch Gradient Descent (MBGD)

1. Assign initial values to the four parameters W (9 p(0) (0 p(0)

2. Pickamini-batch B C D with uniform probability
and update the four parameters (with n < 1.0, 1 — 0 as iterations progress)

1 0 : : 1 0 . .
AW = —n — E (i L@y AR = — _§ :—L ~(3) (%)
1 0 : : 1 0 . .
Aw = —n — E L7 4® Ab = — E L(g® 4@

3. Unless complete, return to step 2.

This method has the same convergence properties of SGD
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