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Abstract—Human gait is an important biometric feature for
person identification in surveillance videos because it can be
collected at a distance without subject cooperation. Most existing
gait recognition methods are based on Gait Energy Image (GEI).
Although the spatial information in one gait sequence can be
well represented by GEI, the temporal information is lost. To
solve this problem, we propose a new feature learning method
for gait recognition. Not only can the learned feature preserve
temporal information in a gait sequence, but it can also be
applied to cross-view gait recognition. Heatmaps extracted by a
convolutional neutral network (CNN) based pose estimate method
are used to describe the gait information in one frame. To model
a gait sequence, the LSTM recurrent neural network is naturally
adopted. Our LSTM model can be trained with unlabeled data,
where the identity of the subject in a gait sequence is unknown.
When labeled data are available, our LSTM works as a frame
to frame view transformation model (VTM). Experiments on a
gait benchmark demonstrate the efficacy of our method.

I. INTRODUCTION

Gait recognition focuses on the problem of identifying
people by the way they walk. Compared to face and iris, gait
can be obtained from a distance without cooperation. Such
an advantage makes it quite suitable for video surveillance.
While applying gait recognition to real applications, we are
facing several problems. The gait of a person can be affected
by his shoes and weight-carrying conditions. And viewing at
different angles often makes the gait look very different.

Many methods have been proposed to solve the cross-view
gait recognition problem. Bodor et al. [|] proposed to use
the image-based rendering technique to adapt the input to the
view matching the training view, and thus solved the view
angle changing problem. This 3D method is not suitable for
the public surveillance scenario because it requires several
calibrated cameras. Goffredo et al. [2] proposed to develop
view-invariant gait features using angular measurements and
trunk spatial displacement. Zheng et al. [3] developed view
transformation model (VTM) for gait recognition, which trans-
forms gait features from different views to the same view. Gait
Energy Image (GEI) [4] is used as gait feature in this method.
GEI is calculated by averaging the binary silhouette of human
body in one gait cycle. The shape of the human body and
the spatial information is well retained in the GEI template,
while the temporal information is lost because of averaging.
To preserve the temporal information, Wang et al. [5] proposed
Chrono-Gait Image (CGI), which encodes gait contour images
with a multichannel mapping. Castro et al. [6] proposed a local
motion based gait descriptor.

In this paper, we propose a new feature learning method for
gait recognition. Deep neural networks are used in the feature
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Fig. 1. Illustration of our framework. Each frame is transformed to a joint
heatmap using a CNN. Then joint heatmaps are fed into a LSTM. The hidden
values at the last timestep is regarded as gait feature.

learning process. Instead of using binary silhouette to describe
each frame, we use the human body joint heatmap extracted
by a recent pose estimation method [7]. After obtaining the
joint heatmap, we feed the joint heatmap of consecutive frames
to Long Short Term Memory (LSTM) [§] to model the gait
sequence. The hidden activation values at the last timestep
is used as our gait feature. The gait feature extraction is
illustrated in Figure 1. Compared to GEI, our feature has
several advantages. Binary silhouette may be affected by the
covariate factors such as wearing a coat and carrying a bag.
However body joint heatmap is not affected by these covariate
factors when the pose estimation method is robust enough.
The silhouettes in one gait cycle are averaged to represent
the gait in GEI. Some dynamic information is lost during
the averaging process. To keep the dynamic information,
we use LSTM to model a gait sequence. LSTM is good
at modeling sequences and has achieved many promising
results in sequence modeling tasks such as automatic speech
recognition (ASR) [9] and machine translation [10]. However,
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as far as we know, it has not been used in gait recognition
before. Our method demonstrates the effectiveness of applying
LSTM to gait recognition.

When solving the cross-view gait recognition problem,
many existing methods [3, | 1] try to transform the gait feature
of the whole sequence in one view to another view. GEI is
usually used as the gait feature in those methods, and thus they
suffer from the aforementioned problem of losing temporal
information. Our method is different from them in that we try
to transform the joint heatmap across views frame by frame.
This is a much more accurate modeling method because it can
preserve both the temporal and spatial information among the
frames. When training the model, we have the LSTM encode
all the joint heatmap of several frames in one view into a vector
and use this vector to decode the joint heatmap in another view.
This vector contains the information in the whole sequence and
is used as the gait feature.

Unlabeled gait sequences can be used for training in our
method. There are a large number of surveillance cameras
gathering data all the time. A huge amount of unlabeled gait
sequence can be obtained by these cameras. These data cannot
be used in the existing cross-view gait recognition methods
because those methods rely on corresponding data in both
views for training. Our gait feature learning model can be
trained in the autoencoder fashion. The input and output of our
model can be the same sequence. When training the LSTM
model to reconstruct gait sequences under two views, it can
learn the common aspects between the two views and thus
improve the cross-view gait recognition performance.

Our contributions can be summarized as follows:

1. We propose a new data driven feature learning method for
gait recognition.

2. We can make use of unlabeled data for training.

3. Our frame to frame matching method achieves superior
performance in most cases on a gait benchmark.

II. RELATED WORK

Gait recognition has been extensively studied in the last
30 years. Generally speaking, cross-view gait recognition
methods can be roughly divided into three categories. The
first category of methods try to construct 3D gait information.
Bodor et al. [1] proposed to use the image-based rendering
technique to adapt the input to the proper view matching
the training view, and thus solved the view angle changing
problem. Zhao et al. [12] used video sequences captured
under multiple views to construct 3D human model. This kind
of methods are not suitable for public surveillance scenario
because they require several calibrated cameras. The second
category of methods is to develop view-invariant gait feature.
Goffredo et al. [2] first estimated the lower part of body limb
pose and then projected the gait parameters to the lateral plane.
Angular measurements and trunk spatial displacement were
used as a view-invariant gait feature. One limitation to this
method is that it cannot be applied to frontal view because
their method cannot estimate limb pose under that view. Kale
et al. [13] used perspective projection model and optical flow
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based structure from motion equations to generate side-view
gait from other views. Camera calibration is also needed
in their method. The third category learns a transformation
which transforms gait sequences from one view to another
view. Sample pairs of the same subject from both views are
needed for training the transformation model. A lot of methods
belonging to this category have been proposed in the past
few years. Kusakunniran et al. [14] proposed to optimize
the GEI feature vectors using Linear Discriminant Analysis
(LDA) and build view transformation model (VTM) based on
the optimized GEI. VTM construction is reformulated using
support vector regression (SVR) in [15] to predict the local
motion in one view using local region of interest (ROI) in
another view.

The method proposed in this paper belongs to the third
category. Similar to [2], we extract the pose of body. Besides
lower part body joints, 12 body joints among the whole body
are detected using the pose estimation method [7]. We use
LSTM as our view transform model and learn the gait feature
in a data driven manner. Leveraging the method in [16], the
sequence of estimated joint heatmap from one view is either
transformed to another view or used to reconstruct itself. The
LSTM model encode the whole sequence into one vector and
this vector is used as a feature for gait recognition.

Recently, several CNN based methods have been applied
to gait recognition. Yan et al. [17] fed the GEI to a CNN
to predict multiple attributes and thus learn a gait feature.
However, this is also a GEI based method and still suffers from
losing temporal information problem. Wu et al. [18] proposed
to learn CNN features from image set and used silhouettes in
a sequence to learn the gait feature. Feature vectors of several
frames are added up in their method. Castro et al. [19] used
CNN to learn high-level descriptors for gait from optical flow
components. The temporal information kept in their method is
based on low-level motion features, while our LSTM model
can capture high-level motion features from the joint heatmap.

III. HUMAN POSE ESTIMATION

GEI has been used in gait recognition for a long time.
It is generated by averaging the aligned binary silhouettes
of human body in one gait cycle. The binary silhouette is
able to describe the body state in one frame well and the
computation cost of extracting silhouette is very low. However,
using silhouettes also has some disadvantages. Silhouette is
sensitive to changing clothes and changing weight-carrying
conditions. These variations decrease the gait recognition
accuracy. To maintain the ability of describing body state and
keep from unwanted variations, we decide to use a heatmap
of body joints generated by a pose estimation method instead
of using binary silhouettes. Fig. 2 shows some examples
of body joint heatmap. The body joint heatmap is used to
estimate the position of body. The position of the brightest
point on one heatmap is regarded as the position of the
corresponding joint. Around the brightest point, there is a
bright spot area, which means that area is of high response
and likely to be the position of that joint. The pose of the
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Fig. 2. The human pose estimation model. This is a modified version of the
model in [7].

whole body can be clearly represented using the joint heatmap.
Moreover, if the pose estimation method is robust enough,
the body joint heatmap is invariant to changing clothing and
changing carrying conditions, making it very suitable for gait
recognition.

Among the pose estimation methods, we adopt [7]. To
reduce the computation in the next step, we reduce the size
of the output heatmap of the model by adding a pooling layer
after the third convolution layer. Our whole model is shown in
Fig. 2. Details of training this model are described in Section
V.

IV. GAIT SEQUENCE REPRESENTATION

Previously, gait sequence was usually represented by GEI.
Part of temporal information is lost during the averaging step.
To solve the problem, we propose to directly feed the joint
headmaps of consecutive frames to LSTM and use the hidden
value at the last timestep as the gait sequence representation.
The LSTM model is shown in Fig. 3. To train the model, we
follow the method in [16], which is an unsupervised method to
learn video representations. In the encoding stage, a sequence
of inputs are fed into LSTM. In the decoding stage, the
objective is to reconstruct the input sequence in the reversed
order. Different from [16], we add the dropout regularization
[20] after the encoding stage to reduce overfitting.

Our model is able to work in two scenarios: 1) matching
scenario; 2) unsupervised scenario. The matching scenario
setting is similar to the existing view transformation model
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Fig. 3. The gait feature extraction model. The output gait sequence 01, U2,
v3 is either the same as the input sequence v1, va, v3 or the input sequence
captured under a different view.

(VTM) setting. In this scenario, two views capturing the same
gait sequence are available. One view is regarded as the
source view and the other is regarded as the target view.
Our model tries to transform gait sequences in the source
view to the target view. If the input sequence is from the
source view, the output is the corresponding sequence from the
target view. If the input sequence is from the target view, the
output is itself. The training process can automatically learn
the correspondence between the two view of gait sequences
without human expert knowledge in gait. In order to guide the
model to capture the right transformaiton, we constrain that
the sequence pair is synchronized (e.g. in Fig. 3, v; and vy
are roughly from the same timestamp). This matching scheme
works better than the GEI template based VTM because the
frame to frame temporal information are fully kept in our
method.

In the unsupervised scenario, we simply mix the sequences
in both views to train LSTM, and we do not have correspond-
ing gait sequence pairs in both views. By letting the input and
output to be the same sequence, the LSTM model can learn
how to reconstruct the gait sequence in both views. The LSTM
model can learn the common aspects between the two views
in this way and thus improve the cross-view gait recognition
performance.

V. EXPERIMENTS

In this section, we first describe how to train the human
pose estimation model and how to train the feature extraction
model. We then test the performance of the proposed gait
feature on the CASIA-B multi-view gait database [21]. The
CASIA-B dataset contains the videos of 124 subjects walking
under 11 views (0°, 18°, 36°, 54°, 72°, 90°, 108°, 126°,
144°, 162°, 180°). For each view of a subject, there are 6
normal walking sequences, 2 walking with a coat sequences,
and 2 walking with a bag sequences. Only the normal walking
sequences are used in our experiment. Typically in the liter-
ature, this dataset is divided into two groups. The first group
containing 24 subjects is used for training the gait recognition
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TABLE I
AVERAGED DISTANCE (PX) BETWEEN PREDICATED JOINTS POSITION AND GROUND TRUTH.

Joints hips | rightleg | rightfoot | leftleg | leftfoot | head

leftarm

leftforearm | lefthand | rightarm | rightforearm | righthand

Distance | 6.43 5.76 4.39 7.69 5.08 0.76

0.19 0.27 8.58 3.23 1.48 8.87

model and the remaining 100 subjects are used for evaluating
the performance of the model.

A. Training a Human Pose Estimation Model

We use the Human3.6M dataset [22] to train the human pose
estimation model. Human3.6M is currently the largest video
pose dataset, which contains 15 activity scenarios performed
by seven different professional actors. All the activities are
captured using four static cameras and Vicon motion capture
system. The 2D body joint locations and actor segmentation
masks are provided.

Because the video resolution in CASIA-B dataset is rel-
atively low, we cannot estimate the position of small body
joints accurately. So we only use 12 body joints out of 32
provided by Human3.6M dataset. The body joints we are
using include “hips”, “rightleg”, “rightfoot”, “leftleg”, “left-
foot”, “head”, “leftarm”, “leftforearm”, “lefthand”, “rightarm”,
“rightforearm” and “righthand”. An example heatmap example
can be found in Fig. 2. We first train the model described
in Section III using the data in Human3.6M dataset directly.
After finishing training, we observe that the performance on
validation set is good. When testing the model on the CASIA-
B dataset, the performance of that model is quite poor. The
declination of performance is because the two dataset look
very different. To solve this problem, we decided to generate
training data ourself. Each generated training sample contains
two parts: the foreground and the background. The foreground
part is segmented human body from Human3.6M dataset
and the background is obtained from CASIA-B dataset. To
make the foreground looks more similar to CASIA-B dataset,
we change the color image to gray scale and adjust each
foreground part by adding a constant so that the mean value
of the foreground part is equal to the mean value of human
body from CASIA-B dataset. Some examples of the generated
training images are showed in Fig. 4. We use 6 subjects for
training and 1 subjects for validating. Because Human3.6M
is a huge video dataset, we do not use all the frames in
it. We crop one frame in every 10 frames from the videos
in Human3.6M. There are 187,924 images for training and
23,141 images for validating. The size of an input of the CNN
is 1 x 256 x 256 and the size of an output of the CNN is
12 x 32 x 32. The averaged pixel distance between predicated
joints position and ground truth on validation set is showed in
Table I.

B. Training LSTM Model

Before training the LSTM model, we first need to align
the CASIA-B dataset because our view matching method
requires synchronized data from two views. We first modify
the gait period estimation method in [14] to align the videos

Fig. 4. Examples of generated training images. The foreground is from
Human3.6M dataset [22] and backgrqund is from CASIA-B dataset [21]

automatically. The autocorrelation is replaced with convolution
to find the phase difference between two gait sequences. When
the phase difference is grater than a quarter of the gait period,
the automatic method will fail. So we manually check the
result and correct the errors. The system is implemented using
Theano [23]. We empirically set the number of hidden values
in LSTM to be 128 and the number of timesteps to be 16.

C. Cross-View Gait Recognition

Following [24], one of 0°, 54°, 90°, 126° is selected as
probe view. For each probe view, one of the remaining 10
views are used as the gallery view. So there are 600 sequences
in probe set and 600 sequences in gallery in each testing setup.
The identity of a gait sequence in gallery view is known. For
a gait sequence in probe view, we find its nearest neighbor in
gallery view and regard the nearest neighbor’s identity as its
identity.

The result of our method under three settings are reported.
1) In the no training setting, we random initialize the weights
in LSTM and use the random initialized model to extract
gait features. The distance between two gait sequences is
calculated based on the extracted features. To reduce the noise,
we calculate the distance for five times using different random
initialized model and average the obtained distances. The
averaged distance is used in nearest neighbor classification.
2) In the unsupervised setting, we train a LSTM model for
each pair of gallery view and probe view combination. The
training gait sequences from both the gallery and probe views
are used to reconstruct the itself. 3) In the matching setting,
one of the gallery view and probe view is regarded as the
source view and the other is regarded as the target view. The
training gait sequences in the source view are transformed to
the target view and the training gait sequences in the target
view are also used to reconstruct itself. Because gait can be
viewed more clear under 90°, the gallery view or the probe
view which is closer to 90° is chosen as the target view. We
compare our method with the following four methods: 1) the
baseline method [21]; 2) Motion co-clustering method in [24];
3) Appearance Conversion Machine (ACM) [11] and 4) C3A
method [25].

To fully use all the information in a sequence, we calculate
the distance of two gait sequences in the following way.
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Each sequence in the CASIA-B dataset is usually several
times longer than 16, so we cut a whole gait sequence into
several short sequences of length 16. The offset between two
adjacent sequences is 1 frame. A feature vector is extracted
for each short sequence using the LSTM model. Let G =
{gilt = 1,...,n4} be the feature vectors extracted from a
gait sequence in gallery set and P = {p;|i = 1,...,n,} be
the features vectors extracted from a gait sequence in the probe
set. The distance between these two sequences is calculated
by

DIST(P,G) =Y mind(p;,g;), (1)
=1 7

where d(-,-) is cosine distance.

Recognition results are shown in Fig. 5. Detailed result
values can be found in the supplementary material. To make
the results more appreciable, we also use Table II to compare
the results. We divide views into front side (i.e. 0°-72°) and
back side (i.e. 108°-180°). The results within one side are
averaged in Table II. From these results, we can observe that

1. Our LSTM model with random initialized weights works
quite well when the gallery view and probe view are similar,
i.e. the angle difference is 18°. But it is worse than Motion
co-clustering and ACM when one of gallery and probe set is
from the front side and the other is from the back side. For
example, the accuracy of ACM and Motion co-clustering is
much higher than our method when the gallery is 180° and
probe is 0°. The good results of GEI based methods are
because GEI under these two views are similar. But there
is quite large difference between the heatmap sequences
from the front side and back side. So the random initialized
model works poorly.

2. For most of times, the recognition accuracy increases after
unsupervised training, which shows that unlabeled data can
be leveraged by our method.

3. Our matching method achieves the best results when the
probe view is 90°. It also achieves the best results when
the gallery view and probe view are both front side or back
side in other three probe views. Because the heatmap of
synchronized frames under a font side view and a back
side view are quite different, our model needs more training
pairs to learn the transformation. The performance of the
matching model is much better than random initialized
model when one of the gallery view and probe is from front
size and the other one is from back side, but it cannot get
the best accuracy only trained with gait sequences of 24
subjects. We firmly believe our model can achieve better
results when more data are available.

VI. CONCLUSION

In this paper, we present a novel feature learning method for
gait recognition. A CNN based pose estimation method is used
to extract body joint heatmap for each frame. LSTM is then
used to model the high level motion feature in the heatmap
sequence. Our model has the advantage that it can be trained
with unlabeled data and it performs view transformation at

TABLE II
AVERAGED ACCURACY OF CROSS-VIEW GAIT RECOGNITION USING
DIFFERENT METHODS. “-” MEANS THAT THE CORRESPONDING VALUE IS

NOT REPORTED IN [25].

Probe view 0° 54°
Gallery view Front | Back | Front | Back
Baseline [21] 7.8 12 16.3 15.8

Motion co-clustering [24] 45.8 50.4 70.3 36.0

ACM [I11] 58.8 57.6 75.3 53.2

C3A [25] - - 71.8 40.6
No training 57.5 17.5 68.3 24.3
Unsupervised training 57.0 29.7 72.2 39.4
Matching 63.6 40.8 83.8 43.9

Probe view 90° 126°
Gallery view Front | Back | Front | Back
Baseline [21] 22.6 22.8 14 21.5

Motion co-clustering [24] 49 47.6 39.6 73.3

ACM [11] 56.4 57.2 50.4 78.5

C3A [25] 55.8 53.6 424 72.3

No training 43.6 40.8 33.8 65.0
Unsupervised training 49.9 46.7 447 67.7
Matching 60.0 60.0 41.8 81.9

frame level. Comprehensive experiments on the CASIA-B
datasets demonstrate the effectiveness of our method for cross-
view gait recognition.

Currently, our gait feature is invariant across two views. We
will try to make it handle more views in the future.
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