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Abstract—In this paper, we analyse the use of Convolutional
Neural Networks (CNNs or ConvNets) to discriminate vegetation
species with few labelled samples. To the best of our knowledge,
this is the first work dedicated to the investigation of the use
of deep features in such task. The experimental evaluation
demonstrate that deep features significantly outperform well-
known feature extraction techniques. The achieved results also
show that it is possible to learn and classify vegetation patterns
even with few samples. This makes the use of our approach
feasible for real-world mapping applications, where it is often
difficult to obtain large training sets.

Index Terms—Deep Learning; Remote Sensing; Feature Learn-
ing; Image Classification; Machine Learning; High-resolution
Images;

I. INTRODUCTION

Phenology is the study of the life cycles of living beings,
one of the most important indicators of climate change [1], and
is often applied to the analysis of plant community changes
over time, monitoring alterations such as leafing, budding, and
flowering, usually based on field observations. Towards this
monitoring, a key issue is to first identify plant species, which
has been recently performed based on sensor images [2]–
[5], that support this kind of studies without the need of
on-the-ground observations, that are typically time consuming
and error prone, especially in tropical regions where a single
image may include a high number of species [2]. The main
objective, in these cases, is the identification of regions within
the vegetation sensor images that might be associated with
species of interest, i.e., those whose phenology might be useful
to be observed over time. Although interesting, this task of
identify specific species for phenology studies suffers from
several challenges, such as difficult to establish a specific
pattern for each specie, given the high intraclass variance, and
also distinguish between different species, given the interclass
similarity of distinct species. Therefore, in this paper, we

evaluate and analyze different strategies of exploiting pre-
trained ConvNets for vegetation specie discrimination.

Through the years, several approaches have been proposed
to support the discrimination of individuals of particular
species [6]–[10]. Works related to this task can be divided
into two main groups: those based on the use of machine
learning fusion approaches, and those based on time series
representations. All those works use general-purpose color
and texture descriptors to represent image regions, which have
several drawbacks. The major one is that different descriptors
may produce distinct results depending on the data. Thus, it is
imperative to design a full set of experiments in order to eval-
uate many descriptor algorithms looking for the most suitable
ones for each application [11]. This process is also expensive
and, likewise, does not guarantee an effective descriptive rep-
resentation, since encoding the spatial features in an efficient
and robust fashion is the key to generate discriminatory models
for high spatial resolution images, which require state-of-the-
art methods to handle the high complexity and huge amount
of information.

In order to address these limitations, a resurgent method,
called deep learning, has been used to learn specific and
adaptable spatial features and classifiers for the images, all at
once. Deep learning [12], [13] is a branch of machine learning
that refers to multi-layered interconnected neural networks.
Methods related to this branch has been achieving remark-
able success in several visual recognition problems [14]–[22],
showing effective capacity of encoding both visual properties
and their spatial distribution based on the data itself [23].

Looking for exploiting these advantages, this paper inves-
tigates the use of data-driven deep descriptors for vegetation
specie discrimination, being totally different from the afore-
mentioned initiatives. Specifically, two possible strategies of
exploiting ConvNets are evaluated targeting the discrimination
specie task: (i) pre-trained ConvNets used as feature extractors,



and (ii) fine-tuned ConvNets. Both strategies rely on pre-
trained ConvNets, i.e., networks trained on different data
from the data of interest. The former strategy simply uses
a pre-trained ConvNet as a feature extractor, by removing
the last classification layer and considering its previous layer
(or layers) as feature vector of the input data. The latter
strategy performs a fine-tuning of the parameters of a pre-
trained ConvNet. More specifically, layer filters (weights and
bias), learned using any dataset, are adjusted to encode specific
features of the target dataset, in this case, the vegetation
dataset. Fine-tuning is a good strategy to be evaluated for this
kind of application, since datasets related to this task tend to
be small, which prevent the full training (from scratch) of a
ConvNet.

In practice, we can summarize the contributions of this
paper as follows:

• propose of a dataset for vegetation species discrimination
composed of high-resolution multispectral images;

• analysis of the generalization of deep features for vege-
tation species discrimination;

• evaluation of two strategies to exploit deep features
considering few labelled samples; and

• comparative analysis of ConvNets and successful low-
and mid-level feature descriptors in a vegetation classifi-
cation task.

This is a first attempt towards vegetation specie discrim-
ination as well as towards the investigation of CNN-driven
features. It is important to highlight that there is no free avail-
able high-resolution image datasets for evaluating vegetation
discrimination in the phenology context.

II. CONVNETS FOR VEGETATION SPECIES
DISCRIMINATION

As introduced, in this paper, we investigate the use of
ConvNets to performed vegetation species discrimination. The
main problem of this kind of application (as well as for
other phenology applications) is that only a few labelled
data are available, which prevents designing and training
ConvNets from scratch (with random initialization), since this
process requires very large datasets and a significant amount of
computational power. Fortunately, it is possible to tackle such
applications by using pre-trained networks either as a fixed
feature extractor for the task of interest or as an initialization
for fine-tuning the parameters. Both strategies were evaluated
in this work for vegetation discrimination and are described
next, along with their advantages and drawbacks. Section II-A
explains the use of deep ConvNets as a fixed feature extractor
while Section II-B presents the fine-tuning process.

A. ConvNet as a Feature Extractor

Pre-trained networks can be used as a feature extractor
for any image, since features learned in earlier layers are
less dependent on the final application and could be used
in many tasks. Specifically, features (usually, called deep
features) can be extracted from any layer of a pre-trained
network and then used in a given task. Deep features trained
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Fig. 1: Example of the use a ConvNet as feature extractor. The
final classification layer is ignored and only the layer used
to extract the deep features need to be defined. The figure
shows the use of the features from the last layer before the
classification layer, which is commonly used in the literature.

on a dataset of everyday objects have already achieved suitable
results in applications like flower categorization [14], human
attribute detection [15], bird sub-categorization [16], scene
retrieval [17], and remote sensing [18], [19]. Furthermore,
Razavian et al. [22] suggest that features obtained from deep
learning should be the primary candidate in most visual
recognition tasks.

The strategy of using pre-trained ConvNets as feature ex-
tractors is very useful given its simplicity, since no retraining
or tuning is necessary. Moreover, one only needs to select
the layer to be used, extract the deep features, and use them
combined with a machine learning technique, in case of a
classification setup. According to previous works [18], [20],
[22], deep features can be extracted from the last layer before
the classification layer (usually, a fully-connected one) and,
then, used to train a linear classifier, which is the strategy
employed in this paper. Figure 1 illustrates how to use an
existing ConvNet as a feature extractor.

B. Fine-tuned ConvNet

Fine-tuning is suitable for applications with reasonable but
not enough large datasets to fully train a new network. It is
a suitable option to extract the maximum effectiveness from
pre-trained deep ConvNets, since it can significantly improve
the performance of the final classifier.

The idea behind tuning deep ConvNets is based on the afore-
mentioned fact that they tend to learn first-layer features that
resemble either edges, or color blob detectors, independently
of the training data. More specifically, the earlier layers of
a network contain low-level filters that should be useful for
many tasks. Later layers become progressively more specific
to the details of the classes contained in the original dataset
(i.e., the dataset in which the deep ConvNet was originally
trained). Thus, initial layers can be preserved while the final
layers must be adjusted to suit the application of interest.

Fine-tuning consists in performing a fine adjustment of
the parameters in a pre-trained network by resuming the
training of the network from a current setting of parameters but
considering a new dataset of any size, aiming at accuracy im-
provements. It means that fine-tuning exploits the parameters
learned from a previous training of the network on a specific
dataset, and then adjusts the parameters from the current state
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Fig. 2: Example of two options for the fine-tuning process. In
one of them, all layers are fine-tuned according to the target
dataset, but final layers have increased learning rates. In the
other option, weights of initial layers can be frozen (green
box) and only final layers are tuned.

for the new dataset, improving the performance of the final
classifier.

In this paper, we exploited two approaches for fine-tuning
a pre-trained network: (i) fine-tune all layers, and (ii) fine-
tune only higher-level layers keeping some of the earlier layers
fixed (due to overfitting concerns). It is important to emphasize
that in both scenarios, the search space is bound to small
variations in each step, since the learning rate is initialized
with reduced value.

Concerning the first approach, some layers (usually the
final ones, such as the classification layer, since the number
of classes tend to be different) have weights ignored, being
randomly initialized. These layers have the learning rate
increased, so they can learn faster and converge, while the
other layers may also change weights by very small variations,
since they use the reduced value of the learning rate without
any augmentation. Therefore, the first layers can use the
information previously learned with few adjustments to the
dataset of interest, and the final layers can learn based on the
new dataset. In the second case, the initial layers are frozen to
keep the generic features already learned, while the final layers
are adjusted using the increased value of the learning rate.
These two options of fine tuning are illustrated in Figure 2.

III. EXPERIMENTAL PROTOCOL

In this section, we present the experimental setup, datasets
and ConvNets used in this paper. The Brazilian Cerrado-
Savanna Scenes Dataset is presented in Section III-A. Sec-
tion III-B all baselines considered in this work, such as low-
level (global) and mid-level (BoVW) descriptors. Evaluated
ConvNet are presented Section III-C. Finally, Section III-D
presents the protocol used in the experiments.

TABLE I: Class distribution of the dataset.

Class #instances

Agriculture 47
Arboreal Vegetation 962
Herbaceous Vegetation 191
Shrubby Vegetation 111

Total 1,311

(a) Agriculture (b) Arboreal Vegetation

(c) Herbaceous Vegetation (d) Shrubby Vegetation

Fig. 3: Examples of the dataset.

A. Brazilian Cerrado-Savanna Scenes Dataset

The Brazilian Cerrado-Savanna Scenes Dataset, publicly
released with this paper1, is composed of 1,311 multi-spectral
image segments of 64 × 64 pixels, extracted from images
acquired by the RapidEye satellite sensors2 over the Serra
do Cipó region, a mountainous and highly biodiverse and
heterogenous landscape in southern-central Brazil. These seg-
ments were labeled, by biologists and specialists, as belonging
to one of four possible vegetation classes, as shown in Table I.

These images are composed of near-infrared, green, and
red bands, which are the most useful and representative
ones for discriminating vegetation areas, which may help in
differentiating similar classes in the case of the vegetation
dataset used in this work. This dataset is very challenging for
several different reasons: (i) high intraclass variance, caused
by different spatial configurations and densities of the same
vegetation type, and (ii) high interclass similarity, given similar
appearance of different types of vegetation species. Some
samples showing the aforementioned challenges are shown in
Figure 3.

B. Baselines

Through the years, several descriptors were successful
applied to all kind of applications, including remote sens-
ing image classification [11], texture and color image re-
trieval/classification [24], [25], and web image retrieval [26],
[27]. Based on these works, several feature extraction tech-

1The dataset as well as the folds used in this paper are
available for download at: www.patreo.dcc.ufmg.br/downloads/
brazilian-cerrado-savanna-dataset/

2RapidEye system consists of a commercial constellation of five identical
satellites that allow imaging of the Earth’s surface with a high spatial
resolution (5m per pixel), at short time intervals.



niques, which include low- and mid-level descriptors, have
been selected to be evaluated as baseline of our work.

1) Low-Level descriptors: There is a myriad of descriptors
can be used to represent visual elements [26] and, clearly,
different ones may provide distinct information about images
producing contrastive results. Thus, a diverse set of 10 low-
level descriptors (based on color, texture, and shape proper-
ties) were selected to be evaluated: Auto-Correlogram Color
(ACC) [28], which maps the spatial information of colors
by pixel correlations at different distances; Border/Interior
Pixel Classification (BIC) [29], a simple color descriptor
which computes two color histograms for an image: one for
border pixels and other for interior pixels; Color Coherence
Vector (CCV) [30], a color descriptors which computes two
histograms: one for coherent regions (pixel with similar neigh-
bors) and other for incoherent areas; Global Color Histogram
(GCH) [31], which quantizes the color space in a uniform
way and scans the image computing the number of pixels
belonging to each color; Local Activity Spectrum (LAS) [32],
which captures the spatial activity of a texture in the horizon-
tal, vertical, diagonal, and anti-diagonal directions separately;
Steerable Pyramid Decomposition (SID) [33], which uses a set
of filters sensitive to different scales and orientations to extract
mean and standard deviation; Unser (Unser) [34], which
computes measures (such as energy, contrast, and entropy)
over histograms of sums and of differences.

2) Mid-Level descriptors: Some representations are called
mid-level since they have one more calculation step when
compared to low-level representations. Specifically, a mid-
level representation uses local features built upon low-level
representations, creating a new representation for an image.
Bag of visual words (BoVW) [35] and their variations [36]–
[38] are considered mid-level representations, since these
methods create a codebook of visual discriminating patches
(visual words), and then compute statistics (using the code-
book) about the visual word occurrences in the test image.
BoVW descriptors have been the state-of-the-art for several
years and are still important candidates to perform well in
many tasks.

In this case, based on previous works [18], [37], BoVW was
tested considering SIFT [39] as the low-level descriptor, dense
sampling (with grid of circles with 6 pixels of radius), hard
assignment, average pooling and varying the size of visual
codebook in 1,000, 5,000 and 10,000.

C. Convolutional Neural Network

As proposed, to evaluate the benefits of deep descriptors, we
selected the well-regarded AlexNet, proposed by Krizhevsky
et al. [40], which was the winner of the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [41] in 2012.
This ConvNet has 60 million parameters and 650,000 neurons,
and consists of five convolutional layers, some of which are
followed by max-pooling layers, and three fully-connected
layers with a final softmax. Its final architecture can be seen in
Figure 4. AlexNet was a breakthrough work as it was the first

to employ non-saturating neurons, GPU implementation of the
convolution operation and dropout to prevent overfitting.

In the experiments, the network was implemented in Con-
volutional Architecture for Fast Feature Embedding [42], or
simply Caffe, a fully open-source framework that affords clear
and easy implementation of deep architectures. AlexNet was
used as a feature extractor network by extracting the features
from the last fully-connected layer (red one in Figure 4), which
results in a feature vector of 4,096 dimensions. Also, AlexNet
was fine-tuned considering two strategies, as presented in
Section II-B: (i) giving more importance to the final softmax
layer but without freezing any layer, and (ii) freezing the
first three layers and giving normal importance to the final
ones, which participate normally in the learning process. This
freezing process is based on the fact that initial layers tend to
learn generic features, such as edges, or color blob detectors.

D. Experimental Setup
The experiments were carried out considering a 5-fold

cross-validation protocol. The dataset was arranged into five
non-overlapping folds with near-equal size, with 265, 262,
261, 261, and 261 images, respectively.

When using the ConvNets as feature extractors, four sets
are used as training while the last is the test set, since linear
SVM was used as the final classifier and it does not require
any parameter search. Also, it is important to emphasize that
there is no training when using a pre-trained ConvNet (without
fine-tuning) as feature extractor, thus there are no parameters
to vary.

When performing fine-tuning, at each run three folds are
used as training set, one fold is used as validation (used
to evaluate the current parameters of the network), and the
remaining fold is used as a test set. For each run, the fine-
tuning process starts from the beginning. Therefore, at the
end, five different networks are obtained, one for each step
of the 5-fold cross-validation process. Also, when fine-tuning,
we basically preserve the original parameters of the ConvNet,
varying only two: (i) number of maximum iterations, and (ii)
learning rate. Both parameters were evaluated in a full set of
preliminary experiments and, at the end, only the best set of
parameters were selected, which are, in this case, 50,000 and
0.001 for number of iterations and learning rate, respectively.

The results are reported in terms of average accuracy and
standard deviation among the 5 folds. For a given fold, we
computed the accuracy for each class and then computed
the average accuracy among classes. This accuracy was used
to compute the final average accuracy among the 5 folds.
All experiments were performed on a 64-bit Intel i7 4960X
machine with 3.6GHz clock and 64GB of RAM. Two GPUs
were used: a GeForce GTX770 with 4GB of internal memory
and a GeForce GTX Titan X with 12GB of memory, both
under a 7.5 CUDA version. Ubuntu version 14.04.3 LTS was
used as operating system.

IV. RESULTS AND DISCUSSION

In this section, we present the experimental results. In
Section IV-A, we compare the performance of the deep-based
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Fig. 4: Architectures of AlexNet [40]. The red box indicates the layer from where features were extracted in the case of using
the ConvNet as feature extractors.

TABLE II: Comparison between different strategies to exploit
pre-trained ConvNet.

Technique Overall Accuracy (%)

Feature Extraction + SVM 88.18 ± 2.38
Fine Tuning 90.31 ± 1.74
Fine Tuning (Freeze Layers) 90.54 ± 1.83
Fine Tuning + SVM 87.72 ± 1.09
Fine Tuning (Freeze) + SVM 87.42 ± 2.48

feature representation strategies. A comparison between the
most accurate strategy against some of well-known descriptor
methods are performed in Section IV-B.

A. Deep Learning Results

In this section, we compare the performance of different
strategies for exploiting the benefits of deep learning: used as
feature extractors and fine-tuned. Table II shows the compari-
son of the strategies in terms of average accuracy and standard
deviation. It is important to highlight that the instances in the
table with the label “SVM” refers to the ConvNet used as a
feature extractor, i.e., with linear SVM as the final classifier.
However, it is worth mentioning that SVM was used only
after the fine-tuning, not during the training process. There
are several interesting aspects. The first one is that fine-
tuning was the best strategy, outperforming all others. The
reason is that the fine-tuning strategy, as introduced, uses
the edges and local structures learned in a dataset, but with
small adjustments considering the target dataset (in this case,
the Brazilian Cerrado-Savanna Scenes Dataset). This strategy
allows the network to learn more specific features. Between
the two fine-tuning strategies, there is no conclusion, since
both achieved similar results, being statistically equal.

B. Comparison With Baselines

In this section, we compare the performance of the best
ConvNets approaches (fine-tuning strategies) against baselines.
As introduced, low- and mid-level feature representations were
used as baselines. Table III shows the comparison in terms of
average accuracy and standard deviation. The results show that
all baselines were outperformed by the fine-tuning strategies,
which are now the current state-of-the-art for the Brazilian
Cerrado-Savanna Scenes dataset, with, approximately 90%
average accuracy. Indeed, all results obtained with deep learn-
ing strategies (presented in Table II) were better than any
baseline. It shows the power of feature learning inside the
deep learning strategies. Besides that, two interesting aspects
must be noticed. First, BIC [29] was the second best descriptor
(82.53 ± 1.43) with a considerable result for a handcrafted

TABLE III: Comparison between proposed use of pre-trained
ConvNet and baselines.

Technique Feature Vector Size Overall Accuracy (%)

Fine Tuning 90.31 ± 1.74
Fine Tuning (Freeze Layers) 90.54 ± 1.83
ACC [28] 256 76.43 ± 1.87
BIC [29] 128 82.53 ± 1.43
CCV [30] 128 80.56 ± 2.28
GCH [31] 64 80.10 ± 2.35
LAS [32] 256 80.02 ± 1.18
SID [33] 16 73.38 ± 0.58
Unser [34] 32 80.32 ± 0.18
SIFT+BoVW [35] 1,000 72.00 ± 2.12
SIFT+BoVW [35] 5,000 76.35 ± 2.24
SIFT+BoVW [35] 10,000 74.45 ± 0.23

visual descriptor. Furthermore, the Unser descriptor yielded
a good result (80.32 ± 0.18) with only 32 features, being a
suitable descriptor with a reduced amount of features.

V. CONCLUSIONS AND FUTURE WORK

In this paper, two strategies for exploiting existing ConvNets
were evaluated in the context of vegetation discrimination:
used as feature extractors and fine-tuned. Specifically, these
strategies were evaluated using AlexNet [40], a famous Con-
vNet responsible for several breakthroughs. The objective was
to understand the best way to extract all feasible benefits from
these state-of-the-art deep learning approaches in problems
that usually are not suitable for the design and creation of
new ConvNets from scratch, given the small number of labeled
data. Also, a comparison between the strategies and traditional
low- and mid-level descriptors considering a vegetation dataset
were performed in order to point out the best methods. The
results point that fine tuning tends to be the best strategy in
different situations.

As future work, we intend to create a fine-grained and larger
dataset to verify our initial conclusions obtained in this work.
Also, we intend to test the evaluated strategies in different
scenarios, including information-rich hyperspectral imagery
(with hundreds of information channels) and images obtained
by imaging Unmanned Aerial Vehicles, which are capable of
yielding spatial resolutions two orders of magnitude lower than
the presently evaluated RapidEye imagery, incurring in much
larger intra-class heterogeneity among samples.
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