Artificial Intelligence

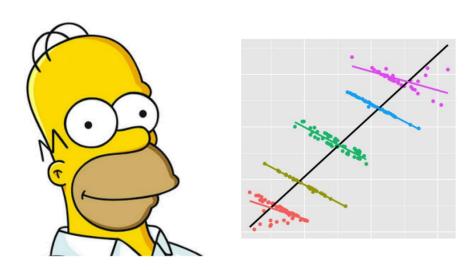
A Course About Foundations

Causal Inference

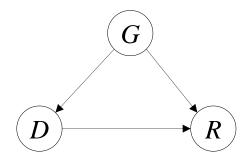
Marco Piastra

Artificial Intelligence 2024–2025 Causal Inference [1]

An Example: Simpson's Paradox



What is a cause?



G is biological gender (= Male/Female) D is drug administration (= Yes(1)/No(0)) R is recovery from illness (= Yes(1)/No(0))

Experimental data

- In both groups, recovery rates are higher if drug is administered...
- ... while in the entire population, recovery rates are *lower*

Females	R = 0	R = 1		Recovery Rate
D=0	25	55	80	69%
D=1	71	192	263	73%
	96	247	343	

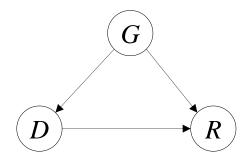
Males	R = 0	R = 1		Recovery Rate
D = 0	36	234	270	87%
D = 1	6	81	87	93%
	42	315	357	

	R = 0	R = 1		Recovery Rate
D = 0	61	289	350	83%
D=1	77	273	350	78%
	138	562	700	

[Data from Pearl, J. et al., "Causal Inference in Statistics: A Primer", Wiley, 2016]

Artificial Intelligence 2024–2025 Causal Inference [3]

What is a cause?



G is biological gender (= Male/Female) D is drug administration (= Yes(1)/No(0)) R is recovery from illness (= Yes(1)/No(0))

Experimental data

- Note however that gender also influenced drug prescription...
- ... in fact, in this example, doctors were more likely to prescribe drug to males than to females

Females	R = 0	R = 1		Recovery Rate
D = 0	25	55	80	69%
D=1	71	192	263	73%
	96	247	343	

Males	R = 0	R = 1		Recovery Rate
D = 0	36	234	270	87%
D=1	6	81	87	93%
	42	315	357	

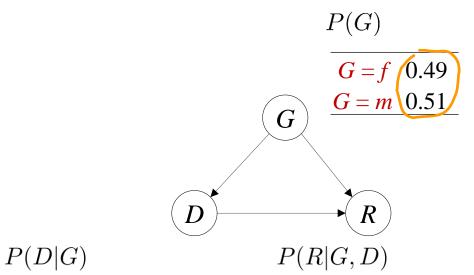
	R = 0	R = 1		Recovery Rate
D = 0	61	289	350	83%
D=1	77	273	350	78%
	138	562	700	

[Data from Pearl, J. et al., "Causal Inference in Statistics: A Primer", Wiley, 2016]

Artificial Intelligence 2024–2025 Causal Inference [4]

What is a cause?

Maximum Likelihood Estimation (CPTs)



$$G = f G = m$$

$$D = 0 \quad 0.23 \quad 0.76$$

$$D = 1 \quad 0.77 \quad 0.24$$

$$G = f$$
 $G = f$ $G = m$ $G = m$
 $D = 0$ $D = 1$ $D = 0$ $D = 1$
 $R = 0$ 0.31 0.27 0.13 0.07
 $R = 1$ 0.69 0.73 0.87 0.93

Females	R = 0	R = 1		Recovery Rate
D = 0	25	55	80	69%
D=1	71	192	263	73%
	96	247	343	

Males	R = 0	R = 1		Recovery Rate
D = 0	36	234	270	87%
D = 1	6	81	87	93%
	42	315	357	

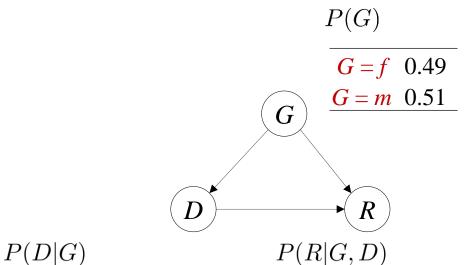
	R = 0	R = 1		Recovery Rate
D = 0	61	289	350	83%
D=1	77	273	350	78%
	138	562	700	

[Data from Pearl, J. et al., "Causal Inference in Statistics: A Primer", Wiley, 2016]

Artificial Intelligence 2024–2025 Causal Inference [5]

What is a cause?

Maximum Likelihood Estimation (CPTs)



$$G = f G = m$$

$$D = 0 \quad 0.23 \quad 0.76$$

$$D = 1 \quad 0.77 \quad 0.24$$

$$G = f$$
 $G = f$ $G = m$ $G = m$
 $D = 0$ $D = 1$ $D = 0$ $D = 1$
 $R = 0$ 0.31 0.27 0.13 0.07
 $R = 1$ 0.69 0.73 0.87 0.93

Using Graphical Model as a predictor

Case 1: Gender is observed

$$P(R = 1|G = 0, D = 0) = 0.69$$

 $P(R = 1|G = 0, D = 1) = 0.73$
 $P(R = 1|G = 1, D = 0) = 0.87$
 $P(R = 1|G = 1, D = 1) = 0.93$

Prescribe drug, regardless

Case 2: Gender is not observed

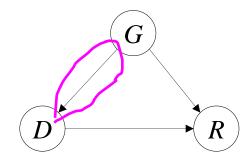
$$P(R|D) = \frac{\sum_{G} P(R|G, D) P(D|G) P(G)}{\sum_{G,R} P(R|G, D) P(D|G) P(G)}$$

$$P(R = 1|D = 0) = 0.83$$

$$P(R = 1|D = 1) = 0.78$$

Do not prescribe drug, regardless (ridiculous!)

What is a cause?



G is biological gender (= Male/Female) D is drug administration (= Yes(1)/No(0)) R is recovery from illness (= Yes(1)/No(0))

How can we solve the problem?

- The problem is due to the discrepancy in drug administration across genders
- An obvious solution would be to repeat the experiment with equal administration rates
- In other words, we would sever this link

Females	R = 0	R = 1	_	Recovery Rate
D = 0	25	55	80	69%
D=1	71	192	263/	73%
	96	247	343	

Males	R = 0	R = 1	/ _	Recovery Rate
D = 0	36	234	270	87%
D=1	6	81	87	93%
	42	315	357	

	R = 0	R = 1		Recovery Rate
D = 0	61	289	350	83%
D=1	77	273	350	78%
	138	562	700	

[Data from Pearl, J. et al., "Causal Inference in Statistics: A Primer", Wiley, 2016]

Artificial Intelligence 2024–2025 Causal Inference [7]

Aside: Dependence & Correlation

Expected Value of a Random Variable

Basic definition

$$\mathbb{E}_X[X] := \sum_{x \in \mathcal{X}} x \ P(X = x)$$

In a more concise notation: $\mathbb{E}[X] := \sum x \; P(x) = \mu_X$

Continuous case

$$\mathbb{E}_X[X] := \int_{x \in \mathcal{X}} x \ p(x) dx$$

Probability density

Expectation is a linear operator

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
$$\mathbb{E}[cX] = c\mathbb{E}[X]$$

Conditional expectation

$$\mathbb{E}_X[X|Y=y] = \mathbb{E}[X|Y=y] := \sum_{x \in \mathcal{X}} x \ P(X=x|Y=y)$$

Artificial Intelligence 2024–2025 Causal Inference [9]

Variance and Covariance

Variance

$$Var(X) := \mathbb{E}_X[(X - \mathbb{E}_X[X])^2] = \mathbb{E}_X[(X - \mu_X)^2]$$

where:

$$\mu_X := \mathbb{E}_X[X]$$

$$\operatorname{Var}(X) := \sum_{x \in \mathcal{X}} P(X = x) \; (x - \mu_X)^2$$

In a more concise notation:

$$Var(X) := \sum_{x} P(x) (x - \mu_X)^2 = \sigma^2$$

Variance is <u>not</u> a linear operator

Conditional variance

$$Var(X|Y=y) := \mathbb{E}_X[(X - \mathbb{E}_X[X|Y=y])^2 | Y=y]$$

Covariance

$$Cov(X,Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

Artificial Intelligence 2024–2025 Causal Inference [10]

Correlation and Independence

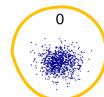
Pearson's correlation:

$$\rho(X,Y) := \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

Standard deviation: $\sigma_X = \sqrt{\operatorname{Var}(X)}$

Pearson's Correlation Coefficient

0.8



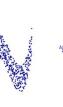
Independence between two random variables

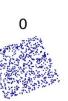
$$\langle X \perp Y \rangle \Rightarrow P(X,Y) = P(X)P(Y)$$

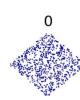
$$\langle X \perp Y \rangle \Rightarrow \rho(X,Y) = 0$$

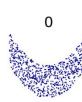
Zero correlation does NOT imply independence

$$\rho(X,Y) = 0 \implies \langle X \perp Y \rangle$$









Correlation and Independence

Zero correlation does NOT imply independence

Does <u>independence</u> imply <u>zero correlation</u>?

$$\rho(X,Y) := \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

$$\operatorname{Cov}(X,Y) := \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] \quad \text{Covariance}$$

$$= \mathbb{E}[XY - X\mu_Y - Y\mu_X + \mu_X \mu_Y]$$

$$= \mathbb{E}[XY] - \mu_Y \mathbb{E}[X] - Y\mu_X \mathbb{E}[Y] + \mu_X \mu_Y$$

$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] - \mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y]$$

$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

$$= \sum_{x,y} xy \ P(x,y) - \sum_{x} x \ P(x) \sum_{y} y \ P(y)$$

$$= \sum_{x,y} xy \ P(x,y) - \sum_{x,y} xy \ P(x)P(y)$$

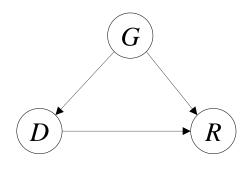
So, the answer is <u>yes</u>: the last term must be <u>zero</u> if the two variables are independent

Artificial Intelligence 2024–2025 Causal Inference [12]

Structural Causal Models

Artificial Intelligence 2024-2025 Causal Inference [13]

Probabilistic Graphical Model



G is biological gender (= Male/Female) D is drug administration (= Yes(1)/No(0)) R is recovery from illness (= Yes(1)/No(0))

$$P(G, R, D) = P(G)P(D|G)P(R|G, D)$$

Females	R = 0	R = 1		Recovery Rate
D = 0	25	55	80	69%
D=1	71	192	263	73%
	96	247	343	

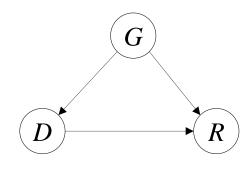
Males	R = 0	R = 1		Recovery Rate
D = 0	36	234	270	87%
D=1	6	81	87	93%
	42	315	357	

	R = 0	R = 1		Recovery Rate
D = 0	61	289	350	83%
D=1	77	273	350	78%
	138	562	700	

[Data from Pearl, J. et al., "Causal Inference in Statistics: A Primer", Wiley, 2016]

Artificial Intelligence 2024–2025 Causal Inference [14]

From Graphical Model to Structural Equations



G is *any measure* (= discrete/continuous)

D is *any measure* (= discrete/continuous)

R is any measure (= discrete/continuous)

$$P(G, R, D) = P(G)P(D|G)P(R|G, D)$$

* first approximation

Structural Equations

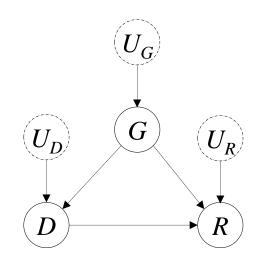
$$D = f_D(G)$$

$$R = f_R(G, D)$$

How can these two things be reconciled with probability? Functions are <u>deterministic</u>

Artificial Intelligence 2024–2025 Causal Inference [15]

From Graphical Model to Structural Equations



G is any measure (= discrete/continuous)

D is *any measure* (= discrete/continuous)

R is any measure (= discrete/continuous)

$$P(G, R, D) = P(G)P(D|G)P(R|G, D)$$

 U_G , U_D and U_R are <u>unobservable</u>, <u>random</u> variables The probability distribution is the <u>observable</u> aspect of the structural equations

* second approximation

Structural Equations

$$G = U_G$$

$$D = f_D(G, U_D)$$

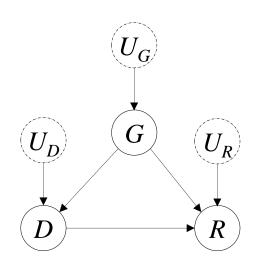
$$R = f_R(G, D, U_R)$$

Causal? Functions could be invertible Example:

$$D = k + \beta_g G + U_D$$
$$G = \frac{1}{\beta_g} (D - k - U_D)$$

Artificial Intelligence 2024–2025 Causal Inference [16]

From Graphical Model to Structural Causal Model



G is *any measure* (= discrete/continuous)

D is *any measure* (= discrete/continuous)

R is any measure (= discrete/continuous)

$$P(G, R, D) = P(G)P(D|G)P(R|G, D)$$

Structural Causal Model (SCM)

$$G := U_G$$

$$D := f_D(G, U_D)$$

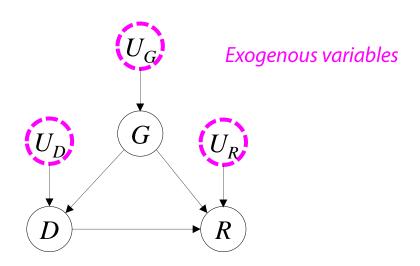
$$R := f_R(G, D, U_R)$$

Force directions, in keeping with causation assumptions

 U_G , U_D and U_R are <u>unobservable</u>, <u>random</u> variables The probability distribution is the <u>observable</u> aspect of the structural causal model

Artificial Intelligence 2024–2025 Causal Inference [17]

From Graphical Model to Structural Causal Model



G is *any measure* (= discrete/continuous)

D is *any measure* (= discrete/continuous)

R is any measure (= discrete/continuous)

$$P(G, R, D) = P(G)P(D|G)P(R|G, D)$$

Structural Causal Model (SCM)

$$G := U_G$$

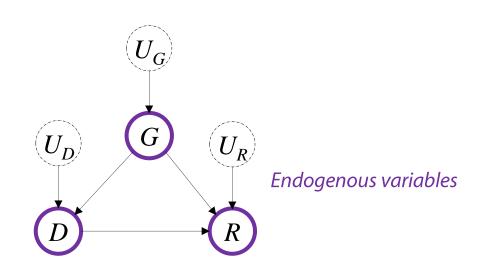
$$D := f_D(G, U_D)$$

$$R := f_R(G, D, U_R)$$

 U_G , U_D and U_R are <u>unobservable</u>, <u>random</u> variables The probability distribution is the <u>observable</u> aspect of the structural causal model

Artificial Intelligence 2024–2025 Causal Inference [18]

From Graphical Model to Structural Causal Model



G is *any measure* (= discrete/continuous)

D is *any measure* (= discrete/continuous)

R is any measure (= discrete/continuous)

$$P(G, R, D) = P(G)P(D|G)P(R|G, D)$$

Structural Causal Model (SCM)

$$G := U_G$$

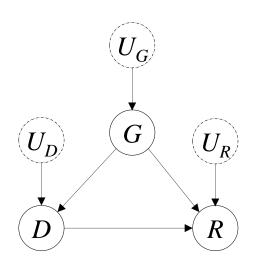
$$D := f_D(G, U_D)$$

$$R := f_R(G, D, U_R)$$

 U_G , U_D and U_R are <u>unobservable</u>, <u>random</u> variables The probability distribution is the <u>observable</u> aspect of the structural causal model

Artificial Intelligence 2024–2025 Causal Inference [19]

Structural Causal Model



Structural Causal Model (SCM) definition

- 1) A set of *endogenous* variables
- 2) A set of *exogenous* variables
- 3) A set of structural equations

Structural Causal Model (SCM)

$$G := U_G$$

$$D := f_D(G, U_D)$$

$$R := f_R(G, D, U_R)$$

An SCM induces a graphical model with a probability distribution P over endogenous variables

Artificial Intelligence 2024–2025 Causal Inference [20]

Structural Causal Model (formal definition)

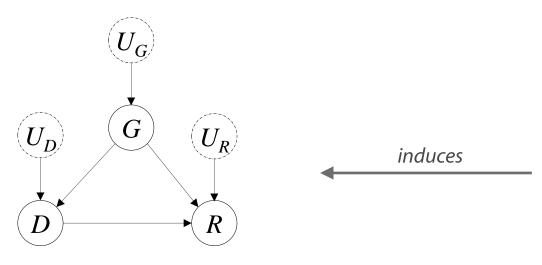
Structural Causal Model (SCM), formally

- 1) A set of endogenous variables $oldsymbol{X}:=\{X_1,X_2,\cdots,X_n\}$
- 2) A set of exogenous variables $\,oldsymbol{U}:=\{U_1,U_2,\cdots,U_n\}\,$
- 3) A set of structural equations $extbf{ extit{f}}:=\{f_1,f_2,\cdots,f_n\}$

An SCM $\,\mathcal{M}\,$ induces a graphical model $\,\mathcal{G}\,$ with a probability distribution $\,P(oldsymbol{X})\,$

Artificial Intelligence 2024–2025 Causal Inference [21]

Structural Causal Model



The graphical model induced is uniquely defined Further questions:

- 1) Which <u>functions</u>?
- 2) How are the random variables $\,U_{G}^{}$, $\,U_{D}^{}$ and $\,U_{R}^{}$ $\,$ <u>distributed</u>?
- *3)* Are they <u>dependent</u> (or correlated)?
- 4) Is the SCM <u>identifiable</u> from observed data?

Structural Causal Model (SCM)

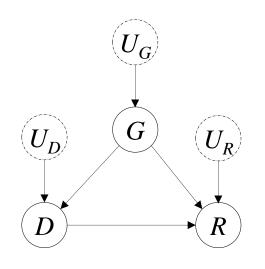
$$G := U_G$$

$$D := f_D(G, U_D)$$

$$R := f_R(G, D, U_R)$$

Artificial Intelligence 2024–2025 Causal Inference [22]

Structural Equation Model (linear functions)



a special case, linear

Structural Equation Model (SEM)

$$G := U_G$$

$$D := k_1 + \beta_1 G + U_D$$

$$R := k_2 + \beta_2 G + \beta_3 D + U_R$$

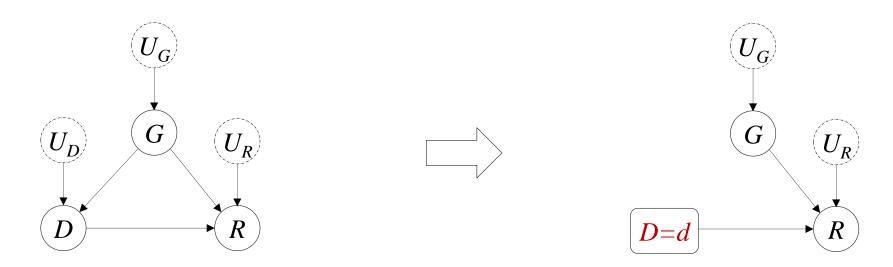
Assumptions:

- 1) All functions are <u>linear</u>
- 2) All random variables $U_{\cal G}$, $U_{\cal D}$ and $U_{\cal R}$ are normally distributed
- 3) All random variables are uncorrelated

Under further, specific conditions a SEM is identifiable from observed data

more in general, however, this is not true of any SCM

Intervention in a Structural Causal Model



Structural Equation Model (SEM)

$$G := U_G$$

$$D := f_D(G, U_D)$$

$$R := f_R(G, D, U_R)$$

$$G := U_G$$

$$D := d$$

$$R := f_R(G, D, U_R)$$

An intervention on an SCM creates a new sub-model by changing one or more structural equations It induces a new graph

Artificial Intelligence 2024–2025 Causal Inference [24]

Causal Model

A causal model

is a conceptual tool that we can align with actual **observations**, it allows us to perform virtual **interventions**, to estimate their effects, and to evaluate possible **counterfactual** worlds ("What if one or more aspects were different from what observed?")

All of this in a precise and formal framework, in which each inference step can be performed, under specific prerequisites

Using probability theory as the basic formalism

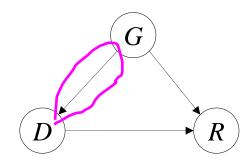
Artificial Intelligence 2024–2025 Causal Inference [25]

Inference through Intervention

Artificial Intelligence 2024–2025 Causal Inference [26]

The Origin of the Problem

Probabilistic Graphical Model



G is biological gender (= Male/Female) D is drug administration (= Yes(1)/No(0)) R is recovery from illness (= Yes(1)/No(0))

How can we solve the problem?

- The problem is due to the discrepancy in drug administration across genders
- An obvious solution would be to repeat the experiment with equal administration rates
- In other words, we would sever this link

Females	R = 0	R = 1	_	Recovery Rate
D = 0	25	55	80	69%
D = 1	71	192	263/	73%
	96	247	343	

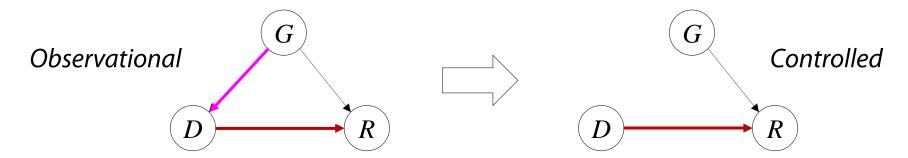
Males	R = 0	R = 1	/ _	Recovery Rate
D = 0	36	234	270	87%
D=1	6	81	87	93%
	42	315	357	

	R = 0	R = 1		Recovery Rate
D = 0	61	289	350	83%
D=1	77	273	350	78%
	138	562	700	

[Data from Pearl, J. et al., "Causal Inference in Statistics: A Primer", Wiley, 2016]

Artificial Intelligence 2024–2025 Causal Inference [27]

The Magic of Controlled Experiments



In this *Graphical Model*:

- 1. The causal effect we are interested in is that of D over R
- 2. The link between G and D is problematic: we know that $P(D|G=0) \neq P(D|G=1)$
- 3. In a **controlled experiment**, D is administered at random, therefore

$$\langle D \perp G \rangle \implies P(D|G=0) = P(D|G=1) = P(D)$$

4. In other words, the graphical model 'loses' the problematic link

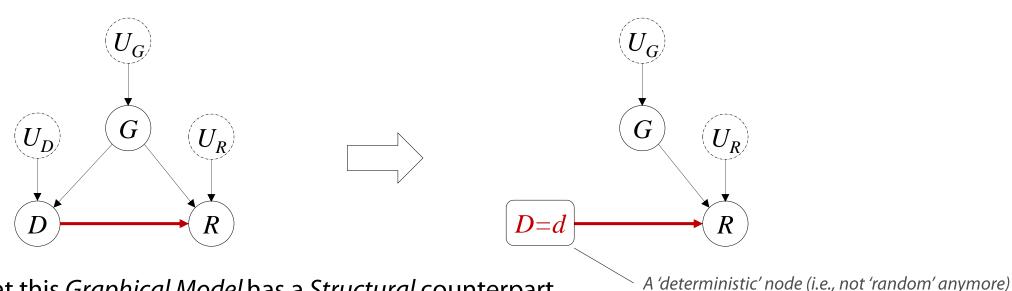
$$P(G, R, D) = P(G)P(D)P(R|G, D)$$

5. The conditional estimate then becomes

$$P(R|D) = \frac{P(R,D)}{P(D)} = \frac{\sum_{G} P(G)P(D)P(R|G,D)}{P(D)} = \sum_{G} P(G)P(R|G,D)$$

Artificial Intelligence 2024–2025 Causal Inference [28]

The Magic of a Structural Model



Assume that this *Graphical Model* has a *Structural* counterpart

$$G := U_G$$

$$D := f_D(G, U_D)$$

$$R := f_R(G, D, U_R)$$

$$G := U_G$$

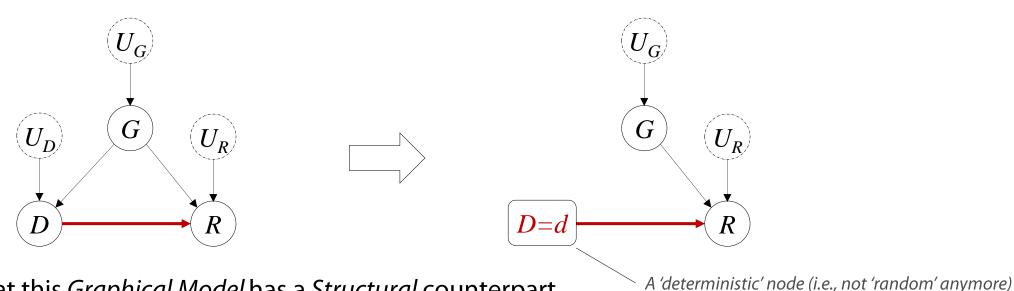
$$D = d$$

$$R := f_R(G, D, U_R)$$

In a line of principle, we could fix (by intervention) the value of $\,D\,$ in the structural part The other equation components would remain unaltered

Artificial Intelligence 2024–2025 Causal Inference [29]

The Magic of a Structural Model



Assume that this *Graphical Model* has a *Structural* counterpart

$$G := U_G$$

 $D := f_D(G, U_D)$
 $R := f_R(G, D, U_R)$
 $G := U_G$
 $D = d$
 $R := f_R(G, D, U_R)$

The corresponding joint probability distribution becomes:

$$P(G,R,D) = P(G)P(D|G)P(R|G,D) \qquad \square \qquad \qquad P(G,R,D=d) = P(G)P(R|G,D=d)$$

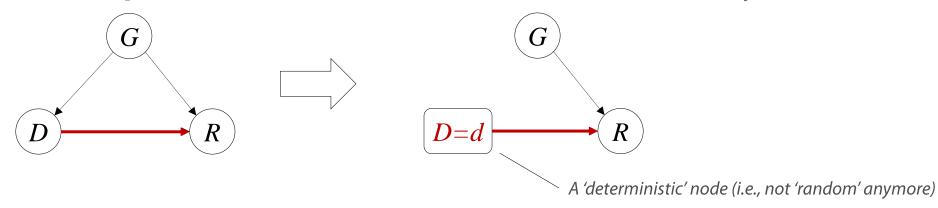
Artificial Intelligence 2024–2025 Causal Inference [30]

do-calculus

Artificial Intelligence 2024–2025 Causal Inference [31]

do-calculus (the intuition)

From Conditional (pre-intervention) to Intervention Probability



In this *Graphical Model* (for an <u>uncontrolled</u> experiment):

Conditional probability:

$$P(R|D = d) = \frac{\sum_{G} P(G)P(R|G, D = d)P(D = d|G)}{\sum_{G} P(G)P(D = d|G)}$$

Intervention (do-calculus, this is new)

$$P(R|do(D=d)):=\sum_G P(G)P(R|G,D=d)$$
 This is equivalent to $\ P(R|D=d)$ in a modified graphical in which we 'enforce intervention'

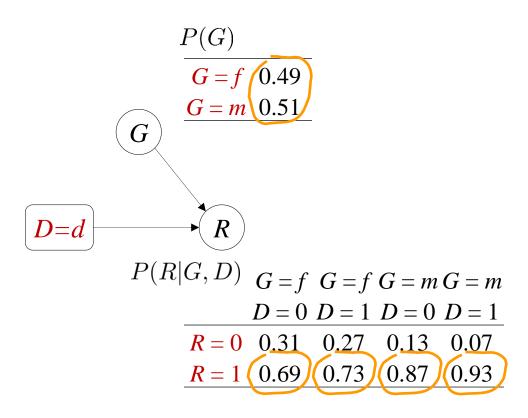
These two expression would be identical if P(D = d|G) = 1which cannot be true in general

Artificial Intelligence 2024-2025

do-calculus

From Conditional (pre-intervention) to Intervention Probability

(same observational probabilities, from MLE)



Using do-calculus

$$P(R = 1|do(D = 0)) = \sum_{G} P(G)P(R = 1|G, D = 0)$$
$$= 0.49 \cdot 0.69 + 0.51 \cdot 0.87 = 0.78$$

$$P(R = 1|do(D = 1)) = \sum_{G} P(G)P(R = 1|G, D = 1)$$
$$= 0.49 \cdot 0.73 + 0.51 \cdot 0.93 = \boxed{0.83}$$

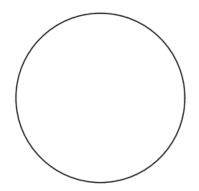
Prescribe drug, regardless

Artificial Intelligence 2024–2025 Causal Inference [33]

Causation and Conditionals

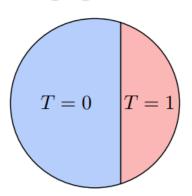
Conditioning and Intervening

Population



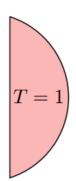
either been treated or not treated

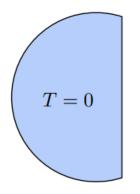
Subpopulations



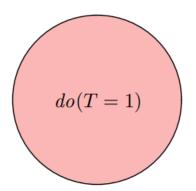
Assume we have data about a population of subjects Some have been treated (T=1) and some not (T=0) Conditioning means considering two subpopulations and computing probabilities from each of them Intervening, in the jargon of causal models, means assuming that every subject in the population has

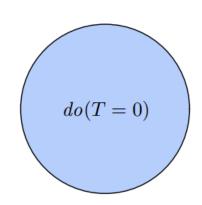
Conditioning





Intervening



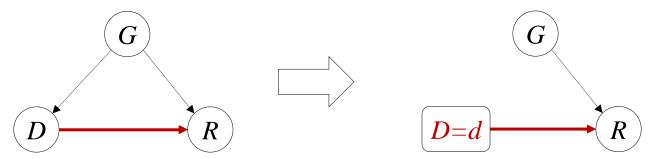


[Image from https://www.bradyneal.com/causal-inference-course]

Artificial Intelligence 2024-2025 Causal Inference [34]

do-Calculus

Compare two expressions



1. Conditioning:

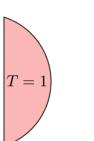
$$P(R|D = d) = \frac{\sum_{G} P(G)P(R|G, D = d)P(D = d|G)}{\sum_{G} P(G)P(D = d|G)}$$

2. Intervening:

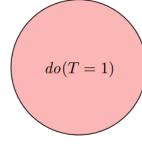
$$P(R|do(D=d)) := \sum_{G} P(G)P(R|G,D=d)$$

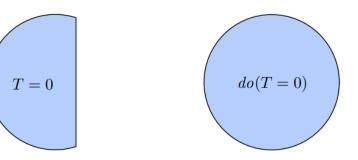
$$\begin{array}{c} \text{no normalization =} \\ \text{no conditional subspace} \end{array}$$

Conditioning



Intervening





Artificial Intelligence 2024-2025 Causal Inference [35]

Identifiability

Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y is identifiable iff it exists an adjustment set W of variables such that:

- no variable in ${\bf W}$ is on, or is a descendant of any variables on, a causal path (excluding the descendants of T alone)
- the variables in W block (in the sense of graphical models) all the non-causal paths between T and Y

This criterion is necessary and sufficient for effect identifiability

Then:

$$P(Y|do(T=t)) = \sum_{\mathbf{W}} P(Y|T=t, \mathbf{W}) P(\mathbf{W})$$

In words, under the above conditions, the <u>causal effect</u> can be estimated statistically, from data

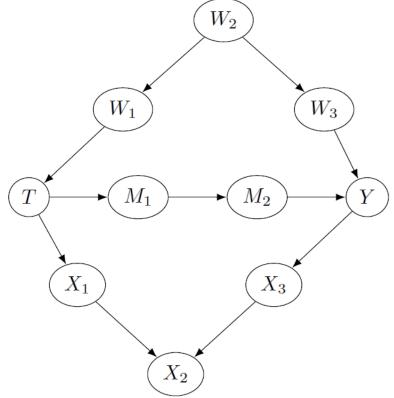
Artificial Intelligence 2024–2025 Causal Inference [36]

Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y is identifiable iff it exists an adjustment set W of variables such that:

• no variable in ${\bf W}$ is on, or is a descendant of any variables on, a causal path (excluding the descendants of T alone)

• the variables in W block (in the sense of graphical models) all the non-causal paths between T and Y



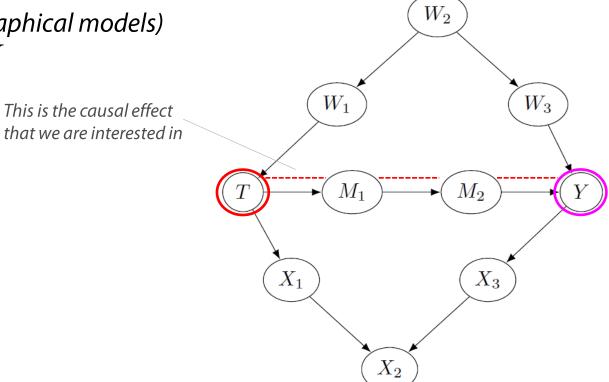
Artificial Intelligence 2024–2025 Causal Inference [37]

Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y is identifiable iff it exists an adjustment set W of variables such that:

• no variable in ${\bf W}$ is on, or is a descendant of any variables on, a causal path (excluding the descendants of T alone)

• the variables in W block (in the sense of graphical models) all the non-causal paths between T and Y



Artificial Intelligence 2024–2025 Causal Inference [38]

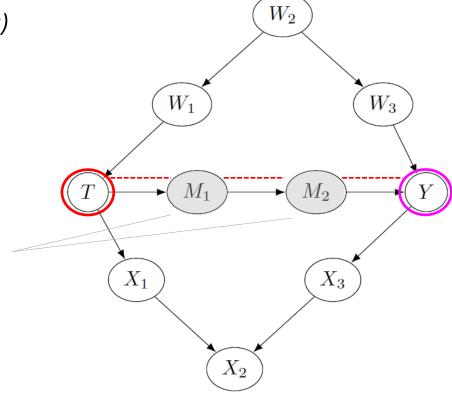
Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y is identifiable iff it exists an adjustment set W of variables such that:

• no variable in ${\bf W}$ is on, or is a descendant of any variables on, a causal path (excluding the descendants of T alone)

• the variables in W block (in the sense of graphical models) all the non-causal paths between T and Y

For identifiability none of the variables along the causal path must be in the adjustment set



Artificial Intelligence 2024–2025 Causal Inference [39]

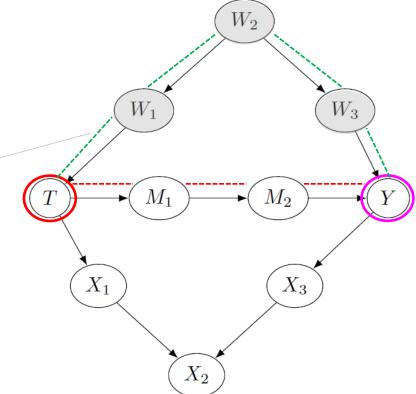
Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y is identifiable iff it exists an adjustment set W of variables such that:

• no variable in ${\it W}$ is on, or is a descendant of any variables on, a causal path (excluding the descendants of T alone)

• the variables in W block (in the sense of graphical models) all the non-causal paths between T and Y

This path is non-causal and needs to be blocked by the adjustment set



Artificial Intelligence 2024–2025 Causal Inference [40]

Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y is identifiable iff it exists an adjustment set W of variables such that:

• no variable in W is on, or is a descendant of any variables on, a causal path (excluding the descendants of T alone)

This path is non causal yet it <u>blocked</u> AS IS: the collider blocks it

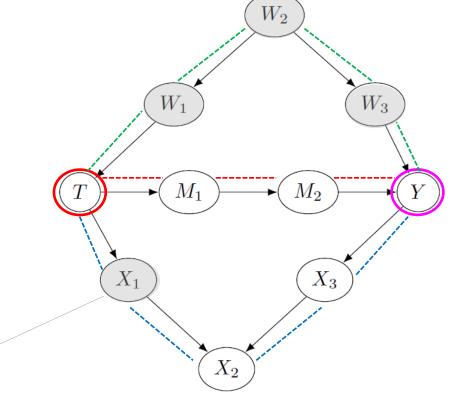
Artificial Intelligence 2024–2025 Causal Inference [41]

Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y is identifiable iff it exists an adjustment set W of variables such that:

• no variable in ${\bf W}$ is on, or is a descendant of any variables on, a causal path (excluding the descendants of T alone)

• the variables in W block (in the sense of graphical models) all the non-causal paths between T and Y



The observation of this variable is not problematic

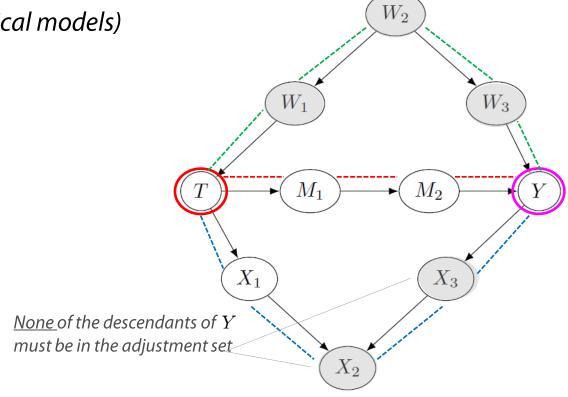
Artificial Intelligence 2024–2025 Causal Inference [42]

Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y is identifiable iff it exists an adjustment set W of variables such that:

• no variable in ${\bf W}$ is on, or is a descendant of any variables on, a causal path (excluding the descendants of T alone)

• the variables in W block (in the sense of graphical models) all the non-causal paths between T and Y



Artificial Intelligence 2024–2025 Causal Inference [43]

Identification

Adjustment Set Criterion with observed and unobserved variables

More in general, in practical cases, there can be both <u>observed</u> and <u>unobserved</u> (possibly <u>hidden</u>) variables

An *adjustment set* can be composed of both:

$$oldsymbol{W} = oldsymbol{W}_{obs} \cup oldsymbol{W}_{hid}$$

Then, if W satisfies the Adjustment Set Criterion:

$$P(Y|do(T=t), \boldsymbol{W}_{obs}) = \sum_{\boldsymbol{W}_{hid}} P(Y|T=t, \boldsymbol{W}_{hid}, \boldsymbol{W}_{obs}) P(\boldsymbol{W}_{hid})$$

When there are no observed variables in the adjustment set:

$$P(Y|do(T=t)) = \sum_{\boldsymbol{W}} P(Y|T=t, \boldsymbol{W}) P(\boldsymbol{W})$$

Likewise, when there are no *unobserved* variables in the adjustment set:

$$P(Y|do(T=t), \boldsymbol{W}) = P(Y|T=t, \boldsymbol{W})$$

Artificial Intelligence 2024–2025 Causal Inference [44]

Estimating Effects

Expected effects of different interventions can be estimated via <u>do-calculus</u> In general, the *expected effect* on Y of treatment T will be

$$\mathbb{E}[Y|do(T=t), \mathbf{W}_{obs}] := \sum_{y \in \mathcal{Y}} y P(Y|do(T=t), \mathbf{W}_{obs})$$

where $oldsymbol{W} = oldsymbol{W}_{obs} \cup oldsymbol{W}_{hid}$ is a valid *adjustment set*

Differences in effects can be measured by comparing expected effects.

As a special case, when $T \in \{0, 1\}$

The Conditional Average Treatment Effect (CATE) is defined as:

$$\tau(\boldsymbol{W}_{obs}) := \mathbb{E}[Y|do(T=1), \boldsymbol{W}_{obs}] - \mathbb{E}[Y|do(T=0), \boldsymbol{W}_{obs}]$$

The Average Treatment Effect (ATE) is defined as:

$$\mathbb{E}[\tau(\boldsymbol{W})] := \mathbb{E}[Y|do(T=1)] - \mathbb{E}[Y|do(T=0)]$$

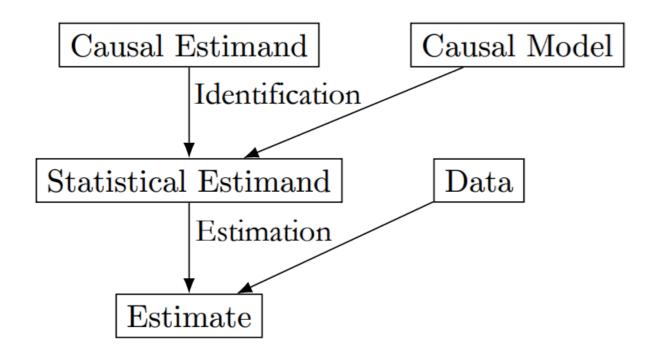
Artificial Intelligence 2024–2025 Causal Inference [45]

Causation and Conditionals

Causal Model and Estimation

Basic principles:

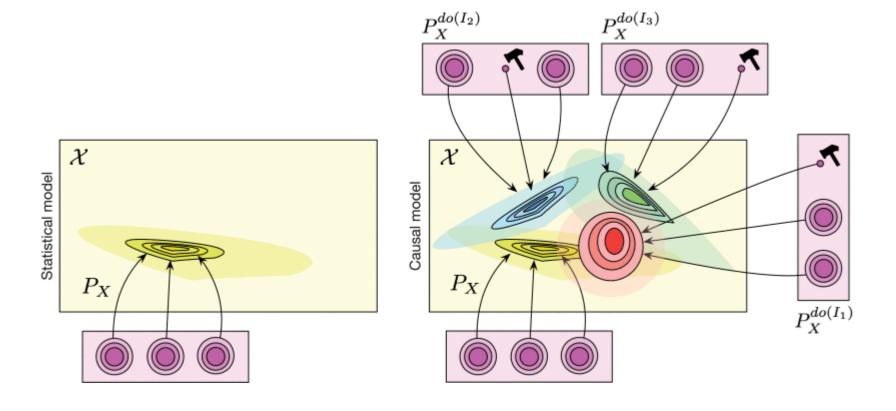
- Having selected what kind of causal effect we want to estimate
- We start from a Causal Model
- 3. To translate the estimate into a statistical estimand, (*Identification*)
- 4. We use then *observational* data to compute the **estimate**: a *probability* or an *expected value*



[Image from https://www.bradyneal.com/causal-inference-course]

Artificial Intelligence 2024–2025 Causal Inference [46]

Statistical and Structural (Causal) Models



A graphical model without a structural component describes one probability distribution A *structural* (*causal*) model represents *a family* of probability distributions, one per each possible *intervention*

[Image from https://ieeexplore.ieee.org/abstract/document/9363924]

Artificial Intelligence 2024–2025 Causal Inference [47]

Inference through Counterfactuals (Causal)

Artificial Intelligence 2024–2025 Causal Inference [48]

Counterfactuals?

The ladder of causal inference [J. Pearl, Causation, Cambridge University Press, 2009]

Prediction

Given the probability distribution $P(m{X})$ and some observations $m{X}_o=m{x}_o$ determine the probability $P(m{X}_u=m{x}_u\mid m{X}_o=m{x}_o)$ for some unobserved variables $m{X}_u$

Intervention

Intervene (i.e., force a change in value) on some variables $\, m{X}_i \,$ and determine the probability of effects $\, P(m{X}_e = m{x}_e \mid do(m{X}_i = m{x}_i)) \,$

Counterfactual

Having observed $m{X}_o=m{x}_o$ and its effects $m{X}_e=m{x}_e$, what could be the probability of different effects $m{x}_e'
eq m{x}_e$ if some conditions $m{X}_c \subseteq m{X}_o$ were <u>different</u>?

Artificial Intelligence 2024–2025 Causal Inference [49]

Counterfactual Inference

Counterfactual

Having observed $m{X}_o=m{x}_o$ and its effects $m{X}_e=m{x}_e$, what could be the probability of different effects $m{x}_e'
eq m{x}_e$ if some conditions $m{X}_c \subseteq m{X}_o$ were <u>different</u>?

A few relevant aspects:

- Prediction and Intervention occur in the same world, whereas counterfactuals require alternative worlds
- Conceptually, counterfactuals relate to <u>potential outcomes</u>
 ("what could it be the outcome, were the condition different?")
- Counterfactual inference can be performed at either <u>individual</u> or <u>population</u> level (more to follow)

Artificial Intelligence 2024–2025 Causal Inference [50]

Counterfactual Inference

From J. Pearl, Primer, 2016 (see suggested readings)

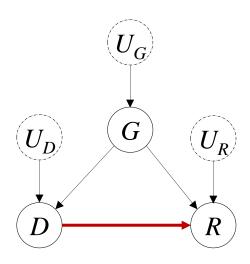
- 1. Abduction (i.e., going in reverse): use a complete observation $m{x}_o$ to determine the values $m{u}$ of the unobservable variables $m{U}$
- 2. Action: create a sub-model of $\,{\cal M}\,\,$ by replacing the structural equations for $\,{m X}_c\,$ with $\,{m X}_c={m x}_c$ (counterfactual values)
- 3. Prediction: use the sub-model to compute $~m{x}_e$ (the effects) by using $~m{u}$, $~m{x}_c$ and $~m{x}_o\setminus m{x}_c$

Artificial Intelligence 2024–2025 Causal Inference [51]

Counterfactual Inference (linear case)

From J. Pearl, Primer, 2016 (see suggested readings)

- 1. Abduction (i.e., going in reverse): use a complete observation $m{x}_o$ to determine the values $m{u}$ of the unobservable variables $m{U}$
- 2. Action: create a sub-model of $\,{\cal M}\,\,$ by replacing the structural equations for $\,{m X}_c\,$ with $\,{m X}_c={m x}_c$ (counterfactual values)
- 3. Prediction: use the sub-model to compute $\,m{x}_e$ (the effects) by using $\,m{u}$, $\,m{x}_c$ and $\,m{x}_o\setminusm{x}_c$



Example, in the linear case:

$$G := U_G$$

$$D := k_1 + \beta_1 G + U_D$$

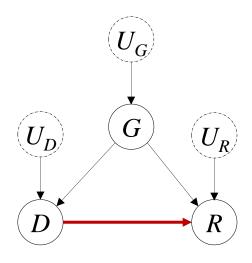
$$R := k_2 + \beta_2 G + \beta_3 D + U_R$$

Assume all parameters are known (complete identification of ${\cal M}$)

Counterfactual Inference (linear case)

From J. Pearl, Primer, 2016 (see suggested readings)

- 1. Abduction (i.e., going in reverse): use a complete observation $m{x}_o$ to determine the values $m{u}$ of the unobservable variables $m{U}$
- 2. Action: create a sub-model of $\,\mathcal{M}\,$ by replacing the structural equations for $m{X}_c$ with $m{X}_c=m{x}_c$ (counterfactual values)
- 3. Prediction: use the sub-model to compute $\,m{x}_e$ (the effects) by using $\,m{u}$, $\,m{x}_c$ and $\,m{x}_o\setminusm{x}_c$



Example, in the linear case:

$$u_G = g_o$$

 $u_D := d_o - k_1 - \beta_1 g_o$
 $u_R := r_o - k_2 - \beta_2 g_o + \beta_3 d_o$

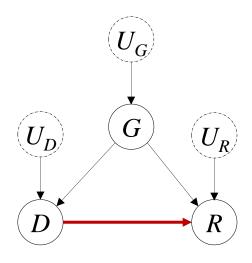
Replace with observed values and solve for $oldsymbol{U}$

Artificial Intelligence 2024–2025 Causal Inference [53]

Counterfactual Inference (linear case)

From J. Pearl, Primer, 2016 (see suggested readings)

- 1. Abduction (i.e., going in reverse): use a complete observation $m{x}_o$ to determine the values $m{u}$ of the unobservable variables $m{U}$
- 2. Action: create a sub-model of $\,{\cal M}\,\,$ by replacing the structural equations for $\,{m X}_c\,$ with $\,{m X}_c={m x}_c$ (counterfactual values)
- 3. Prediction: use the sub-model to compute $\,m{x}_e$ (the effects) by using $\,m{u}$, $\,m{x}_c$ and $\,m{x}_o\setminusm{x}_c$



Example, in the linear case:

$$g=u_G$$

$$d=\boxed{d_c} ext{ counterfactual value}$$
 effect $\boxed{r_e}=k_2+eta_2g_o+eta_3d_c+u_R$

Plug back values $\, oldsymbol{u} \,$, impose counterfactual value $\, d_c \,$ and compute the resulting effect $\, r_e \,$

From J. Pearl, Primer, 2016 (see suggested readings)

- 1. Abduction (i.e., going in reverse): use a complete observation $m{x}_o$ to determine the values $m{u}$ of the unobservable variables $m{U}$
- 2. Action: create a sub-model of $\,\mathcal{M}\,$ by replacing the structural equations with $\,m{X}_c = m{x}_c$ (counterfactual values)
- 3. Prediction: use the sub-model to compute $\,m{x}_e$ (the effects) by using $\,m{u}$, $\,m{x}_c$ and $\,m{x}_o\setminusm{x}_c$

More in general, even keeping the assumption of complete identification of $\,{\cal M}\,$, what happens if some functions are not one-to-one for the values of $\,{m U}\,$?

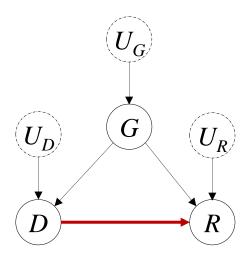
Note: this is the main point in which the causal hypothesis becomes fundamental

CAUSALITY: functions are considered as <u>non-invertible</u>, regardless

Artificial Intelligence 2024–2025 Causal Inference [55]

From J. Pearl, Primer, 2016 (see suggested readings)

- 1. Abduction (i.e., going in reverse): use a complete observation $m{x}_o$ to determine the values $m{u}$ of the unobservable variables $m{U}$
- 2. Action: create a sub-model of $\,\mathcal{M}\,$ by replacing the structural equations with $m{X}_c = m{x}_c$ (counterfactual values)
- 3. Prediction: use the sub-model to compute $\,m{x}_e$ (the effects) by using $\,m{u}$, $\,m{x}_c$ and $\,m{x}_o\setminusm{x}_c$



Example, non-invertible case:

$$G := U_G$$

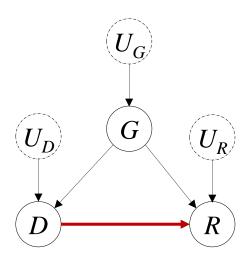
$$D := f_D(G, U_D)$$

$$R := f_R(G, D, U_R)$$

 ${\cal M}$ is still completely identified

From J. Pearl, Primer, 2016 (see suggested readings)

- 1. Abduction (i.e., going in reverse): use a complete observation $m{x}_o$ to determine the values $m{u}$ of the unobservable variables $m{U}$
- 2. Action: create a sub-model of $\,\mathcal{M}\,$ by replacing the structural equations with $m{X}_c = m{x}_c$ (counterfactual values)
- 3. Prediction: use the sub-model to compute $\,m{x}_e$ (the effects) by using $\,m{u}$, $\,m{x}_c$ and $\,m{x}_o\setminusm{x}_c$



Example, non-invertible case:

$$G = g_o$$

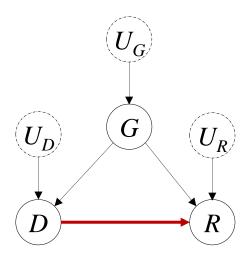
$$D = d_o$$

$$R = f_R(g_o, d_o, U_R) = r_o$$

Consider observed values

From J. Pearl, Primer, 2016 (see suggested readings)

- 1. Abduction (i.e., going in reverse): use a complete observation $m{x}_o$ to determine the values $m{u}$ of the unobservable variables $m{U}$
- 2. Action: create a sub-model of $\,\mathcal{M}\,$ by replacing the structural equations with $m{X}_c = m{x}_c$ (counterfactual values)
- 3. Prediction: use the sub-model to compute $\,m{x}_e$ (the effects) by using $\,m{u}$, $\,m{x}_c$ and $\,m{x}_o\setminusm{x}_c$



Example, non-invertible case:

$$G = g_o$$

$$D = d_o$$

$$R = f_R(g_o, d_o, U_R) = r_o$$

In general, it is not possible to solve for $\,U_R\,$ there may be a whole set of values of $\,u_R\,$ compatible with $\,r_o\,$

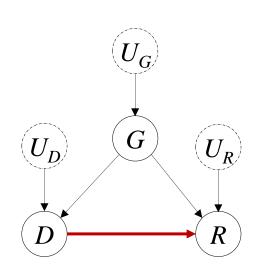
From J. Pearl, Primer, 2016 (see suggested readings)

- 1. Abduction (i.e., going in reverse): use a complete observation $m{x}_o$ to update the probability distribution $P(m{U} \mid m{X}_o = m{x}_o)$
- 2. Action: create a sub-model of $\,\mathcal{M}\,$ by replacing the structural equations with $m{X}_c = m{x}_c$ (counterfactual values)
- 3. Prediction: use the sub-model and the updated distribution to compute the probability distribution of possible effects $m{x}_e$

Artificial Intelligence 2024–2025 Causal Inference [59]

From J. Pearl, Primer, 2016 (see suggested readings)

- 1. Abduction (i.e., going in reverse): use a complete observation $m{x}_o$ to update the probability distribution $P(m{U}\mid m{X}_o=m{x}_o)$
- 2. Action: create a sub-model of $\,\mathcal{M}\,$ by replacing the structural equations with $m{X}_c = m{x}_c$ (counterfactual values)
- 3. Prediction: use the sub-model and the updated distribution to compute the probability distribution of possible effects $m{x}_e$



Example, non-invertible case:

$$G = g_o$$

$$D = d_c$$

$$P(R_e = r_e) = \sum_{u_R \in \mathcal{U}_{R|r_e}} P(R = r_e, U_R = u_R | \mathbf{X}_o = \mathbf{x}_o)$$

where:

$$\mathcal{U}_{R|r_e} := \{u_R : f_R(g_o, d_c, u_R) = r_e\}$$

From J. Pearl, Primer, 2016 (see suggested readings)

- 1. Abduction (i.e., going in reverse): use a complete observation $m{x}_o$ to update the probability distribution $P(m{U} \mid m{X}_o = m{x}_o)$
- 2. Action: create a sub-model of $\,\mathcal{M}\,$ by replacing the structural equations with $m{X}_c = m{x}_c$ (counterfactual values)
- 3. Prediction: use the sub-model and the updated distribution to compute the probability distribution of possible effects

This is called <u>unit</u> or <u>individual-level</u> counterfactual inference since it starts from the observation (possibly complete) of a specific case It requires the complete identification of $\mathcal M$ (including the distribution $P(\boldsymbol U, \boldsymbol X)$) Otherwise, there <u>are too many degrees of freedom</u>, and the inference problem is ill-posed

Artificial Intelligence 2024–2025 Causal Inference [61]

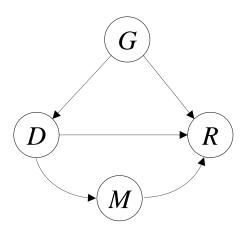
Counterfactual Inference, population level

What kind of counterfactual inference can be performed when the model $\,\mathcal{M}\,$ is NOT completely identified?

In other words, when what we have is the distribution P(X) over endogenous variables as derived from actual observations?

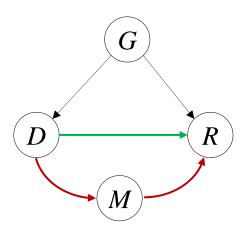
Perhaps we should change the question somewhat: what other kind of counterfactual inference could be useful in such case?

Artificial Intelligence 2024–2025 Causal Inference [62]



Suppose that, as an extension to the previous model, we now assume that drug $\,D\,$ has an observable side-effect $\,M\,$ which also affects patient's recovery $\,R\,$ It is independent from gender $\,G\,$

Artificial Intelligence 2024–2025 Causal Inference [63]



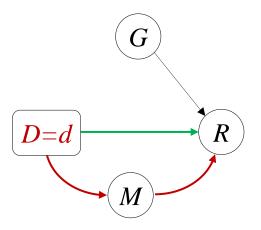
Suppose that, as an extension to the previous model, we now assume that drug $\,D\,$ has an observable side-effect $\,M\,$ which also affects patient's recovery $\,R\,$

It is independent from gender G

Now the model has two causal paths: one direct and another indirect, <u>mediated</u> by M

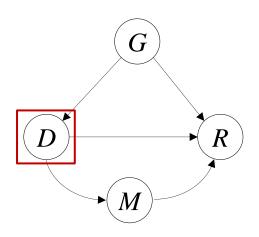
We might want to know what are the causal effects of each path in general, i.e., at the <u>population</u> level

Artificial Intelligence 2024–2025 Causal Inference [64]



<u>Intervention</u> on D alone will not give the answer, as both paths need to be considered at once

Artificial Intelligence 2024–2025 Causal Inference [65]



General idea (intuitive): splitting node D in two and letting different paths 'see' different values SCM model $\mathcal M$

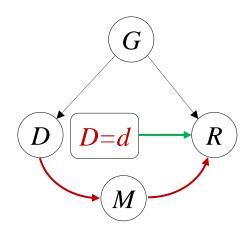
 $G := U_G$

 $D := f_D(G, U_D)$

 $M := f_M(D, U_M)$

 $R := f_R(G, D, M, U_R)$

Artificial Intelligence 2024–2025 Causal Inference [66]



General idea (intuitive): splitting node D in two and letting different paths 'see' different values Modified SCM model \mathcal{M}'

$$G := U_G$$

$$D := f_D(G, U_D)$$

When this is feasible, differences in path-specific effects can be evaluated from the observational distribution $P(m{X})$ alone

$$M := f_M(D, U_M)$$

$$R := f_R(G, D = d, M, U_R)$$

Artificial Intelligence 2024–2025 Causal Inference [67]

Counterfactual Inference (see GeNIe 'berkeley_path_specific' attachment)

Download the GeNIe tool for free at: https://www.bayesfusion.com/genie/

Artificial Intelligence 2024–2025 Causal Inference [68]

Identifiability of Path-Specific Effects

Path-Specific Criterion (simplified)

In a SCM model \mathcal{M} , path-specific effects of T over Y with a <u>mediator</u> M are <u>identifiable</u> iff it exists an *adjustment set* W of variables such that:

- no variable in ${\bf W}$ is on, or is a descendant of any variables on, a causal path (excluding the descendants of T alone)
- the variables in W block (in the sense of graphical models) all the non-causal paths between T and Y
- the variables in \boldsymbol{W} block (in the sense of graphical models) all the non-causal paths between T and M
- the variables in W block (in the sense of graphical models) all the non-causal paths between M and Y

Extra requirements

Artificial Intelligence 2024–2025 Causal Inference [69]