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Abstract—In this paper, a method for unknown object track-
ing in output images from 360-degree cameras called Modified
Training-Learning-Detection (MTLD) is presented. The proposed
method is based on the recently introduced Training-Learning-
Detection (TLD) scheme in the literature. The flaws of the TLD
approach have been detected and significant modifications are
proposed to enhance and to elaborate the scheme. Unlike TLD,
MTLD is capable of detecting the unknown objects of interest
in 360-degree images. According to the experimental results, the
proposed method significantly outperforms the TLD method in
terms of detection rate and implementation cost.

I. INTRODUCTION

The 360-degree camera is a type of camera which provides
360-degree view. By a wider field of view, the required
number of installed cameras can be significantly decreased in
comparison with the case of commonly used normal cameras.
The limited field of view for conventional cameras confines
their applications as well. For example in the cases of areas
like factories, big halls, or even in one single room, there are
many blind spots when conventional cameras are in use. When
the conventional security systems are replaced by 360-degree
cameras, there will be a significant reduction of hardware costs,
software license and maintenance costs. Thus the application
of the new sensor of 360-degree cameras is growing in var-
ious areas such as robotics, car traffic control and intelligent
surveillance systems.

Many methods have recently been developed to use similar
types of cameras in various applications. Harabar et al. [1]
utilized such an optic to automatically pilot a small traffic
surveillance helicopter or a robot. Nayar et al. [2] produced
a system which is able to detect activity in the monitored
scene by fusing catadioptric sensors with PTZ cameras. In
another application [3], a video surveillance system based
on a catadioptric sensor for detecting and tracking objects
in complex environments is presented. Human tracking for
surveillance and security purposes is one of the important
techniques which has attracted much attention in the state of
the art (e.g., [4]). In some works [5, 6], color information
has been used to analyze an object and resolve occlusion
problems or to estimate the likelihood of objects matching
for multiple human tracking in different cameras. In [7], a
method based on the geometry and homography calibration has
been introduced to overcome nonlinear spatial correspondences
between the omnidirectional camera and the wide zoom range
(PTZ) camera in object tracking application. Cui et al. [8]

used background differencing and radial profile for object
detection and tracking in dual camera systems. The nonuniform
resolution of the omnidirectional camera and the corresponding
calibration have been used in [9]. Multiple cues such as color,
shape, and position are selected as human tracking features. In
the images of fixed camera scenarios, the background is still.
So by using background detection and subtraction, one can
easily detect foreground objects. In other words, by looking
for only moving objects in a more limited area, one can find
the desired objects. There are many other methods for human
detection and tracking [10–17] in literature. The human body
is usually described by some simple shapes such as a circular
shape for the top part and a cylindrical shape for other body
parts. Thus, a very commonly used method is modeling the
human appearance to 2d [10] or 3d shapes [11]. Some other
methods are using offline-trained objects for the sake of human
tracking [12].

II. CONTRIBUTION OF THIS PAPER

In this paper, the unknown object tracking in the images
from the 360-degree camera is considered. Tracking of different
objects e.g., vehicles, airplanes and humans by using of a
unique system is very fascinating and various applications
based on unknown object tracking can be designed to use in the
industry. The problem of unknown object tracking in images
is much more complicated than human tracking. Since no
information about the desired object is available, model-based
object tracking and also offline-trained object tracking are not
applicable. Instead, other methods based on energy minimizing
and/or online-training methods seem practical [15, 16]. The
given contribution here is based on the recent online track-
ing approach called Learning-Training-Detection (TLD) [18].
The proposed method in this paper which is called Modified
Learning-Training-Detection (MTLD) imposes important mod-
ifications on the TLD components to elaborately adapt it to
solve the problem of unknown object tracking in 360-degree
images. The problems of TLD and our modifications will be
explained in the next sections.

This paper is organized as follows. The characteristics of
360-degree images are described in Section III. Section IV
gives an overview of the TLD method. The MTLD method
and its application on 360-degree images is explained in Sec-
tion V. The experimental results, evaluation and comparisons
are shown in Section VI. Section VII concludes the paper.
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Fig. 1: A 360-degree image

III. 360-DEGREE IMAGES

The samples of output images from a 360-degree camera are
presented in this section. To generate the dataset [19], several
video samples are used whose snapshots are shown in Fig. 1
and Fig. 2. The characteristics of video samples are as follows:

1) Natural in-plane rotation
2) Out-of-plane rotation
3) Moving camera
4) Various types of objects
5) High image resolution
6) Complex background
As shown, the 360-degree images are polar images in which

the top region of a normal image has been transferred to the
center of the corresponding polar image and other regions
are arranged in the peripheral regions around the center. On
the other hand, almost all video samples contain out-of-plane
rotation which means the camera is looking at the diverse
sides of the same object in different frames of each video.
The used data-bank consists of some samples for both moving
and fixed cameras wherein we are interested in the tracking
of different objects e. g., human, airplane, car, motorcycle
with diverse shapes and features. So in general, we need
to develop an unknown object tracking method. Applying
conventional tracking methods for unknown object tracking is
very challenging. For example it would be very costly for the
image size of 1500× 1500 pixels as used in the experiments
due to the total amount of processing load.

IV. AN OVERVIEW ON TRAINING-LEARNING-DETECTION

Training-Learning-Detection is an object tracking method
which intends to track objects in normal videos when an

unknown object is manually selected in the first frame. It uses
online training to continuously detect the desired object and
track it in successive frames. This method is composed of four
modules including detection, tracking, learning and integration
shortly described as follows.

1) The detection module looks for interesting objects in all
frames independently. First, it segments the input image
into all possible overlapping candidates with the same
aspect ratio as of the desired object in the first frame.
Then these candidates are fed to a hierarchical structure to
be classified as desired object and or rejecting candidate.

2) The tracker estimates the current position of the object by
using its position in the last frame. The tracking method
is based on pyramidal Lucas-Kanade that uses Median-
Flow for tracking [20]. However, in the TLD a failure
detection [18] has been added to the median displacement
measuring of the object’s points.

3) The learning module uses two distinct parts of P and
N experts to generate positive and negative examples
respectively. P and N experts continuously bring new data
for detector and tracker respectively. In other words P-
experts identify just false negatives and N-experts identify
only false positives [18].

4) The integrator compares the output of tracker and detec-
tor, then selects the final output by giving more priority
to the detector.

The detector has a hierarchical framework to reject some of
the candidates in each step. It is composed of three cascading
classifiers as follows:

1) Variance Classifier: It rejects the non-object candidates
(e.g., sky, street, snow).

2) Ensemble Classifier: It uses a set of pixel comparisons
on a randomly chosen set of pixels [21].

3) Nearest Neighbor Classifier: It compares the similarity
between remaining candidates and training data to a
predefined threshold set to 0.65.

To evaluate the TLD method, we have applied it on 360-
degree images. According to the experiment, the variance
classifier is robust to rotation and can classify the candidates
from 360-images. The ensemble classifier is sensitive to in-
plane rotation and the nearest neighbor classifier is sensitive
to both in-plane and out-of-plane rotation. In the next section,
we improve the TLD method to be able to track the objects in
360-degree images.

V. MODIFIED TRAINING-LEARNING-DETECTION

A. Image Rectifying

Fig. 3 shows the building blocks of the proposed MTLD
method. To overcome the problem of in-plane-rotation, a rec-
tification transformation is engaged which converts the polar
image of Fig. 1 to a normal image as shown in Fig. 4.To rectify
the polar images we use the following equation:

xr = G(yp)× cos(xp), yr = G(yp)× sin(xp) (1)
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Fig. 2: 360-degree images

Fig. 3: Block diagram of the proposed MTLD method

where (xp,yp) and (xr,yr) are polar point and correspondent
rectified point respectively and G(.) is the stretching function
over the Y axis. As a result, the direction of each object for a
given frame is changed in a manner to become upright.

Fig. 4: Rectified image of Fig. 1

B. Classifier Modifying

By using image rectification in the MTLD approach, in-
plane rotation is removed and the desired object could pass the
ensemble classifier. However, in some cases, the desired object
is still being rejected by the nearest neighbor classifier due to
the out-of-plane rotation problem. To resolve this problem, the
nearest neighbor classifier is modified in such a way to accept
the desired object with out-of-plane rejection. This increases the
acceptance rate of the nearest neighbor classifier and thus the
one of whole system, but also the false positive rate increases.
To tackle the latter concern, we have observed that many of
objects are very far from their location in the previous frame.
On the other hand, due to the high field of view of 360-degree
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cameras, the movement of the desired object in both scenarios
(fixed point camera and moving camera) is very limited. So
we can easily ignore the remaining objects that are located
far from the desired object. The block diagram of the proposed
modified detector method is shown in Fig. 5 wherein a distance
classifier is used to control the false positive rate caused
by the modification of the nearest neighbor classifier. Thus,
objects disqualified subjected to the constraint | di−dP |> 20
are rejected wherein di and dP denote the center of mass for
candidate objects and last accepted object respectively.

Fig. 5: Block diagram of the modified detector method

The decision making strategy in the integrator of the TLD
scheme is very naive with room left for improvement. Re-
garding this matter, a comparison between the location of the
detector output and tracker is made and the object which is
closer to its location in the last frame is selected. So both the
location of the object and its similarity to the accepted object in
the previous frame are considered for output selection. It revives
the role of the integrator in TLD which ignores the tracker for
decision making. As a result, tracker and detector have equal
chance to determine the final output. The experiments show
that the acceptance rate for a desired object increases as well.

C. Restricting the Search Area

The proposed MTLD approach attempts to decrease the
computational cost of the TLD method as well. For this sake,
the object searching area in the MTLD method is restricted
to a region around the position of the desired object in the
previous frame. Because of the wide field of view in 360-
degree images, even when the camera is moving, the objects in
successive frames do not move swiftly. So the searching area
can be limited without compromising the tracking performance
rate.

D. Changing in the Detection Strategy

TLD uses the output of the tracker to train the detector.
However, it is observed that it does not play an important
role to update the detector. To increase the detection chance
of the desired object, the current detected objects is included
in the positive example set rather than the tracker output.
This increases the chance of object detection especially in the
case of out-of-plane rotation. According to the observation on
various types of 360-images, a variation of the object size
between two successive frames has been noticed. Thus, the
object size variation in successive images is limited to ±25%
in MTLD. The evacuation strategy for the object model has
also been improved in MTLD. In the proposed strategy, the
random selection has been substituted by a FIFO (i.e., first input

TABLE I: Evaluation results in terms of recall and precision

Video FramesNo TLD MTLD
Recall/Precision Recall/Precision

Snorkeling 683 0.038 / 1.0 0.84 / 0.87
Snowboard 248 0.516 / 0.516 0.67 / 0.67

Airplane 761 0.76 / 0.76 0.76 / 0.74
Street1 58 0.65 / 1.0 1.0 / 1.0

Pedestrians 129 0.64 / 0.64 0.86 / 0.86
Motor cycles 83 1.0 / 1.0 1.0 / 1.0
Car Racing 330 1.0 / 1.0 1.0 / 1.0

Street2 294 0.92 / 1.0 1.0 / 1.0
Motocross 250 1.0 / 1.0 1.0 / 1.0

Mean - 0.6238 / 0.8749 0.8596 / 0.8615

first output) model. Using FIFO as an evacuation strategy will
decrease the overfitting to the desired object in the first frame.

VI. EXPERIMENTAL RESULTS

To evaluate the proposed MTLD method, a set of 9 different
video samples [19] with diverse frame numbers and various
desired objects as shown in Fig. 1 and Fig. 2 is used. They
have been captured in different scenes and the desirable objects
for tracking include cars, motorcycles, pedestrians, the human
head the human body and airplane. They have both in-plane
and out-of-plane rotations. Our initial experiments showed that
TLD cannot track objects in 360-degree images due to the lack
of the rectification step. Thus, at first the input frames have
been rectified and then inputted by TLD as done in MTLD
modules. To evaluate the performance, the recall and precision
variables have been used from the following equations.

Recall =
TP

TP +FN
, Precision =

TP

TP +FP
(2)

where TP, FN and FP indicate true positive, false negative
and false positive respectively. In this case, precision P is the
number of true positives divided by the number of all responses
and recall is the number of true positives divided by the number
of object occurrences that should have been detected [18]. The
proposed method is still sensitive to the background clutter. The
results of the evaluation of the MTLD method and the TLD
method in terms of recall and precision measures are listed in
Tab. I.

According to the information of Tab. I, the proposed MTLD
method outperforms the TLD method significantly. The mean
recall rate has been improved by more than 20% while the
precision rate stays in the same range as for the TLD method.
Also, TLD is not successful in object tracking in the case
of high rate of out-of-plane rotation in video samples of
snowboard, street1, street2 and pedestrians. However, MTLD
shows better results in these sample videos. Moreover, the TLD
method fails to track the diver’s head when he goes underwater.
Therefore, TLD is very sensitive to environment changing,
while the MTLD method can handle this variation. In the video
of airplane, in some frames, the desired object goes to a region
with a complex background which has some patterns similar to
the object. Thus, neither MTLD nor TLD can track the object
in those frames. The results of evaluation of recall measure for
both methods of TLD and MTLD have been shown in a bar
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TABLE II: Effect of each modified module on the recall rate
of Snorkeling

Modules Recall
TLD 0.038

TLD + NN 0.282
TLD + NN + Dis 0.761

TLD + NN + Dis + Int 0.770
TLD + NN + Dis + Int + T 0.821

TLD + NN + Dis + Int + T + FIFO 0.840

graph in Fig. 6. According to Fig. 6, MTLD has improved the
recall variable for most of the video samples. For other video
samples the recall value remains unchanged.

To evaluate individual effect of the each proposed modifi-
cation in Section V, we applied each module on snorkeling.
Because it has maximum recall difference between the MTLD
and TLD. Restricting the search area does not have any
effect on the recall rate and just increases the implementation
speed. Let the NN threshold modification, Distance classifier,
Integrator modification, changing the input source of the trainer
and using the FIFO strategy for fulling the training queue be
denoted by NN, Dis, Int, T and FIFO respectively. Tab. II shows
the result of the above experiment.

Fig. 6: Results of recall measures for MTLD and TLD

In another experiment, we measured the average computa-
tional time per frame for both MTLD and TLD. The com-
parison result has been shown in Fig. 7. As indicated, the
implementation speed has been efficiently increased in MTLD
for all video samples except for the snorkeling video. Since
TLD mostly rejects all candidates of snorkeling in the first
steps of the detector, the candidates do not pass through all
steps of the detector. Thus, some modules of TLD are not
involved in most frames of this video and therefore the total
time consumption is limited. Finally, Fig. 8 and Fig. 9 show the
whole image and area of interest for the searching region for
the airplane video sample respectively. According to the figures,
MTLD searches the desired object in more limited area than
TLD. By searching the desired object in a limited area of the
image, the number of candidates is dramatically reduced. So
MTLD tracks objects in a lower period as shown in Fig. 7.

Fig. 7: Computation time comparison

VII. CONCLUSION

In this paper, we proposed an efficient method to track
unknown objects in 360-degree images. We improved a state-
of-the-art method of TLD to overcome the tracking prob-
lems in the challenging conditions of 360-degree images. The
resolution of our 360-degree images is much higher than
the TLD dataset, thus we suggested to restrict the searching
area to decrease the computation load in the MTLD method.
The experimental results show that our method outperforms
the state-of-the-art method of TLD. This method can track
objects even when they have out-of-plane rotation and varying
environment. However, like TLD, our method is fragile to
complex backgrounds when the desired object is similar to a
part of the background. Therefore, our future work will address
this concern.
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