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Abstract—In a video surveillance system with a single static 

camera, tracking results of moving persons can be effectively used 

for camera self-calibration. However, the current methods need to 

depend on robustness of both tracking and segmentation 

procedures. RANSAC has been widely used to remove outliers in 

finding the vertical vanishing point and the horizon line, but the 

performance is degraded when the proportion of outliers is high. 

Last but not least, all of them require excessive simplifications in 

the algorithmic procedures resulting in increasing reprojection 

error. In this paper, a robust segmentation and tracking system is 

applied to provide accurate estimation of head and foot locations 

of moving persons. The noise in the computation of vanishing 

points is handled by mean shift clustering and Laplace linear 

regression through convex optimization. We also propose to use 

the estimation of distribution algorithm (EDA) to search for the 

local optimal solution for camera calibration that minimizes 

average reprojection error on the ground plane, while relaxing the 

assumptions on camera parameters. Promising evaluations of the 

performance of our proposed method on real scenes are presented. 

Keywords—camera self-calibration; moving persons tracking; 

mean shift clustering; Laplace linear regression; estimation of 

distribution algorithm 

I.  INTRODUCTION 

Camera calibration is a very important step in many 
computer vision applications such as 3-D object tracking [1, 2] 
and people localization [3]. It is used to find the intrinsic and 
extrinsic parameters of the camera, so that the projection matrix 
from 3-D points to 2-D points can be constructed. Vanishing 
points of 3-D parallel lines have been proven to be useful to 
recover both intrinsic and extrinsic parameters [4]. Therefore, 
some approaches focus on finding accurate vanishing points. 
Generally, camera calibration methods can be classified into two 
categories. The first category is based on a known calibration 
object, from which extensive knowledge of the scene geometry 
or measurements of sufficient number of 3-D points in the scene 
can be extracted to derive the camera parameters. However, such 
information is not always available, and it is hard to be acquired 
in a large camera network that includes many cameras [5]. The 
second category is called camera self-calibration, which does 
not depend on prior knowledge of the camera scenes. Our 
method lies in this category.  

In [6], Lv et al. first present a method to perform self-
calibration based on tracking of a human object with known 

height.  They extract the head and foot locations in different 
frames to compute the vertical vanishing point (VY) and the 
horizon line (LH). Many approaches [7-11] are proposed to 
improve the performance based on this method. In [7], Lv et al. 
upgrade their approach to apply nonlinear optimization on the 
parameters using Levenberg-Marquardt algorithm, however, it 
can only optimize three variables in the projection matrix 
simultaneously. Krahnstoever and Mendonca [8] propose a 
Bayesian solution to the self-calibration problem to handle 
measurement noise and outliers. Junejo and Foroosh [9] use a 
total least squares method to solve an over-determined system 
of equations to reduce noise, and the outliers are removed by 
truncating the Rayleigh quotient. In [10], Wu et al. use 
RANSAC to remove outliers in the estimation of VY and LH from 
given locations of heads and feet. Liu et al. [11] propose to use 
the prior knowledge about the distribution of relative human 
heights to automatically estimate camera parameters.  

Although self-calibration from object tracking has been 
studied for years, it is still facing many challenges. In all the 
above methods, the performance of self-calibration is highly 
dependent on the accuracy of extracted head and foot locations, 
which is related to the robustness of segmentation and tracking 
approach. Furthermore, it is common to adopt RANSAC to 
eliminate outlier points in the estimation of VY and LH [7, 10-11], 
however, due to noise in measurement, the number of outliers 
can overwhelm inliers in some scenarios, which will lead to 
failure of this method. And the threshold of RANSAC needs to 
be fine-tuned every time as well. Last but not least, Mohedano 
and Garcia [12] analyze and conclude that complete self-
calibration based on estimated VY and LH cannot be achieved if 
more than one of the intrinsic parameters is unknown. That is 
why all the mentioned works [6-11] assume that the focal length 
is the only parameter to be estimated in the intrinsic parameter 
matrix. This ambiguity in computation will lead to increasing 
reprojection error. Other limitations also prohibit the 
development of this area. The work in [6-7] requires accurate 
detection of leg-crossing for calibration. Hence, it cannot work 
well when the angle between the object moving direction and 
the principal axis of the camera is small. In [8], they need to 
assume that the objects are moving at a constant velocity, and 
the noise model of measurements is known. The work in [11] 
assumes that the variation of relative pedestrian heights in the 
camera’s field of view (FOV) is sufficiently low. These are 
generally not the cases in real world.  
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Fig. 1. Overview flow chart of the proposed system. 

In this paper, we propose to use a robust object segmentation 
and tracking system to achieve accurate head/foot localization. 
Besides, mean shift clustering is applied to estimate VY, so that 
the method is less affected by large number of outliers. Also, we 
adopt Laplace linear regression to formulate the fitting of LH into 
a convex optimization problem. In this way, there is no need to 
set the threshold parameter to indicate inliers like RANSAC. 
Moreover, we formulate the problem of optimization based on 
minimizing the average reprojection error on the ground plane. 
In this innovative formulation, we do not need to know the actual 
heights of all walking humans, but only a rough range of the 
camera height. Fig. 1 shows the overview flow chart of our 
proposed camera self-calibration scheme. 

Our method first employs the estimation of distribution 
algorithm (EDA) to search for the optimal parameters in camera 
calibration. This type of search algorithms is based on 
probabilistic modeling of promising solutions combined with 
the simulation of the induced models to guide the search. Among 
the category of EDAs, we adopt the Estimation of Multivariate 
Normal Algorithm – global (EMNAglobal) [13] to optimize all 
camera parameters simultaneously. In this way, the assumptions 
of prior knowledge in intrinsic parameters can be relaxed. In our 
work, we only assume that the people are walking on a visible 
horizontal ground plane with at least three different locations not 
on the same straight line observable, and an approximate range 
of the camera height is known. Therefore, our self-calibration 
algorithm can be applied widely in video surveillance systems. 
The advantages of EDAs against most of other metaheuristics 
are discussed in detail in the review paper [14], including ability 
to adapt their operators to the structure of the problem, reduced 
memory requirements, etc. Because parallel computation can be 
adopted in sampling the population at each generation, the 
efficiency of EDA can be much higher compared to many other 
nonlinear optimization approaches.  

The rest of this paper proceeds by describing the 
computation of vanishing points in Section 2. The self-
calibration process and optimization of parameters are covered 
in Section 3. Section 4 presents experimental results and 
discussions. Finally, Section 5 concludes this paper. 

II. COMPUTATION OF VANISHING POINTS 

In this section, we first introduce the adaptive segmentation 
and tracking system adopted, and how the head/foot locations 
are determined from the results. We then illustrate the process of 
estimating vanishing points, in which noise and outliers are dealt 
with using mean shift clustering and Laplace linear regression. 

A. Object Tracking and Head/Foot Localization 

To find VY and LH, we approximate each human body to be 
a vertical pole with head and foot locations at its ends. They are 
extracted based on the tracking result and segmented foreground 
blob of each object. The accuracy of their positions will have a 
significant impact on the subsequent steps. Hence, it is important 
to use a segmentation and tracking system that can robustly track 
moving persons while generating accurate foreground mask. 

Chu et al. [15] propose an effective human tracking 
algorithm, where constrained multiple kernels are utilized to 
deal with occlusion. However, when some parts of the objects 
share similar color with the modeled background, the problem 
of object merging will occur, resulting in failure in both 
segmentation and tracking. In [16], the authors propose the 
Multiple-kernel Adaptive Segmentation and Tracking (MAST) 
system to improve the tracking algorithm by adding a multiple-
kernel feedback loop based on preliminary tracking results to 
dynamically control the decision thresholds in object 
segmentation. Therefore, this system is able to upgrade the 
performance of both segmentation and tracking.  

In our paper, we improve the method in [16] by combining 
it with the state-of-the-art change detection algorithm named 
SuBSENSE [17], which introduces feedback from pixel-level 
background dynamics and allows increased local sensitivity, 
especially for regions with intermittent dynamic variations. In 
the original MAST system, the penalty weight computed from 
color similarity between current frame and background is 
applied to Otsu thresholding in background subtraction. Now we 
apply this penalty weight to the decision thresholds for both the 
RGB color space and local binary similarity patterns (LBSP) 
feature space in the SuBSENSE algorithm to preserve more 
foreground for supporting robust object tracking. In addition, to 
handle shadowing problem, a shadow detection block based on 
YCbCr color space [16] is added to the SuBSENSE system, 
which is also controlled by feedback from tracking. Note that 
instead of using only one single image, the kernel histograms in 
the background model are built by the normalized value of all 
background samples at each pixel location. As a result, we can 
benefit from the state of the art in object segmentation while 
maintaining the robustness of tracking. 

 From the segmentation and tracking results, we can 
determine the major axis, minor axis and centroid of the binary 
foreground blob of each object by its first and second moments. 
Hence, each extracted foreground blob can be approximated by 
an ellipse. Also, the bounding box for each tracked object can 
be derived. The head and foot locations are extracted as the 
intersections of the major axis of the ellipse with the borders of 
the bounding box (see Fig. 2). This approach has been applied 
in both single-camera [11] and multiple-camera [18] self-
calibration algorithms. To further reduce errors, the head and 
foot locations that are close to the image boundaries, as well as  
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(a)                                            (b) 

Fig. 2. Head/foot localization example. (a) Original image. (b) Head/foot 

localization on foreground mask (object bounding boxes and ellipses in red, 
major axes in blue, head intersection points in yellow, and foot intersection 

points in red).  

 

Fig. 3. Self-calibration geometry (major axes in blue, head locations in yellow, 

foot locations in red). Point VY in green is the vertical vanishing point, and line 

LH in green is the horizon line. Points VX and VZ in purple are the two vanishing 
points on LH. Point P in orange is the initial position of principal point of the 

camera. Dotted lines L1 and L2 are auxiliary lines to find VZ.   

those with bounding boxes of abnormal size or aspect ratio are 
discarded. The object blobs that are occluded will not be 
considered in head/foot localization as well.  

B. Vanishing Points Estimation 

As illustrated in Fig. 3, assuming that all objects are standing 
upright on the ground plane, all the lines passing through their 
head locations and corresponding foot locations should intersect 
at VY. Similarly, the intersection of a line passing through two 
head locations and another line going through two 
corresponding foot locations of the same object at different 
positions should lie on LH, which can be considered as the 
extension of ground plane at infinity. Thus, three instances of the 
same object at different timings are sufficient to derive VY and 
LH [6]. However, because of the existence of measurement errors 
in object tracking and head/foot localization, the candidates of 
VY usually will not locate at a single point, and there are also 
many candidates of LH. Therefore, a necessary approach of noise 
reduction is required. 

 In VY estimation, common methods for centroid estimation 
such as RANSAC could easily fail when the number of outliers 
is significantly large. This is very common in camera self-
calibration. It is because every extracted head/foot location is 
associated with all other locations, so that a small error in the 
localization step will be magnified in the estimation of VY.  The 
proposed method based on mean shift clustering is explicitly 
described in Algorithm 1. Because only the cluster with the most 

Algorithm 1: Estimation of the vertical vanishing point by 

mean shift clustering 

Input: The set of candidate points of 𝑉𝑌, mean shift 

window bandwidth 𝐵𝑊 

Output: Estimated 𝑉𝑌 position 

   1: while ∃ unvisited candidate point(s) do 

   2:   Randomly select an unvisited candidate point as  

         the initial mean point; 

   3:   while mean shift distance > 𝐵𝑊 ∗ 𝑒−3 do 

   4:     Compute the mean of the cluster 𝑐𝑘; 

   5:     Add all inlier points to 𝑐𝑘; 

   6:     Mark that these points have been visited; 

   7:     Shift to the new mean point; 

   8:   end while 

   9: end while 

  10: for each 𝑐𝑘 do 

  11:   Merge with other cluster(s) whose mean point(s) 

          are within  𝐵𝑊/2 

  12: Find the cluster 𝑐𝑘
max with the most inlier points; 

  13: Set 𝑉𝑌 as the mean of 𝑐𝑘
max. 

 

candidate points is considered, the outliers that form small 
clusters will have little impact on the estimation. 

We propose to use Laplace linear regression [19] to estimate 
LH. The robustness of this method arises from the heavy tails of 
the Laplace distribution, allowing higher likelihood to outliers 
without having to perturb the straight line. The likelihood model 
is given by 

𝑝(𝐲|𝐱, 𝐰) = Laplace(𝐲|𝐰𝑻𝐱) ∝ exp(−|𝐲 − 𝐰𝑻𝐱|),  (1) 

where 𝐱  and 𝐲  denote the corresponding coordinates of the 
candidate points lying on LH separately, and the parameters of 
the horizon line that we want to find are represented by 𝐰.  

The constrained optimization problem is formulated as  

min
𝐰,𝐫

∑ 𝑟𝑖𝑖 = min
𝐰,𝐫+,𝐫−

∑ (𝑟𝑖
+ + 𝑟𝑖

−)𝑖 , 

s. t.  𝑟𝑖
+ ≥ 0, 𝑟𝑖

− ≥ 0, 𝐰𝑻𝐱𝑖 + 𝑟𝑖
+ − 𝑟𝑖

− = 𝑦𝑖 ,        (2) 

where 𝑟𝑖 ≜ 𝑟𝑖
+ − 𝑟𝑖

− is the i’th residual, which is split into two 
variables representing the i’th positive and negative residuals 
respectively, so that the objective function can be converted into 
a linear objective. This is a linear programming problem with 
the following standard formulation:  

min
𝜽

𝐟𝑇𝜽  s. t.  𝐀𝜽 ≤ 𝐛, 𝐀𝑒𝑞𝜽 = 𝐛𝑒𝑞 , 𝐥 ≤ 𝜽 ≤ 𝐮,       (3) 

in which 𝜽 = (𝐰, 𝐫+, 𝐫−) , 𝐟 = [𝟎, 𝟏, 𝟏] , 𝐀 = [] , 𝐛 = [] , 
𝐀𝑒𝑞 = [𝐱, 𝐈, −𝐈],  𝐛𝑒𝑞 = 𝐲, 𝐥 = [−∞𝟏, 𝟎, 𝟎] and 𝐮 = [].  It can 

be solved by any convex optimization solver such as CVX [20].  
Compared to other noise reduction schemes in regression 
models, this method does not require a predefined threshold to 
distinguish outliers from inliers. Because it is formulated into a 
linear programming problem, the speed is much faster than non-
linear optimization approaches.  

Following Fig. 3, the next step is to find the other two 
vanishing points, VX and VZ, located on LH. Firstly, we assume 
that the initial position of the principal point is at the image 
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center indicated by point P. (The searching for a more accurate 
position of P through optimization will be addressed in Section 
3). Then, a random point on LH is picked as VX. Let L1 be the line 
which passes through VX and VY, and L2 be the line that is 
perpendicular to L1 passing through P. Since the principal point 
has the property that it is the orthocenter of the triangle whose 
three vertices are VX, VY and VZ, VZ can be determined as the 
intersection point of LH and L2. This method has been adopted 
by many other related works [6, 8-9].  

III. SELF-CALIBRATION BY OPTIMIZATION 

We use the general pinhole camera model in this paper. A 3-
D point (𝑋, 𝑌, 𝑍) can be projected to the 2-D image at (𝑢, 𝑣) 
through a 3 × 4 projection matrix 𝑷:  

[𝑢, 𝑣, 1]𝑇~𝑷 ∙ [𝑋, 𝑌, 𝑍, 1]𝑇,                 (4) 

The matrix 𝑷 can be factorized into 3 matrices, including the 
intrinsic parameter matrix 𝑲 containing 5 intrinsic parameters 
(focal length in x direction 𝑓𝑥 , focal length in y direction 𝑓𝑦 , 

principal point coordinate (𝑐𝑥 , 𝑐𝑦), and skew 𝑠), the rotation 

matrix 𝑹 formed by 3 extrinsic parameters (𝑟𝑜𝑙𝑙 angle around 
Z-axis, 𝑝𝑖𝑡𝑐ℎ angle around X-axis, and 𝑦𝑎𝑤 angle around Y-
axis), and the translation matrix 𝒕  with the other 3 extrinsic 
parameters (𝑡𝑋 along X-axis, 𝑡𝑌 along Y-axis, and 𝑡𝑍 along Z-
axis). Their relationship is given by: 

𝑷 = 𝑲 ∙ [𝑹|𝒕] 

where 𝑲 = [
𝑓𝑥 𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

], 𝒕 = [

𝑡𝑋

𝑡𝑌

𝑡𝑍

], and 𝑹 = 𝑹𝑍 ∙ 𝑹𝑋 ∙ 𝑹𝑌, 

𝑹𝑍 = [
cos(𝑟𝑜𝑙𝑙) −sin(𝑟𝑜𝑙𝑙) 0

sin(𝑟𝑜𝑙𝑙) cos(𝑟𝑜𝑙𝑙) 0
0 0 1

], 

𝑹𝑋 = [

1 0 0
0 cos(𝑝𝑖𝑡𝑐ℎ) −sin(𝑝𝑖𝑡𝑐ℎ)

0 sin(𝑝𝑖𝑡𝑐ℎ) cos(𝑝𝑖𝑡𝑐ℎ)
], 

  𝑹𝑌 = [
cos(𝑦𝑎𝑤) 0 −sin(𝑦𝑎𝑤)

0 1 0
sin(𝑦𝑎𝑤) 0 cos(𝑦𝑎𝑤)

],              (5) 

Some initial values of camera parameters can be 
calculated, using the vanishing points derived from Section 
2, based on the common method used in [6-12]: 

                       𝑟𝑜𝑙𝑙 = tan −1 (
𝑣𝑉𝑍

−𝑣𝑉𝑋

𝑢𝑉𝑋
−𝑢𝑉𝑍

),                     (6) 

𝑓𝑥 = 𝑓𝑦 = √−(𝑣𝑉𝑋

𝑟𝑜𝑡 ∙ 𝑣𝑉𝑍

𝑟𝑜𝑡 + 𝑢𝑉𝑋

𝑟𝑜𝑡 ∙ 𝑢𝑉𝑍

𝑟𝑜𝑡) 

where 𝑣𝑉𝑋

𝑟𝑜𝑡 = cos(𝑟𝑜𝑙𝑙) (𝑣𝑃 − 𝑣𝑉𝑋
) − sin(𝑟𝑜𝑙𝑙) (𝑢𝑉𝑋

− 𝑢𝑃),  

𝑣𝑉𝑍

𝑟𝑜𝑡 = cos(𝑟𝑜𝑙𝑙) (𝑣𝑃 − 𝑣𝑉𝑍
) − sin(𝑟𝑜𝑙𝑙) (𝑢𝑉𝑍

− 𝑢𝑃), 

𝑢𝑉𝑋

𝑟𝑜𝑡 = cos(𝑟𝑜𝑙𝑙) (𝑢𝑉𝑋
− 𝑢𝑃) + sin(𝑟𝑜𝑙𝑙)(𝑣𝑃 − 𝑣𝑉𝑋

), 

and 𝑢𝑉𝑍

𝑟𝑜𝑡 = cos(𝑟𝑜𝑙𝑙) (𝑢𝑉𝑍
− 𝑢𝑃) + sin(𝑟𝑜𝑙𝑙)(𝑣𝑃 − 𝑣𝑉𝑍

), 

(7) 

                              𝑝𝑖𝑡𝑐ℎ = tan −1 (
𝑣𝑉𝑋

𝑟𝑜𝑡

𝑓𝑥
),                           (8) 

                      𝑦𝑎𝑤 = −tan −1 (
𝑓𝑥

cos(𝑝𝑖𝑡𝑐ℎ)∙𝑢𝑉𝑋
𝑟𝑜𝑡),                    (9) 

The skew is set to zero, because generally it is safe to assume 
rectangular pixels [12]. Without loss of generality, we can 
assume the origin (0,0,0) located at the intersection of ground 
plane with its perpendicular line passing through camera, so that 
𝑡𝑋 and 𝑡𝑍 are also set to zero. An approximate range of 𝑡𝑌, which 
is the negative of the camera height, is assumed to be known.  

As has been analyzed in [12], the initial values computed 
using the above method are based on the assumptions of central 
principal point, unit aspect ratio and zero skew. Except for the 
last assumption, the other two do not hold in general situations, 
and it will result in increasing reprojection error. To relax the 
assumptions, we formulate the problem of optimization by 
minimizing the average reprojection error of some projected 
points on the ground plane using EDA. Thus, the local optimal 
value of each camera parameter in its corresponding initial range 
can be found. According to the observation in general camera 
calibration, the deviation ranges for these parameters are 
empirically set as: 0.1 ∙ 𝑓𝑥 for 𝑓𝑥, 0.1 ∙ 𝑓𝑦 for 𝑓𝑦, 10 pixels for 𝑐𝑥 

and 𝑐𝑦, and 20 degrees for 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤. The detailed 

description of multivariate optimization is given in Algorithm 2. 

 

Algorithm 2: Optimization of camera parameters by EDA 

Input: Initial ranges of 8 camera parameters, sample  

size of initial population 𝑅, sample size of selected  

population 𝑁, maximum number of iterations 𝑔max,  

ratio threshold of reprojection error between two  

generations 𝑟𝑡ℎ𝑟𝑒𝑠, beginning measurement point  

(𝑋0, 0, 𝑍0), and the number of measurement points in  

X direction 𝑁𝑋 and in Z direction 𝑁𝑍 

Output: Local optimals of 8 camera parameters 

   1: 𝑃(0) ⟵ Sample 𝑅 individuals randomly from the  

       8-D parameter space; 𝑔 ⟵ 1; 

   2: while 
𝑑𝑔−1−𝑑𝑔

𝑑𝑔−1
> 𝑟𝑡ℎ𝑟𝑒𝑠 and 𝑔 < 𝑔max do 

   3:   Choose a set of parameters from 𝑃(𝑔 − 1); 

   4:   Generate 𝑁𝑋 ∙ 𝑁𝑍 measurement points 𝑝𝑖,𝑗 on          

         ground plane starting from (𝑋0, 0, 𝑍0) where 

         𝑖 = 0,1, … , 𝑁𝑍 − 1 and 𝑗 = 0,1, … , 𝑁𝑋 − 1; 

   5:   Generate 𝑁𝑍 lines 𝑙𝑖
𝑋 passing through both 

         (𝑋0, 0, 𝑍𝑖) and 𝑉𝑋; 

   6:   Generate 𝑁𝑋 lines 𝑙𝑗
𝑍 passing through both 

        (𝑋𝑗 , 0, 𝑍0) and 𝑉𝑍; 

   7:   Compute error distance 𝑑𝑖,𝑗
𝑋  of each 𝑝𝑖,𝑗 with 𝑙𝑖

𝑋; 

   8:   Compute error distance 𝑑𝑖,𝑗
𝑍  of each 𝑝𝑖,𝑗 with 𝑙𝑗

𝑍; 

   9:   𝑆(𝑔 − 1) ⟵ Select 𝑁 < 𝑅 individuals within  

         𝑃(𝑔 − 1) that have lower average reprojection 

         error 𝑑𝑔−1 =
∑(𝑑𝑖,𝑗

𝑋 +𝑑𝑖,𝑗
𝑍 )

𝑁𝑋∙𝑁𝑍
; 

 10:   Build probabilistic model 𝑀(𝑔) = 𝒩(𝜇𝑔, 𝜎𝑔) ⟵  

         Estimate the multivariate normal density function  

         from 𝑆(𝑔 − 1); 

 11:   𝑃(𝑔) ⟵ Sample 𝑅 individuals from 𝑀(𝑔) 

 12:   𝑔 ⟵ 𝑔 + 1; 

 13: end while 

 14: Output 𝜇𝑔 of 𝑀(𝑔). 

263



TABLE I.  COMPARISON OF COMPUTED CAMERA PARAMETERS AND AVERAGE REPROJECTION ERROR ON TEST VIDEO SEQUENCES 

Seq. # 𝒇𝒙 (pix.) 𝒇𝒚 (pix.) 𝒄𝒙 (pix.) 𝒄𝒚 (pix.) roll (deg.) pitch (deg.) yaw (deg.) 𝝁𝒆𝒓𝒓 (pix.) 

1. Ground Truth 731.3880 728.2518 322.1298 237.2676 -3.1371 16.2676 -78.3065 N/A 

1. Method in [6] 611.5239 611.5239 320.0000 240.0000 5.7439 22.4758 -64.9974 11.7954 

1. Method in [10] 638.2676 638.2676 320.0000 240.0000 3.8800 23.2010 -71.8167 8.7750 

1. Proposed w/o EDA 738.7650 738.7650 320.0000 240.0000 5.0689 17.6076 -79.0154 6.0133 

1. Proposed 730.9167 735.9371 322.9955 236.1948 -5.0345 17.4224 -79.1491 2.50E-5 

2. Ground Truth 731.3880 728.2518 322.1298 237.2676 -1.8887 11.0081 -68.7126 N/A 

2. Method in [6] 618.7858 618.7858 320.0000 240.0000 2.3671 8.7161 -71.5302 4.9334 

2. Method in [10] 647.4640 647.4640 320.0000 240.0000 1.8874 9.8994 -71.7033 5.0624 

2. Proposed w/o EDA 679.6617 679.6617 320.0000 240.0000 1.7928 10.7818 -70.3027 4.6445 

2. Proposed 727.6335 728.1606 321.4372 241.1506 -2.2546 10.3345 -70.3032 3.12E-5 

3. Ground Truth 731.3880 728.2518 322.1298 237.2676 -0.3459 18.3846 -63.8778 N/A 

3. Method in [6] 606.8088 606.8088 320.0000 240.0000 -0.8635 13.2525 -67.1697 2.1670 

3. Method in [10] 662.9474 662.9474 320.0000 240.0000 -0.2164 22.4663 -57.6830 0.5403 

3. Proposed w/o EDA 719.8882 719.8882 320.0000 240.0000 0.2693 17.4219 -64.7125 0.3398 

3. Proposed 720.6649 729.5090 319.8556 240.6065 -0.2658 17.2493 -64.7081 1.17E-4 

4. Ground Truth 437.2689 437.8792 173.7693 142.7878 1.5466 14.1153 -54.5257 N/A 

4. Method in [6] 406.8041 406.8041 180.0000 144.0000 -0.2633 22.4482 -63.5813 0.5051 

4. Method in [10] 432.0973 432.0973 180.0000 144.0000 -0.2062 20.8494 -45.6322 0.4321 

4. Proposed w/o EDA 440.5366 440.5366 180.0000 144.0000 -0.4297 16.2182 -55.8775 0.1858 

4. Proposed 442.4795 440.9664 176.2516 142.1498 0.4313 15.9846 -55.6434 2.74E-5 

This camera calibration algorithm requires only two 
vanishing points on the ground plane and an approximate range 
of the camera height as input. Therefore, it can be extended to 
many other applications. For instance, camera calibration can be 
performed in a single image by locating VX and VZ from two 
orthogonal pairs of parallel lines on the ground plane manually. 
They can be derived from common structured elements in the 
scene such as crosswalks or vehicles.  

IV. EXPERIMENTAL RESULTS 

In our experiments, we captured three video sequences with 
duration of 2 to 3 minutes using a common surveillance camera 
having resolution of 640 x 480 and frame rate of 10 fps. These 
videos have either single or multiple persons walking on regular 
ground plane, covering both indoor and outdoor environments. 
They were captured in natural settings, including problems such 
as occlusion, object merging, shadowing, and reflection. To get 
ground truth of camera parameters, 52, 52, and 38 3-D points 
were measured in the three scenes respectively to compute the 
projection matrices using the linear method [21]. The fourth 
sequence that we used to compare all the self-calibration 
algorithms is from the publicly available EPFL dataset [22]. It 
shows multiple pedestrians walking on a terrace for 3 ½ minutes 
with frame rate of 25 fps. The ground truth of the fourth 
sequence is generated by the Tsai calibration [23], and converted 
to our coordinate system with the same length unit.  

We first apply the MAST algorithm introduced in Section 1 
on each video. The tracking and segmentation results are then 
used as the input for self-calibration. To demonstrate the 
efficacy of our method, we compare the proposed method with 
three different approaches: (1) the method in [6] that uses a 
different head/foot localization scheme and is without noise 
reduction in vanishing points estimation, (2) the method in [10] 
that is based on RANSAC to eliminate outliers and is combined 

with the same head/foot localization scheme as ours, and (3) the 
proposed method without optimization by EDA.  

The configuration parameters for the object segmentation 
and tracking system are the same as the default settings in [16] 
and [17]. The 𝐵𝑊 in mean shift clustering is empirically set as 
100 pixels, which is the same as the distance threshold of 
RANSAC for the method in [10]. For the optimization of camera 
parameters, 𝑅  and 𝑁  are chosen as 2000 and 20 respectively. 
The maximum iteration number 𝑔max is 100, and 𝑟𝑡ℎ𝑟𝑒𝑠 is given 
as 0.1. These parameters can be empirically determined by the 
user, and will not significantly affect calibration accuracy from 
our observations. The beginning measurement point on the 
ground plane is located at (1,0,1), while 𝑁𝑋 and 𝑁𝑍 are both set 
as 10. The total 100 points form a 10 x 10 square grid on the 3-
D ground plane. The length unit used here is meter. 

The evaluation results of computed camera parameters and 
average reprojection error 𝜇err on the four video sequences are 
shown in Table 1.  It can be seen that the application of the noise 
reduction schemes in vanishing points estimation can help 
improve calibration accuracy. The proposed noise reduction 
scheme based on mean shift clustering and Laplace linear 
regression outperforms RANSAC because it can work well even 
when the number of outliers is significantly large. Another 
advantage of our proposed method is that there is no need for 
fine-tuning threshold parameter in LH estimation. The robustness 
of self-calibration is further strengthened through optimization 
using EDA, mainly because the assumptions on intrinsic camera 
parameters are relaxed. This algorithm takes 20, 24, 23, and 22 
iterations to converge in these four sequences respectively. The 
projected points in EDA optimization on selected frames of the 
test videos are plotted in Fig. 4.  

In addition, the average runtime of each iteration in EDA 
according to our parameters setting is 0.589 seconds. The  
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(a)                           (b)                           (c)                           (d) 

Fig. 4. Projected points in the EDA optimization of camera parameters on 

frames of the four test sequences (measurement points in red, and auxiliary lines 
in grey). The reprojection error is proportional to the distance between each 

measurement point and its two corresponding auxiliary lines from VX and VZ. 

(a) Seq. #1. (b) Seq. #2. (c) Seq. #3. (d) Seq. #4. 

runtime is estimated on an Intel Core i5-4210U PC with 1.70 
GHz processor and 8G RAM in a Windows 8 environment. 
Since camera self-calibration usually only needs to be run once 
for each static camera, such short computation time for 
optimization should be acceptable. Furthermore, as is discussed 
in Section 1, the optimization procedure by EDA can be 
accelerated through parallel computation when GPU is adopted.  

V. CONCLUSION 

 In this paper, we propose a robust single camera self-
calibration method based on moving persons tracking. Our 
contribution lies in (1) combining the state-of-the-art change 
detection algorithm and tracking algorithm to generate accurate 
head/foot localization, (2) introducing mean shift clustering and 
Laplace linear regression through convex optimization to the 
estimation of vanishing points for noise reduction, and (3) 
formulating the problem of camera parameters optimization into 
minimization of average reprojection error on the ground plane, 
which is supported by EDA that can relax the assumptions on 
unknown intrinsic parameters. From experiments on real data, it 
is shown that our self-calibration algorithm can accurately 
compute both intrinsic and extrinsic camera parameters. The 
reprojection error is also significantly reduced after 
optimization. For future development, we are going to combine 
this method with 3-D human tracking to further optimize the 
camera parameters using measurements from 3-D trajectories. 
Moreover, parallel computation using GPU will be implemented 
to improve computation efficiency. 
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