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The Many Shades of Bias

 Observer Bias
 Bias in Data
* Inductive Bias
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Observer Bias Choosing the Right Metaphors

The

Economist

[https://www.economist.com/culture/2023/06/22/talking-about-ai-in-human-terms-is-natural-but-wrong]

Culture | Johnson

Talking about AI in human terms is
natural—but wrong

When it comes to artificial intelligence, metaphors are often misleading
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Observer Bias Ifthe Present is Confusing, the Future is Uncertain...

OBSERVER |grve=

FINANCIAL TIMES Meta’s A.l. Chief Yann LeCun
Artificial intelligence <+ATOmyFT\ Explains Why a House Cat IS

Elon Musk predicts Al will overtake human ~ Smarter Than The Best A.lL

intelligence next year €he New Nork Times

"A cat can remember, can understand the physical world, can plan complex actions,
can do some level of reasoning—actually much better than the biggest LLMs."

Tesla chief says infrastructure will need to keep up with technology’s demands as he seeks i S R

investment for own start-up e -
o @ @ @ The Ezra Klein Show

April 12, 2024

What if Dario Amodel Is Right About A.1.?

Anthropic’s co-founder and C.E.O. explains why he thinks artificial intelligence is on an
“exponential curve.”

r

Elon Musk had previously suggested Al would surpass human intelligence by 2029 © Kirsty Wigglesworth/AP

Yann LeCun testifies before the U.S. Senate Intelligence Committee on September 19, 2023 in Washington, D.C.

George Hammond in San Francisco APRIL 8 2024 D 453 E [
[https://www.nytimes.com/2024/04/12/opinion/ezra-klein-podcast-dario-amodei.html]

[https://observer.com/2024/02/metas-a-i-chief-yann-lecun-explains-why-a-house-cat-is-smarter-than-the-best-a-i/]

[https://www.ft.com/content/027b133f-f7e3-459d-95bf-8afd815ae23d] Trusting the Algorithms The Many Shades of Bias [4]



Al-Specific Traits

* Infinitely repeatable

Once trained, an Al model provides deterministic inference

« Completely observable mechanisms

Interpretation may be challenging, yet computations can be observed to the last bit

* Duplicable

Al systems are software:
they may require substantial hardware resources, but they can be replicated at will
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Artificial Neural Networks At the Core of Al Revolution

An assembly of simple computational units

Eilter Each unit performs
- function / g 4 % Do simple arithmetic
Aaditive ) operations
Weights and Biases

are the only
mutable parts
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Learning from Data

Incremental, numerical optimization
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Learning from Data

Incremental, numerical optimization
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Learning from Data

Incremental, numerical optimization

'—-———____——~_4-————_‘———_—1

: Data Item

\

. Expected

Output

Actual

Input

- e e T T E e e = T T o e e T

I difference

' compare (error)

Output

]

- e e T N e o = e

— -

ﬁ

|
| feed

Error is propagated
In the opposite
direction

To change
Weights and Biases

Trusting the Algorithms The Many Shades of Bias [9]



Learning from Data

Incremental, numerical optimization
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ChatGPT |is Transformer-Based Precursor
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ChatGPT |is Transformer-Based Precursor

Output sentences are also generated
word by word and fed back

to the network

Please recite the first

A robot may not injure a human being
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<blank> A robot may not injure a human
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ChatGPT |is Transformer-Based Precursor

Actual network output
is a probability distribution
over the next word (token)

The whole network is huge

A robot may not|injure a human being

ﬁ
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Encoder - Decoder A Very Popular Architectural Pattern

Input is first translated into a latent (a.k.a. hidden, intermediate) representation
and then translated into a meaningful output

This architectural pattern is common in Generative Al

The internal organization of
latent space is crucial

, ! I ! I
input space 1 | latentspace ! I output space
! I ! I
x —1— Encoder [} > Z L Decoder -H— 1y
: N :
| 1 1 |

Contextual information Memory capability
RAG may be added Memory may be added as well
In generative models,

latent representations
are manipulated explicitly
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Foundation Models A Never-Ending Quest for Even More Data

Foundation models (a.k.a. pre-trained, zero-shot) can be used ‘off-the-shelf’

WIthOUt fu rther tra I ning Training data size, in words

400 billion

: EPT—E\D
. . Before 2020, most

TO aChleve th|S, at present, A.L models used relatively
an enormous amount little training data.
of data is required e

200 billi

100 billion

GPT-2
ke

2001 2008 2014 2020 2022 2023
Year released

[https://www.nytimes.com/2024/04/06/technology/tech-giants-harvest-data-artificial-intelligence.html] .
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Bias in Data
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Bias in Data An Example (Berkeley Admission Test, 1973)

O  Gender Statistics collected
M66% I | with 12,763 candidate
F34%[ students
O Major
A 10%]|
B 5%
d @] Admission
C 7%| _
D 6%]| »Rejected 59% [ ]
A 41%
E 504 ccepted 0
F 6%
Other62% ] |
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Bias in Data An Example (Berkeley Admission Test, 1973)

O  Gender

M100% |

F 0% =

O Major

A 13%|

B 1% —

° O Admission

C 4% :

5 _— » Rejected 56% -]
Acce 44%

e 204 pted 0

F 4%

other64% ] |
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Bias in Data An Example (Berkeley Admission Test, 1973)

O  Gender
M 0%
E 100% [ L
O Major
A J o . .
O Major g\ ioﬁ) More rejections
Males ||p 13%| - 14(; O T among females
| prefer |5 7% . 90/0 |I »Rejected 65%|JI] than males
majors A-B IC 4% ’ Females |accepted35% [ sion
1 E 9% | ‘
D 5%| preter 1Rejected 56% B
E 2% | . i) - majors C-F Accepted 44%
., |otherss% ] | P 0
F 4%
Other64% |
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Bias in Data An Example (Berkeley Admission Test, 1973)

O  Gender

M66% I |

F 34%

O Major

A 10%l|

B 5% —

i 70/0" O Admission
0 ]

5 60t | » Rejected 59% -]
0

Accepted 41%

E 5% b :

F 6%

Other62% I |
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Bias in Data An Example (Berkeley Admission Test, 1973)

O Gender
M66% [
F 34%

This influence

Is free choice
O Major
A 10%l|
B 5% |
C 7%
D 6% |
E 5%
F 6%
Other62% ] |

O Admission

>

Rejected 59%

Accepted 41%
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Bias in Data An Example (Berkeley Admission Test, 1973)

O  Gender

M66% I |

F34%[

This influence
is free choice

O Major

A 10%l|

B 5%

i 7(y0|l @] Admission
0 ;

5 604 | P Rejected 59% [
0

Accepted 41%

E 5% , 2 s

c 6% If it does not

other62% I depend on gender,

this influence is fair
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Bias in Data: an Example (serketey Admission Test, 1973)

O  Gender
M 66% I |
F 34%
. r Such direct
This influence . . .
. . influence is unfair,
Is free choice
: regardless
O Major
A 10%l|
B 5% —
. . (yo || O Admission
0 ]
D 6%] P Rejected 59% [ ]
0
Accepted 41%
E 5% , 2 >
= 6% If it does not
other62% ] | depend on gender,

this influence is fair
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Bias in Data An Example (Berkeley Admission Test, 1973)

Major A
O  Gender Both gender and
M9o1% I | rejections rates
F 9% are very different
l across majors
@] Major
MajorA |A  100% [ Major A
B 0%
0 O Admission
C 0% :
»Rejected 27% 1
D 0% Accepted 73% |
E 0% P -
F 0%
Other 0% =
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Bias in Data An Example (Berkeley Admission Test, 1973)

Major B
Major A O  Gender Both gender and
O Gvoey ] rejections rates
0
M91% lIF_4% are very different
0
F 9% across majors
 J
O Major
A 0% Maj
. jor B
MajorB |B  100% [ O  Admission
C 007 '
: 00/2 »Rejected 37% ] Major A
- 0% Accepted 63% |
- 00/0 “Rejected 27% |
0
A ted 73%
Other 0% =] R 4

Trusting the Algorithms The Many Shades of Bias [25]



Bias in Data An Example (Berkeley Admission Test, 1973)

Major C
MajorA  |O  Gender
Major B SN VELTA 1
O  G|M91%[F 65%
M96% J|F 9%
F 4% :
— v
O Major
A 0%
B 0%
Majorc |C  100% I
D 0%
E 0%
F 0%
Other 0% =

>

Both gender and
rejections rates
are very different
across Majors

Major C

O Admission .
Rejected 65% ] | MajorA

Accepted 35% D

Y

Rejected 27% Major B
Accepted 73%
Rejected 37%
Accepted63%

Yy
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Bias in Data An Example (Berkeley Admission Test, 1973)

Is there a gender bias?
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An Impossible Experiment

Path-Specific Counterfactual Fairness
[S. Chiappa, 2019]

Selecting a major
as gender X
and taking test
©  Gender_Major © Gender_Admission
— — as genderY
M66% I | M66% I |
F 34%' F 34%'
O Major
A 10%l| |
B 5%
) C  Admission
C 7% :
D 6% | — > Rejected 59%.]
A A1%
= - ccepted41%| |
F 6%
Other62% I |
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An Impossible Experiment

©  Gender_Major

F 0%

M100% I |

Select major

Path-Specific Counterfactual Fairness
[S. Chiappa, 2019]

as male

O Major

A 13%
7%
4%
5%
2%
4%
Other64%

mmaogoO W

—  »Rejected 56% .I

Selecting a major
as gender X
and taking test
© Gender_Admission as gender Y
M100% T
F 0% =]
Take test
as male
Y

O Admission

Accepted 44% | |
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An Impossible Experiment Selecting a major

as gender X
and taking test
©  Gender_Major © Gender_Admission as gender Y
M100% T M 0%
F 0% " F 100% n
Select major Take test
as male as female
O Major
A 13%] |
B 1A
- 40/0 C  Admission Female
s 50/" —»{Rejected 56% ]
= 2(; Accepted44%| | |ission | Male
- 4(; "Rejected 56%
) Accepted44%
Other64% ]

No significant
changes

Path-Specific Counterfactual Fairness
[S. Chiappa, 2019] Trusting the Algorithms The Many Shades of Bias [30]



An Impossible Experiment Selecting a major

as gender X
and taking test
©  Gender_Major O Gender_Admission as gender Y
M 0% M 0%
F 100% - E 100% )
Select major Take test
as female as female
O Major
A 3% .
B 1%
) C  Admission
cC 14%l| :
D 9% I —  »Rejected 65% -]
A %
- o%| ccepted 35% | |
F 8%
Other58% ]

Path-Specific Counterfactual Fairness

[S. Chiappa, 2019] Trusting the Algorithms The Many Shades of Bias [31]



An Impossible Experiment Selecting a major

as gender X
and taking test
©  Gender_Major © Gender_Admission as gender Y
M 0% M100% I
E 100% [ = F 0% N
Select major Take test
as female as male
O Major
A 3% J
B 1%
° O  Admission Male
cC 14%l| :
5 S0 I — > Rejected 63% -]
- 0% Accepted37% | | lission | Female
- 8(; “Rejected 65% |}
° Accepted 35%
Other58% I
There is a slightly
better chance to pass
as male

Path-Specific Counterfactual Fairness
[S. Chiappa, 2019] Trusting the Algorithms The Many Shades of Bias [32]



Mitigating Bias Via Counter-Bias

" Pre-processing data — 3P ——
Generate new data by applying — X "X T__Z
appropriate transformations Data Classifier Predictions

= Altering the algorithm § K o=
Modify the training process — X C—
to compensate for biased predictions Data Classifier Predictions

= Post-processing outcomes § A 5_2
Change algorithm’s predictions — alia o=
to address biased outputs Data Classifier Predictions

[Images from https://aif360.res.ibm.com/mitigate] Trusting the Algorithms The Many Shades of Bias [33]



Inductive Bias
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Basic Architecture A Universal Pattern

There is a well-known mathematical theorem [Cybenko, 1989; Hornik, 1991; Leshno et al. 1991]
saying that, once trained, any neural networks could be translated into an equivalent one

With a much simpler architecture

Output

The hidden layer
may be as large as required Hidden layer
(e.g., billions of units)

Input

What is the difference, then?
* using less units (more compact networks)
* achieving a better inductive bias
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Inductive Bias Have It Defined

Inductive bias is anything which makes the algorithm learn
one pattern instead of another pattern

When searching a space of solutions, multiple possibilities

may be equally good, for a particular purpose:

an inductive bias allows a learning algorithm to prioritize one solution
(or interpretation) over another, independent of the observed data

[Adapted from Wikipedia]
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Inductive Bias Example: Translation Invariance

M= B | | Output is the same,
e ——>{ invariant @  Independent
- model @ ofinput positioning
/ | !
3 A
_. A model __ Output changes with
13 — sensitive to “‘E. input positioning
- translation «
—,

[Image from https://samiraabnar.github.io/articles/2020-05/indist]
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Inductive Bias Example: Translation Invariance

In fact, neural network for vision-related tasks are convolutional

Input Volume (+pad 1) (7x7x3) Filter W0 (3x3x3)
x[:,:,0] wl[:,:,0]
0 |0 |0 0 0 0 0 1 |0 |-1
0 |1 |1 1 2 0 0 -1|1 |-1
0 |2 |1 1 2 0 0 0 |-1|-1
o 0 0 1 2 2 0 wl[:,:,1
00202 2 200 1 40
il E 0 11
0 0 0 0 0 . |‘1|'1
1 wO[:,r:’,/2
= f = F ] 0
0 |0 |0 0 0 ’11
oL 7 0 1 E
0 0]0 0 -1t
SR 0 Bias b@{1x1x1)
0 2 2 00 2 0 b, :,0]
0 |2 1240 |2 1
0 0 0 0 o0
2]
oflofo}o o 00
o flofo]z2 1 0
2 |0 1 1 0
0 0 2 1 0 1 0
0 0 2 1 0 1 0
0 2 10 2 2 0
00 0 0 0 0 0

Which means that translational invariance is there by design

[image from http://cs231n.github.io/convolutional-networks/]

Output Volume (3x3x2)

Filter W1 (3x3x3)

will:,:,0] ol:,:,0]
1 -1 0 -3 0
1 0 1 2 0 3
1 1 -1 4 1 7
wll:,:,1] olz,:,1]
S18 I B 5 5 9
1 0 0 5 9 4
1 1 1 3 2 1
Wll:,:z,2]

1 11

o -1 0

1 1 1

Bias bl (1x1x1)
bl[:;:,0]

0

toggle movement

height
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Transformers Flexible, Adaptive Patterns

Whereas convolution has a fixed scope,

transformers can learn to focus attention on different input spots

Attention spots may vary depending
on input positioning

Transformer-based networks (like GPT)
use multiple such units in parallel

H BT ¥ .

[CLS]
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genius
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[image adapted from https://www.comet.com/site/blog/explainable-ai-for-transformers/]
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No Free Lunch No Guarantee of Being Bias-Free

Depending on training data, transformers may learn to focus attention
with unwanted biases

i |
The The The The
Doctor Doctor Doctor Doctor ‘
asked asked asked asked
the the the the
Nurse Nurse ‘ Nurse Nurse
a a a a
question question question question
D) She She 0y He He
said said asked asked

In these input sentences, the pronoun is switched from ‘She’ to ‘He’

The network switches attention from ‘Nurse’ to ‘Doctor’

[image adapted from https://www.comet.com/site/blog/explainable-ai-for-transformers/]
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No Free Lunch Intrinsic Inductive Bias

Albeit not entirely understood yet, transformers have intrinsic inductive bias
* preference over sparser functions (attention over fewer input elements)

* less effective on problems involving recursion (balancing brackets, iterated negations)

The study of inductive bias in neural networks is relatively new and in progress
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Conclusions
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* Avoid simplistic metaphors to understand Al

By viewing Al as having human-like qualities,
we risk overlooking its true nature and potential consequences

Al bias can serve as an instrument

When intentionally introduced by Al designers,
bias can serve as a countermeasure against negative effects

* Let’s work together (legal experts and Al engineers)

Thoughtfully crafted regulations have the potential to guide Al systems
toward better comprehension and more effective governance

Trusting the Algorithms The Many Shades of Bias [43]
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