

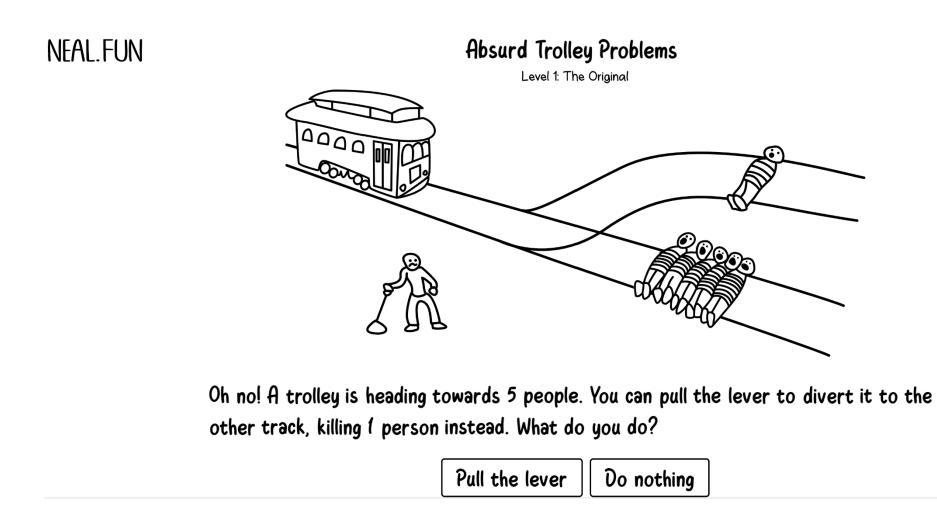
Department of Electrical, Computer and Biomedical Engineering

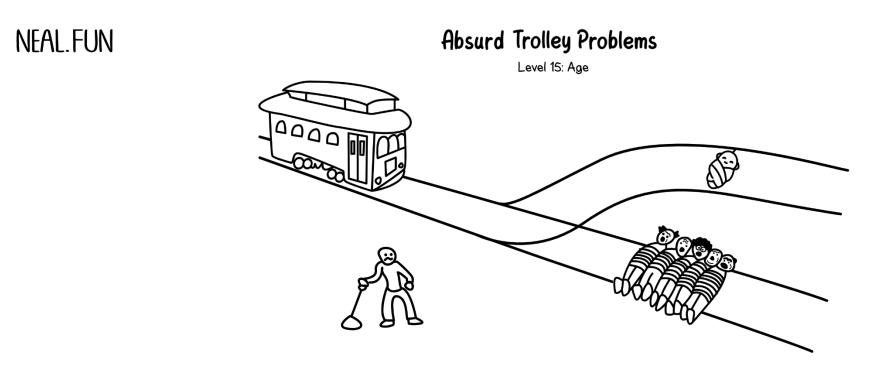
Steering AI: Legal Challenges and Ethical Standards from an Engineering Perspective

Thursday 18 April 2024

Museo della Tecnica Elettrica Via Ferrata, 6 27100 Pavia With the patronage of:

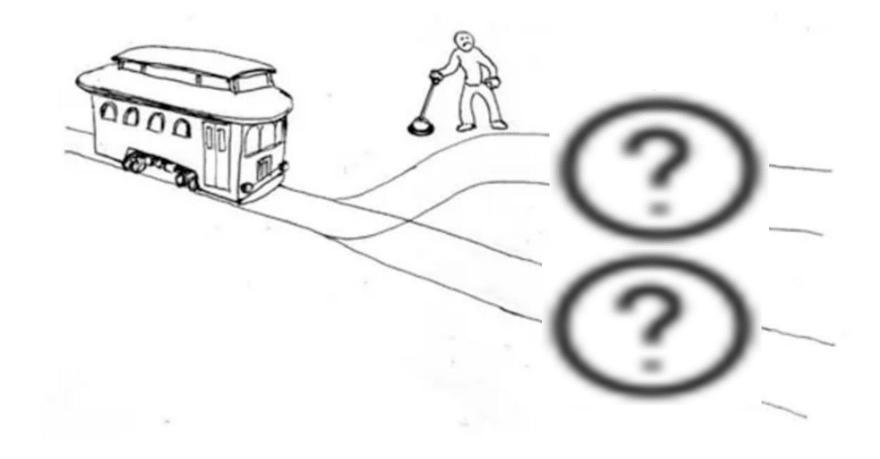
With the contribution of:

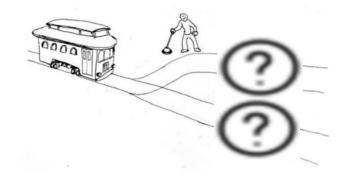

Should AI Steer the Trolley?


Steering AI: Legal Challenges and Ethical Standards from an Engineering Perspective

Antonio Barili

Dept. of Electrical, Computer and Biomedical Engineering Digital Forensics Laboratory





Oh no! A trolley is heading towards 5 elderly people. You can pull the lever to divert it to the other track, running over a baby instead. What do you do?

Pull the lever Do nothing

1) Assess what's actually on each track

2) Decide how to steer the trolley

3) ... cross your fingers!

- A smartphone seized from a known drug smuggler stores about 100.000 pictures
- On average, 0.1% of them portray drug samples
- A forensic software implements an (AI-based) image classifier to tell drug pictures from non-relevant material

Nice, but ...

- Even at the insanely good TPR=TNR=0,999 half of the flagged pictures are false positives
- This practically means that you have to manually screen twice as much pictures than necessary

True Negative Rate (Specificity) TNR = TN/N	True Positive Rate TPR=TP/P	Prevalence P/(P+N)	Total Population (P+N)
0,999	0,999	0,001	100.000
	PREDICTED CONDITION		
Predicted Negative (PN)	Predicted Positive (PP)		
99.800	200		
False Negative (FN)	True Positive (TP)	Actual Positive (P)	ACTUAL CONDITION
0	100	100	
True Negative (TN)	False Positive (FP)	Actual Negative (N)	
99.800	100	99.900	

- Apple^(TM) recently proposed^(*) an extension to its iOS operating system to test and flag CSAM^(**) images on smartphones
- An average smartphone stores no less than 10.000 pictures and there are more than 100.000.000 smartphones in Europe (not all Apple devices)
- Let's assume the extension will operate on 10.000.000 x 10.000 pictures
- The prevalence of CSAM on smartphones is unknown, but should be less than 1/10.000

Well, now ?

(*) Actually, Apple proposal was much more articulated, this is a gross simplification.

(**) Child Sexual Abuse Material

True Negative Rate (Specificity) TNR = TN/N	True Positive Rate TPR=TP/P	Prevalence P/(P+N)	Total Population (P+N)
0,999	0,999	0,000100	1.000.000.000.000
	PREDICTED CONDITION		
Predicted Negative (PN)	Predicted Positive (PP)		
998.900.200.000	1.099.800.000		
False Negative (FN)	True Positive (TP)	Actual Positive (P)	ACTUAL CONDITION
100.000	99.900.000	100.000.000	
True Negative (TN)	False Positive (FP)	Actual Negative (N)	
998.900.100.000	999.900.000	999.900.000.000	

- Note that more than 90% of the flagged pictures are false positives
- This actually means that the screening has no practical value
- Al cannot overcome the inherent thoughness of screening rare events

 NOTE: the analysis of this case is much harder with the real Apple proposal, but the results are not that different

- Even in a more balanced scenario (e.g. assessing loan risk) there is no guarantee that false negatives are evenly distributed in the overall population
- It is perfectly possible that false negatives are biased against some factor hidden in the training data

Total Population (P+N)	Prevalence P/(P+N)	True Positive Rate TPR=TP/P	
10.000	0,500000	0,950	0,950
		PREDICTED CONDITION	
		Predicted Positive (PP)	Predicted Negative (PN)
		5.000	5.000
ACTUAL CONDITION	Actual Positive (P)	True Positive (TP)	False Negative (FN)
	5.000	4.750	250
	Actual Negative (N)	False Positive (FP)	True Negative (TN)
	5.000	250	4.750

Conclusions

- Don't ask technology to steer the trolley for you, that's only a way to avoid a moral decision
- Ask X technology (and technologists) to be clear and transparent on what it can and it cannot do, and to be clear and transparent on figures (precision, recall, specificity...)

And take error into account!

Department of Electrical, Computer and Biomedical Engineering

Steering AI: Legal Challenges and Ethical Standards from an Engineering

Perspective

Thursday 18 April 2024

Museo della Tecnica Elettrica Via Ferrata, 6 27100 Pavia

With the contribution

the program here