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Abstract— We have developed a real-time ball tracking 

system that can be used for volleyball games. Although a number 

of methods for visual object tracking have been proposed, 

tracking a fast-moving ball is still a challenging task because of 

the motion blur and the occlusion. We thus use a complementary 

tracking scheme in which tracking processes for multiple 

cameras help each other sharing the 3D position of the ball. The 

ball on each camera is accurately tracked by predicting its 

position at the next frame. The 3D ball positions measured by the 

system can be used for drawing the trajectory CG of a ball and 

for calculating statistical data related to ball movement. 

Evaluation results obtained using actual volleyball video 

sequences showed that the system would be effective for 

visualizing ball trajectories in live volleyball broadcasts. 

Keywords— sports video analysis; visual object tracking; multi-

view cameras;  

I.  INTRODUCTION 

Visual object tracking is an important task in computer 
vision because the technology for it can be used in various 
scenarios, such as surveillance, robotics, and human-computer 
interaction [1, 2]. Sports video analysis is one scenario for 
which visual object tracking is strongly demanded [3–5], and it 
has been widely studied thanks to the improvement of 
computer vision technologies and the development of camera 
devices. Most ball game audiences focus on the ball position 
and its movement. If the 3D position of a ball could be 
measured at every frame, the trajectory of the ball could be 
drawn by computer graphics (CG) and a variety of statistical 
data could be calculated. Robust tracking of a ball from a video 
sequence is thus a very important task, but the illumination 
change, occlusion, background clutter, etc. in actual video 
sequences make it very difficult. 

 Although many object tracking method have been proposed 
[6–8], for the following reasons it is still hard to track a ball 
automatically in volleyball games. First, the ball moves so fast 
that there is a huge motion blur in image obtained with the 
common 30 fps camera. The motion blur causes changes in the 
shape of a ball object and decreases its brightness, so it makes 
stable tracking difficult. Second, the ball moves freely in a 3D 
coordinate space, so it is hard to predict its position. Third, a 
ball tends to be hidden by players, so multiple viewpoints are  

 

 

 

 

 

 

 

 

 

Fig. 1. Example of a ball  trajectory CG. 

 

needed for robust tracking. Moreover, the ball is much smaller 
than the players, so sufficient amounts of image features cannot 
be acquired from the small region. 

Considering those problems, we developed a ball tracking 
system that can be used for volleyball games. The system uses 
four HD cameras as sensors of ball position, and all camera 
images are processed in parallel to track the ball. Tracking 
results from those cameras are integrated and 3D ball position 
is calculated. The ball position is shared with all procedures, 
and is used to predict the ball position at the next frame. Thus 
even if ball detection failed in a certain camera, the tracking 
process can be continued by referring to the shared 3D ball 
position. This complementary tracking scheme is the main 
characteristic of our system. 

We evaluated our system with video sequences of actual 
volleyball games and obtained results proving that the system 
can accurately measure positions of a ball and robustly track a 
ball for a long period. The ball tracking was performed in real-
time, so the ball trajectory CG can be drawn for live volleyball 
broadcasts. Figure 1 shows a sample image of ball trajectory 
CG drawn by using our system’s tracking results. 

The remainder of this paper is organized as follows. 
Related work is described in Section II, the methods of ball 
tracking are explained in Section III, the results of the 
experiments are presented in Section IV, and the paper is 
concluded in Section V. 
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II. RELATED WORK 

Visual object tracking is an important theme, so many 
algorithms for it have been proposed [1, 2]. It is also important 
for sports video analysis because the positions of players and a 
ball attract much interest from audiences.  

Visual object tracking is basically performed by matching 
the representation of a target model, and tracking methods 
based on discriminative classification have been proposed 
recently [9–13]. They build a model on the distinction of the 
target foreground against the background on the basis of their 
appearance features. Kalal et al. proposed a discriminative 
classifier learning method called Tracking Learning Detection 
(TLD) [10]. It simultaneously detects a target object in the 
video, learns its appearance, and tracks it. Multiple Instance 
Learning (MIL) tracker [11] uses a tracking-by-detection 
approach. It shows improved robustness to inaccuracies of the 
tracker and to incorrectly labelled training samples. Moreover, 
correlation filter based trackers proposed recently are regarded 
as state-of-the-art trackers [12, 13]. Bolme et al. [12] proposed 
a correlation filter based tracker called Minimum Output Sum 
of Squared Error (MOSSE), that uses classical signal 
processing techniques. Although these methods track targets 
accurately, it is hard for them to track volleyballs because they 
don’t assume rapid change of the targets’ positions and shapes. 

Estimation of a ball position in 3D coordinates is a cue to 
robust tracking.  However, the volleyball moves freely in real 
3D coordinates, so it is difficult to measure the precise 3D 
position of a ball. Although many methods for measuring the 
3D position of an object have been studied [6, 7], their results 
are unreliable because of the lack of multiple view-points. 

When a ball is hidden by players, ball tracking tends to be 
interrupted by the detection of other noise objects. Thus, 
estimation of a hidden true value from system observations, 
which contain missing data and measurement errors, is another 
problem. Although some technologies have been proposed [14, 
15] to solve this occlusion problem, it is still hard for them to 
estimate the ball’s true position from single-view information. 
The Kalman Filter [16] is an estimation algorithm that assumes 
a linear and Gaussian model. Particle filter [17, 18], which is 
another estimation algorithm, assumes a non-linear and non-
Gaussian model, so it is suitable for tracking objects whose 
movements are unpredictable. Although some particle filter 
based trackers are proposed [19, 20], tracking a ball from a 
complex background is still difficult, and the target cannot be 
reacquired after it is lost. 

Small size leads to lack of feature points, so it is difficult 
for tracking methods which use gradient based features, such as 
SIFT and SURF [21], to detect small balls. In addition, those 
feature representations have high dimensions and their models 
are complicated, so their computational cost is high. Real-time 
computation as well as high accuracy is demanded for video 
analysis in live sports. 

We propose a robust volleyball tacking method with 
multiple cameras. Ball positions from every pair of cameras are 
used to calculate a 3D position of a ball, and the position is 
shared with all cameras. Each process predicts the ball position 
at the next frame on the basis of the 3D ball position. This 

means that tracking processes can continue even when a 
tracking failed for a certain camera, and stable tracking can be 
achieved in total. This complementary scheme is the main 
characteristic of this system. 

 

III. PROPOSED METHOD 

A. Overview 

The proposed system tracks a ball object from multi-view 
cameras. As seen in the system’s signal-flow diagram (Fig. 2), 
it comprises three modules: one for ball detection, one for 3D 
position measurement, and ball position prediction.  

The inputs of the system are video sequences shot by four 
fixed cameras. Those video sequences are processed in parallel, 
and balls in those images are detected every frame. A ball 
position in real 3D coordinates is calculated on the basis of 
those tracking results. The 3D position of the ball is used to 
draw a ball trajectory and to calculate variety of statistical data 
related to the ball movement.  

The 3D position of a ball is also used for ball position 
prediction for the purpose of stable tracking. Even when ball 
tracking failed in a certain camera, ball position at the next 
frame can be predicted by sharing the 3D position of the ball 
among all cameras. This complementary architecture of the 
system contributes to robust ball tracking. We explain the 
details of each of the three modules in the following 
subsections. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Signal-flow diagram of the proposed system. 

 

B. Ball Detection Module 

The ball detection module detects a ball object in a 2D 
camera image every frame. A video sequence from a camera is 
input to this module, and a ball position in its image 
coordinates is measured. This module is processed in parallel 
among all four cameras. 

The module detects a ball by creating an accumulated 
frame difference image defined as in equation (1), where 𝑰𝑡

𝑥𝑦
 

denotes a brightness at position (x, y) on the input image at 
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frame t, and 𝑺𝑡
𝑥𝑦

 denotes a given pixel value from the system at 
position (x, y). First, frame difference at every pixel is 
calculated, and the specific value (Smax) is given if the 
difference exceeds a threshold M. Only moving objects can be 
extracted by this operation. Next, morphological operations 
(close and open) are applied to eliminate small noises. Then, 
ball candidate objects at the frame image are extracted by a 
filtering process related to their area sizes and shapes. Big and 
small objects and objects with complicated shapes are excluded 
from the candidates by this filtering process.  

Ball candidate object might not be a single object because 
other moving objects, such as players’ bodies, could also be 
extracted. Thus, all candidate objects are accumulated over 
certain frames to prevent from miss-detection of those noise 
objects. Brightness of ball candidates of past frame is gradually 
decreased every frame as shown in equation (1).   

 

 

                                                                                            (1) 

 

 Figure 3 shows an example of an accumulated frame 
difference image. Brighter and darker areas in the image denote 
newer and older detected ball candidates, respectively. Old 
candidates are gradually expanded by morphological 
operations, which are applied every frame, to connect same 
candidate objects over consecutive frames. 

 A ball object is searched for only in a search region, which 
is drawn as green rectangle in Fig. 3. The brightest objects in 
the region are regarded as final candidates. The candidate 
object nearest to the predicted position is selected as a ball 
object at last. We explain the predicted position in detail in 
Section III. D. 

 

 

 

 

 

 

 

Fig. 3. Example of an accumulated frame difference image. 

 

C. 3D Position Measurement Module 

Ball positions in the two-dimensional image coordinates are 
measured for all cameras as described in the previous 
subsection. In this module, ball position in the real three-
dimensional coordinates is calculated on the basis of those 2D 
positions of ball objects in the manner of triangulation.  

A 3D position of the ball is measured as a midpoint 
between two lines-of-sight from a camera to the ball as shown 
in Fig. 4. The two red lines denote lines-of-sight from two 

cameras to the ball. A line-of-sight can be decided from two 
specific positions in 3D coordinates. Camera position, which 
can be measured in advance, is used as the one of the positions, 
and a ball position on a virtual plane is used as the other one. 
As shown in Fig. 4, we assumed the virtual plane to be at the 
same place as the volleyball net in the court.  

Ball positions on the virtual plane can be calculated by 
projective transformation [22]. Figure 5 shows a concept of 
projective transformation from a camera image to the projected 
image on the virtual plane. Projective transformation could be 
performed as described in equation (2). Positions in the virtual 
plane (𝑋𝑏1, 𝑌𝑏1, 0) were calculated from positions on the camera 
image (𝑥𝑏1, 𝑦𝑏1) and homography matrix H. Elements ℎ1 to ℎ8 

in the H are calculated by manual pointing of more than four 
corresponding points between camera image and virtual plane 
beforehand. Every pixel in the camera image can be 
transformed to the virtual plane. 

The 3D ball positions can be calculated with every two 
different camera image, so that six (= 4𝐶2) 3D ball positions 
can be acquired in total. An average position of those six 
positions is calculated at once, some outliers are then 
eliminated by calculating their distance to the average position. 
A final ball position is calculated by averaging remained 
positions.  

A temporal history of ball positions in real 3D coordinates, 
which were output from our system, can be used to draw a ball 
trajectory CG on a video sequence. The data can be also used 
for calculating some properties related to the ball, such as ball 
speed, height, and touched positions by players. Variety of 
statistical data of the game can be calculated on the basis of the 
properties, so they are regarded as very important. Furthermore, 
the 3D position of a ball can be used for stable ball tracing in 
this system by predicting the ball position at the next frame as 
described in the next subsection.  

 

 

                                                                                            (2) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Calculation of ball position in 3D coordinates. 
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Fig. 5. Projective transformation from camera image to virtual plane. 

 

D. Ball Position Prediction 

The 3D position of a ball can be acquired by the two 
modules described in the preceding subsections. In this module, 
the system predicts ball position at the next frame on each 
camera image from the 3D position. The predicted position is 
used as a reference in the ball detection module, so this module 
contributes to accurate ball detection.  

We used the particle filter to predict ball positions in 
camera images. The particle filter estimates a hidden true value 
by integrating weak estimations calculated with many particles 
[17, 18]. It can estimate the nonlinear and non-Gaussian 
motion of a target and thus it is suitable for tracking the 
unpredictable movement of a volleyball. We used straight-
forward motion dynamics for the particle.  

The measured 3D ball position is projected on each camera 
image as shown in Fig. 6. The likelihood of each particle is 
calculated on the basis of the distance between the particle and 
the projected position of the ball. Thus, the weight of particles 
near the projected position becomes high. Predicted ball 
position is calculated as a weighted expectation value among 
all particles. The predicted position is used as a reference for 
selecting a ball object. In addition, a ball search region on each 
camera image is set around the predicted position to prevent 
the system from catching noise objects that are far from the 
predicted position. In Fig. 6 the small green circles denote 
predicted positions and green rectangles denote search regions. 
Small yellow circles show ball positions detected in the past. 

Moreover, the predicted ball position helps to reacquire a 
ball object after the system missed the ball in a certain camera. 
A ball is sometimes hidden by players’ bodies. Even if a ball 
was missed in a camera image, a position of the search region 
is automatically updated referring to the predicted ball position. 
This means that all tracking process helps each other to achieve 
robust tracking by sharing the ball’s 3D positions that were 
calculated with their tracking results. This complementary 
approach for robust tracking is the greatest characteristic of the 
proposed system. 

 

 

 

 

 

 

 

 

 

Fig. 6. Concept of ball position prediction. 

 

IV. EXPERIMENT 

A. Experimental Conditions 

We evaluated the proposed system with actual videos of 
volleyball played by semi-professional players. We recorded a 
serve sequence (108 frames), and two game sequences (462 
and 685 frames) for this experiment. Four fixed HD cameras 
(1920*1080 pixels, 30 fps) were positioned around a volleyball 
court as shown in Fig. 7. 

The 3D positions of those cameras were measured in 
advance, and their homography matrices were calculated by 
pointing out more than four landmarks, such as edge points of 
the volleyball net, in all camera images. Owing to those 
calibrations, any points in 2D camera image coordinates can be 
transformed into 3D coordinates.  

For evaluation, true ball positions on all camera images 
were annotated manually at each frame, and those 2D and 
calculated 3D positions were used as ground truth ball 
positions for this experiment. Four common PCs (3.5GHz 
processor, 16GByte memory) were used in this experiment. 
They processed video sequences of each camera in parallel. We 
evaluated our system in the following three kinds of 
evaluations. 

 

 

 

 

 

 

Fig. 7. Camera layout and their fields of view. 

 

B. Tracking Accuracy 

First, we evaluated the ball tracking accuracy of our system 
by comparing it with the accuracies of conventional visual 
object tracking methods. Three state-of-the-art tracking 
methods—TLD [10], MIL [11], KCF [12]—were used as 
comparison methods. Average error distances from ground 
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truth in 2D image coordinates and their processing speed were 
measured for the serve sequence. The results are listed in Table 
I. 

Our method achieved the best performance in terms of both 
the average error distance and processing speed. The three 
conventional methods could not track a ball until the last frame 
because they cannot reacquire the ball once they had lost it. 
Complicated background prevented those methods from robust 
tracking. Our proposed method has a complementary tracking 
scheme sharing the ball’s 3D position; thus it could track a ball 
until the last frame and its error distance was small. 

The processing time of our proposed method for a camera 
image was 31.2 msec. The speed was less than 33 msec/frame, 
which means that the system can track a ball in real-time. Real-
time processing is necessary for a live sports broadcast system. 
Our fast computational ball detection function contributed to 
this fast processing speed. Other methods could not achieve 
real-time processing because their computational costs were 
high because of the online learning procedure. 

 

TABLE I.  AVERAGE ERROR DISTANCE AND PROCESSING SPEED. 

 

 

 

 

 

 

C. Robustness of Tracking 

Next, we evaluated robustness of tracking. We measured 
the success rate of ball tracking for the game 1 sequence. The 
rate of an un-complementary tracking method, which didn’t 
predict ball position, was also evaluated for comparison. In that 
method, a ball was separately tracked on each camera without 
sharing 3D position of a ball. Table II lists the results.  

The success rate of the un-complementary method was low 
for Cam 4 because the ball was frequently hidden by players in 
its field of view. The occlusions caused many tracking failures. 
The method had difficulty reacquiring the ball because it could 
not properly predict the ball positions without information from 
other cameras. Its average success rate was 79.8%, much lower 
than that of our method: 96.7%. Our complementary scheme of 
ball tracking contributed to robust tracking of a ball.  

The proposed method was also compared to the Kalman 
filter. The Kalman filter predicts hidden states of a target with 
the linear and Gaussian model. Ball movement in volleyball is 
complicated because the ball moves to every direction in 3D 
space and the direction changes suddenly when the ball is 
touched by players. Our method predicts ball position by using 
a particle filter, which assumes a nonlinear and non-Gaussian 
model. Its result was better than the result of the Kalman filter.  

Figure 8 shows the tracking results of the game 1 sequence 
for all four cameras. Small yellow points denote the detected 

ball positions. Even if the ball tracking for a camera failed, its 
ball search region was updated by referring to the ball’s 3D 
position calculated from tracking results of other cameras. The 
system robustly tracked a ball through all frames of the playing 
scene, and it measured accurate 3D ball positions every frame.   

 

TABLE II.  TIME RATE OF BALL TRACKING [%]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Tracking results of game sequence. 

 

D. Tracking Accuracy in 3D Space and CG Drawing 

Finally, tracking accuracy in real 3D space was evaluated. 
Error distances from ground truth position in 3D coordinates 
were measured every frame, and their average was calculated. 
The results are listed in Table III.  

Average error distance for the game 1 sequence was 22.2 
cm and the distance for game 2 was 21.4 cm. There is little 
margin with two error distances and their average was 21.8 cm. 
This error distance in real-3D coordinates is about the size of 
an actual volleyball because the diameter of a volleyball is 
about 21 cm. This accuracy is reasonable for a system used to 
draw the trajectory CG of the ball. The ball position prediction 
module contributed to this high accuracy because it prevented 
the catching of noise objects far from the ball and reduced the 
error distance from the true ball position. 

 

TABLE III.  AVERAGE ERROR DISTANCE IN 3D COORDINATES. 

 

 

 

 

Average error 
distance [pixel]

Processing speed 
[msec]

TLD [9] 133.5 97.3

MIL [10] 102.8 81.7

KCF [11] 99.5 80.5

Proposed 59.3 31.2

Sequence Average error distance [cm]

Game 1 22.2

Game 2 21.4

Average 21.8

Cam 1 Cam 2 Cam 3 Cam 4 Average

Un-complementary 
method

76.9 76.7 97.5 68.1 79.8

Proposed    
(Kalman filter)

85.6 85.1 97.1 95.8 90.9

Proposed     
(Particle filter)

95.1 97.8 97.5 96.5 96.7
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We rendered a sample video sequence of ball trajectory CG 
assuming the use of a live volleyball broadcast. The CG can be 
drawn on any calibrated cameras because our system outputs 
ball positions in real 3D coordinates. Figure 1 and 9 show 
samples of output images of ball trajectory CGs.  

The ball’s speed and its bounding positions on the ground 
can be measured automatically because the real 3D position of 
the ball is calculated every frame. In addition, ball touching 
positions can be automatically detected by searching for a 
position where ball direction was immediately changed. A text 
display of ball speed for the spike scene and a CG effect of 
water spray at the received position were drawn in the image 
shown in Fig. 9.  

Although ball trajectories and those specific positions can 
be measured automatically, some sort of manual operations for 
CG drawing and a certain period of rendering process are 
needed. We plan to improve those problems and use the system 
for rendering visual effects in live volleyball broadcasts. 

 

 

 

 

 

 

 

 

Fig. 9. Sample image of ball trajectory CG. 

 

V. CONCLUSION 

A real-time ball tracking system that can be used for 
volleyball games has been developed. It robustly tracks a ball 
from video sequences shot by multiple cameras. The measured 
ball positions can be used for calculating various statistical data 
and making visual effects for a broadcast program. The system 
robustly tracks a ball by calculating real 3D ball position and 
predicting ball position at the next frame. We evaluated the 
system by using actual volleyball sequences shot by four 
cameras. The average error distance in 3D coordinates was 
21.8 cm, which was about the diameter of a volleyball. This 
robust tracking was due to the complementary scheme of the 
proposed system. A sample video of ball trajectory CG was 
also created on the basis of 3D positions measured by this 
system. We plan to use the system for drawing ball trajectory 
CGs in live volleyball broadcasts in the future. 
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