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An Example:
Simpson’s Paradox

[Image from https://skewthescript.org/data-projects/simpsons-paradox]
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Causes and Effects: say it with graphs

= What is a cause?

(7 is biological gender (= Male/Female)
D is drug administration (= Yes(1)/No(0))
Ris recovery from illness (= Yes(1)/No(0))

Experimental data

* In both groups, recovery rates are higher
if drug is administered...

* ...whilein the entire population,
recovery rates are lower
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Females R=0 R=1 Recovery Rate
D=0 25 55 80 ( 69%)
D=1 71 192 263 73%

96 247 343

Males R=0 R=1 Recovery Rate
D=0 36 234 270 Cw%)
D=1 6 81 87 93%

42 315 357 T
R=0 R=1 Recovery Rate
D=0 61 289 350 ( )
D=1 77 273 350 78%
138 562 700

[Data from Pearl, J. et al.,, “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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Causes and Effects: sqy it with graphs

= What is a cause?

(7 is biological gender (= Male/Female)
D is drug administration (= Yes(1)/No(0))
Ris recovery from illness (= Yes(1)/No(0))

Experimental data

* Note however that gender also influenced drug
prescription...

« ..infact, in this example, doctors were more likely
to prescribe drug to males than to females
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Females R=0 R=1 __ Recovery Rate

D=0 25 55 80 69%
D=1 71 192 \ 263 /3%

96 247 343

Males R=0 R=1 . Recovery Rate
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D=0 36 234 <27o) 87%
D=1 6 81 \_87 93%
42 315 357
R=0 R=1 Recovery Rate
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[Data from Pearl, J. et al.,, “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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Causes and Effects: say it with graphs

= What is a cause?

Maximum Likelihood Estimation (CPTs) Femag S: . R2—50 R5_51 20 Recovgngate
D=1(/1 192/ \263 /3%
96 247 (343
Males R=0 R=1 Recovery Rate
D=0¢36 234 (270 87%
D=1(6 81 87 93%
42 315 (357
P(D|G) P(R|G, D)
G=fG=m G=f G=fG=mG=m
D=0/0.23 0.76— D=0D=1D=0D=1 R=0 R=1 Recovery Rate
D=110.77/.0.24 R=0/0.31)/0.27 )/0.13)/0.07 D=0 61 289 350 83%
- R=110.69/10.73/,0.87/10.93/ D=1 77 273 350 78%
138 562 700

[Data from Pearl, J. et al.,, “Causal Inference in Statistics: A Primer”, Wiley, 2016]

Artificial Intelligence 2024-2025 Causal Inference [5]



Causes and Effects: say it with graphs

= What is a cause?
Maximum Likelihood Estimation (CPTs)

P(G)

G=f 049
G=m 0.51

Using Graphical Model as a predictor

Case 1: Gender is observed
P(R=1|G =0,D = 0) = 0.69

P(R=1/G=0,D=1)=0.73)

P(R=1|G=1,D =0) = 0.87

P(R=1|G=1,D=1) =0.93)

Prescribe drug, regardless

Case 2: Gender is not observed
o~ ~ L Y. P(R|G,D)P(D|G)P(G)
G=f G=fG=mG=m P(R’D)_ZG,RP(R\G,D)P(D]G)P(G)

D=0D=1D=0D=1
R=0 031 027 0.13 0.07 P(R=1|D=0)=0.83

P(D|G) P(R|G,D)

G=fG=m
D=0 023 0.76

D=1 0.77 0.24
R=1 0.69 0.73 0.87 0.93 P(R=1|D =1)=0.78
Do not prescribe drug, regardless
(ridiculous!)
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Causes and Effects: say it with graphs

= What is a cause?

(7 is biological gender (= Male/Female)
D is drug administration (= Yes(1)/No(0))
Ris recovery from illness (= Yes(1)/No(0))

How can we solve the problem?

* The problem s due to the discrepancy in drug
administration across genders

* An obvious solution would be to repeat the
experiment with equal administration rates

* Inother words, we would sever this link
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Females R=0 R=1 Recovery Rate

D=0 25 55 80 69%
D=1 71 192\ 263 /3%

N

96 247 343

Males R=0 R=1 . Recovery Rate

pa

D=0 36 234 <27o} 87%
D=1 6 81 \_87 93%
42 315 357
R=0 R=1 Recovery Rate
D=0 61 289 350 83%
D=1 77 273 350 78%
138 562 700

[Data from Pearl, J. et al.,, “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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Aside:
Dependence & Correlation
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Expected Value of 3 Random Variable

Basic definition In @ more concise

EX[X Z . P notation: E[X] — Zx P(CL‘) _

reX

Continuous case
Ex[X] :2/ x p(x)dx
reX

—

Probability density

Expectation is a linear operator
EX +Y] =E[X]|+E[Y]
ElcX] = cE[X]

Conditional expectation

Ex[X]Y =y =E[X|Y =y]:= ) 2 P(X =z|Y =y)
reX
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Variance and Covariance

Variance
Var(X) := Ex[(X — Ex[X])?] = Ex[(X — px)?]
where: px = Ex|X]
In a more concise
Var Z P 35- _ ﬂX)Q notation:
rEX Var(X ZP (x — pux)? =o”

Variance is not a linear operator

Conditional variance

Var(X|Y = y) .= Ex[(X — Ex[X|Y = y])2 Y =y
Covariance

Cov(X,Y) := E[(X - E[X])(Y - E[Y])] = E[(X - px)(Y — py)]
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Correlation and Independence

Pearson’s correlation:
E[(X —pux)(Y —py)]  Cov(X,Y)

/ OxX0y ; \/Var(X)Var(Y)
Standard deviation: ox = y/ Var(X)

p(X,Y) =

Pearson’s Correlation 1 0.8 0.4 0 -0.4 -0.8 -1
Coefficient : . ] o

Independence between two random variables

<X 1lY >= P(X,Y) = P(X)P(Y) _ ) (undefined)

<X1lY>= pX,Y)=0

Zero correlation does NOT imply independence e

p(X,)Y)=0 <X 1Y >

[Images from https://en.wikipedia.org/wiki/Pearsonfcorrelationfcoefficie@_gusal lnf:erence [11]
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Correlation and Independence

Zero correlation does NOT imply independence

Does independence imply zero correlation?

p(X,Y) =

E[(X — ux)(Y — py)]

OX0y
COV(X, Y) = E[(X — /ux)(Y — ;Ly)] Covariance

XY —
XY
:XY1

o

Xpy —Ypx + pxpy]

— uwyE[X] = YuxE[Y] + pxpy

— EX|E]Y] - EX|E[Y]+ E[X]|E]Y]
E[X]E]Y]

—Zazmey ZCBP ZyP
:ZaﬁyP x,y) —Z:L‘yP
T,y T,y

So, the answer is yes: the last term must be zero if the two variables are independent
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Structural Causal Models
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Probabilistic Graphical Model

(7 is biological gender (= Male/Female)
D is drug administration (= Yes(1)/No(0))
Ris recovery from illness (= Yes(1)/No(0))

P(G,R,D)= P(G)P(D|G)P(R|G, D)
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Females R=0 R=1 Recovery Rate
D=0 25 55 80 69%
D=1 71 192 263 /3%

96 247 343

Males R=0 R=1 Recovery Rate
D=0 36 234 2/0 87%
D=1 6 81 87 93%

42 315 357
R=0 R=1 Recovery Rate
D=0 61 289 350 83%
D=1 77 273 350 8%
138 562 700

[Data from Pearl, J. et al.,, “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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From Graphical Model to Structural Equations

~__— *first approximation
Structural Equations

D = fp(G)
R = fR(GaD)

(G is any measure (= discrete/continuous)
D is any measure (= discrete/continuous)

R is any measure (= discrete/continuous) How can these two things

be reconciled with probability?

P(Ga RaD) — P(G)P(D|G)P(R|Ga D) i Functions are deterministic
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From Graphical Model to Structural Equations

~___— *second approximation
Structural Equations

G =Ug
D = fp(G,Up)

R = fr(G,D,Ug)

(G is any measure (= discrete/continuous)

D is any measure (= discrete/continuous) Causal? Functions could be invertible
R is any measure (= discrete/continuous) Example:
D=k+p8,G+U
P(G, R, D) = P(G)P(D|G)P(R|G, D) 1 By D
G=—(D—-k—-Up)
Ugs, Up and U, are unobservable, random variables Ba

The probability distribution is the observable aspect of the structural equations
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From Graphical Model to Structural Causal Model

Structural Causal Model (SCM)

G::UG

D — fD(G, UD)
R = fR(G,D,UR)

(G is any measure (= discrete/continuous)
D is any measure (= discrete/continuous) Force directions, in keeping with causation assumptions
R is any measure (= discrete/continuous)

P(G,R,D)= P(G)P(D|G)P(R|G, D)

Ugs, Up and U, are unobservable, random variables
The probability distribution is the observable aspect of the structural causal model
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From Graphical Model to Structural Causal Model

Structural Causal Model (SCM)

G = UG
D — fD(G, UD)

R = fR(G, D, UR)
(G is any measure (= discrete/continuous)
D is any measure (= discrete/continuous)
R is any measure (= discrete/continuous)

P(G,R,D)= P(G)P(D|G)P(R|G, D)

Ugs, Up and U, are unobservable, random variables
The probability distribution is the observable aspect of the structural causal model
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From Graphical Model to Structural Causal Model

Structural Causal Model (SCM)

G::UG

Endogenous variables

D — fD(G, UD)

R = fR(G, D, UR)
(G is any measure (= discrete/continuous)
D is any measure (= discrete/continuous)
R is any measure (= discrete/continuous)

P(G,R,D)= P(G)P(D|G)P(R|G, D)

Ugs, Up and U, are unobservable, random variables
The probability distribution is the observable aspect of the structural causal model
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Structural Causal Model

G = UG
D — fD(G, UD)

R = fR(G, D, UR)
Structural Causal Model (SCM) definition

1) A set of endogenous variables
2) A set of exogenous variables
3) A set of structural equations

An SCM induces a graphical model with a probability distribution P over endogenous variables
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Structural Causal Model (formal definition)

Structural Causal Model (SCM), formally

1) A set of endogenous variables X := {Xl, Xo, - ,Xn}
2) Asetofexogenousvariables U := {Uy,Us,--- , Uy}
3) Asetofstructural equations f := {f1, fo, -, fu}

An SCM M induces a graphical model ¢ with a probability distribution P(X)
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Structural Causal Model

Structural Causal Model (SCM)
G :=Ug
D := fp(G,Up)
R:= fr(G,D,Ug)

induces

The graphical model induced is uniquely defined

Further questions:

1)  Which functions?

2) How are the random variables U, Uy and Uy, distributed?
3) Arethey dependent (or correlated)?

4) Isthe SCM identifiable from observed data?
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Structural Equation Model (linear functions)

_~ aspecial case, linear

Structural Equation Model (SEM)

G::UG
D=k + 5G4+ Up

R := ko + B2G + 3D + Ugr

Assumptions:
1) All functions are linear

2) Allrandom variables U, Uy and U, are normally distributed

3) Allrandom variables are uncorrelated

Under further, specific conditions a SEM is identifiable from observed data

~
~

more in general, however, this is not true of any SCM
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Intervention in 3 Structural Causal Model

Structural Equation Model (SEM)

G :=Ug G :=Ug

D := fp(G,Up) —> D:=d

R := fr(G,D,Ug) R := fr(G,D,Ug)
An intervention on an SCM creates a new sub-model by changing one or more structural equations
It induces a new graph
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Causal Model

A causal model

is a conceptual tool that we can align with actual observations,

it allows us to perform virtual interventions, to estimate their effects,
and to evaluate possible counterfactual worlds

(“What if one or more aspects were different from what observed?”)

All of this in a precise and formal framework,
in which each inference step can be performed,
under specific prerequisites

Using probability theory as the basic formalism
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Inference through Intervention
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The Origin of the Problem
* Probabilistic Graphical Model

Females R=0 R=1 Recovery Rate

D=0 25 55 80 69%
D=1 71 192\ 263 /3%

N

96 247 343

Males R=0 R=1 . Recovery Rate

pa

(7 is biological gender (= Male/Female)

D is drug administration (= Yes(1)/No(0)) B f 2 36 2314 <2770> 87?;0
R is recovery from illness (= Yes(1)/No(0)) =1 6 81 N8/ 93%
42 315 357
How can we solve the problem?
* The problem s due to the discrepancy in drug
administration across genders R=0 R=1 Recovery Rate
: : D=0 61 289 350 83%
An oli)'\r/:}m:]s; so.ltuhtlon wlcau(jllcslnlgr? tfrriper?: tthe D=1 77 273 350 2904
experiment with equal administration rates 138 562 700

* Inother words, we would sever this link

[Data from Pearl, J. et al.,, “Causal Inference in Statistics: A Primer”, Wiley, 2016]
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The Magic of Controlled Experiments

Observational Controlled
L e

In this Graphical Modéel.
The causal effect we are interested in is that of D over R
2. Thelink between GG and D is problematic: we know that P(D|G = 0) # P(D|G = 1)
3. Inacontrolled experiment, D is administered at random , therefore
<D1G> = PDIG=0)=P(D|G=1)=P(D)
4. In other words, the graphical model ‘loses’ the problematic link
P(G,R,D) = P(G)P(D)P(R|G, D)
5. The conditional estimate then becomes
P(R,D) > ~P(G)P(D)P(R|G,D)
P(D) P(D)

P(R|D) =

=Y P(G)P(R|G,D)
G
Artificial Intelligence 2024-2025 Causal Inference [28]



The Magic of 3 Structural Model

D=d
Assume that this Graphical Model has a Structural counterpart A deterministic’node (i.e. not random’anymore)
G :=Ug G :=Ug
D = fD(GaUD) > D =d
R = fR(G,D,UR) R = fR(G?D7UR)

In a line of principle, we could fix (by intervention) the value of ) in the structural part
The other equation components would remain unaltered
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The Magic of a Structural Model

D=d
Assume that this Graphical Model has a Structural counterpart A ‘deterministic’ node (i.e. not random’anymore)
G :=Ug G :=Ug
D = fD(GaUD) > D =d
R = fR(G,D,UR) R = fR(G?D7UR)

The corresponding joint probability distribution becomes:

P(G,R,D) = P(G)P(D|G)P(R|G, D) :> P(G,R,D = d) = P(G)P(R|G, D = d)

Artificial Intelligence 2024-2025
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do-calculus
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do-calculus (the inturtion)

* From Conditional (pre-intervention) to Intervention Probability
o=a——r.

\

In this Graphical Model (for an uncontrolled experiment):

A ‘deterministic’ node (i.e., not ‘random’ anymore)

1.  Conditional probability:

>_¢ P(G)P(R|G, D = d)P(D = d|G)
Z Q P (G)P (D = d’G) These two expression would be identical if
P(D =d|G) =1

which cannot be true in general

P(R|D =d) =

2. Intervention (do-calculus, this is new)
P(R|do(D = d)) ZP P(R|G,D = d)
3. Thisis equivalent to P(R|D d) in a modified graphical in which we ‘enforce intervention’
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do-calculus
* From Conditional (pre-intervention) to Intervention Probability

(same observational probabilities, from MLE)

P(G)
G=1/049) Using do-calculus

P(R = 1|do(D ZP R=1|G,D =0)

= 0.49 - 0.69 + 0.51 -0.87=10.78

P(R=1ldo(D=1)=YS P(G)P(R=1|G,D =
P(RIG,D) =f GefGemG=m (R =1|do(D =1)) ; (G)P(R =1 )
D=0D=1D=0D=1 —0.49-0.73 + 0.51 - 0.93 =(0.83

R=0 031 027 0.13 0.7
R=1(0.69)(0.73)(0.87 )(0.93

Prescribe drug, regardless
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Causation and Conditionals

= Conditioning and Intervening

Population Subpopulations Conditioning Intervening

Assume we have data about a population of subjects
Some have been treated (7'= 1) and some not (17'= 0)

Conditioning means considering two subpopulations T=0
and computing probabilities from each of them

Intervening, in the jargon of causal models, means
assuming that every subject in the population has
either been treated or not treated

[Image from https://www.bradyneal.com/causal-inference-course]
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do-Calculus

= Compare two expressions

=
o ——n

> ¢ P(G)P(R|G,D = d)P(D = d|G)
>.o P(G)P(D = d|G) T=1

Conditioning Intervening

1. Conditioning:

P(R|D = d) =

2. Intervening:

P(R|do(D = d)) :

Y P(G)P(R|G,D = d)
G T=0

\ no normalization =
no conditional subspace
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|dentifiability

= Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y s identifiable
iff it exists an adjustmentset W of variables such that:

* novariablein W ison, oris a descendant of any variables on, a causal path
(excluding the descendants of 1" alone)

» thevariablesin W block (in the sense of graphical models)
all the non-causal paths between 7" and Y

This criterion is necessary and sufficient for effect identifiability

Then:
P(Y|do(T =t)) =Y P(Y|T =t,W)P(W)
%4

In words, under the above conditions, the causal effect can be estimated statistically, from data
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dentifiability

= Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y s identifiable
iff it exists an adjustmentset W of variables such that:

* novariablein W ison, oris a descendant of any variables on, a causal path
(excluding the descendants of 1" alone)

» thevariablesin W block (in the sense of graphical models) @
all the non-causal paths between 7" and Y

N

()

Artificial Intelligence 2024-2025 Causal Inference [37]
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dentifiability

= Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y s identifiable
iff it exists an adjustmentset W of variables such that:

* novariablein W ison, oris a descendant of any variables on, a causal path
(excluding the descendants of 1" alone)

» thevariablesin W block (in the sense of graphical models)
all the non-causal paths between 7" and Y

This is the causal effect
that we are interested in
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dentifiability

= Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y s identifiable
iff it exists an adjustmentset W of variables such that:

* novariablein W ison, oris a descendant of any variables on, a causal path
(excluding the descendants of 1" alone)

» thevariablesin W block (in the sense of graphical models)
all the non-causal paths between 7" and Y

For identifiability
none of the variables
along the causal path
must be in the
adjustment set
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dentifiability

= Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y s identifiable
iff it exists an adjustmentset W of variables such that:

* novariablein W ison, oris a descendant of any variables on, a causal path
(excluding the descendants of 1" alone)

» thevariablesin W block (in the sense of graphical models)
all the non-causal paths between 7" and Y

This path is non-causal
and needs to be blocked
by the adjustment set
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dentifiability

= Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y s identifiable
iff it exists an adjustmentset W of variables such that:

* novariablein W ison, oris a descendant of any variables on, a causal path
(excluding the descendants of 1" alone)

» thevariablesin W block (in the sense of graphical models)
all the non-causal paths between 7" and Y

This path is non causal
yet it blocked AS IS:
the collider blocks it

Artificial Intelligence 2024-2025 Causal Inference [41]



dentifiability

= Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y s identifiable
iff it exists an adjustmentset W of variables such that:

* novariablein W ison, oris a descendant of any variables on, a causal path
(excluding the descendants of 1" alone)

» thevariablesin W block (in the sense of graphical models)
all the non-causal paths between 7" and Y

The observation of this
variable is not problematic
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dentifiability

= Adjustment Set Criterion [Shipster et al. 2010]

In a Causal Graphical Model, the causal effect of T over Y s identifiable
iff it exists an adjustmentset W of variables such that:

* novariablein W ison, oris a descendant of any variables on, a causal path
(excluding the descendants of 1" alone)

» thevariablesin W block (in the sense of graphical models)
all the non-causal paths between 7" and Y

None of the descendants of Y
must be in the adjustment set

Artificial Intelligence 2024-2025 Causal Inference [43]



|dentification

= Adjustment Set Criterion with observed and unobserved variables

More in general, in practical cases,
there can be both observed and unobserved (possibly hidden) variables

An adjustment set can be composed of both:
W =W, ps UWiig
Then, if W satisfies the Adjustment Set Criterion:

P(Y|do(T =1t),Wops) = ¥ P(Y|T =t, Whia, Wops) P(Whia)
Whid

When there are no observed variables in the adjustment set:

P(Y|do(T =t)) =) PY|T =t,W)P(W)
|%%

Likewise, when there are no unobserved variables in the adjustment set:

P(Y|do(T =t),W) =P(Y|T =t, W)
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Estimating Effects

Expected effects of different interventions can be estimated via do-calculus

In general, the expected effecton Y of treatment T will be

E[Y |do(T =t), W] := Z y P(Y|do(T =1t), Wps)
ycy
where W = W, U Wy,q is avalid adjustment set

Differences in effects can be measured by comparing expected effects.
As a special case, when T € {0,1}
» The Conditional Average Treatment Effect (CATE) is defined as:

T(Wops) := E[Y|do(T = 1), Wys] — E[Y|do(T = 0), W]

* The Average Treatment Effect (ATE) is defined as:
E[r(W)] := E[Y|do(T =1)] — E[Y|do(T = 0)]
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Causation and Conditionals

" Causal Model and Estimation Causal Estimand Causal Model
Identification
Statistical Estimand Data
Esttimation

Basic principles:

1. Having selecte.d what kind of causal effect Estimate
we want to estimate

2. We start from a Causal Model

To translate the estimate into a statistical estimand,
(Identification)

4. We use then observational data to compute the estimate:
a probability or an expected value

[Image from https://www.bradyneal.com/causal-inference-course]
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Statistical and Structural (Causal) Models

Statistical model
Causal model

Pxf/ ’
©@©© ©@©@

A graphical model without a structural component describes one probability distribution

A structural (causal) model represents a family of probability distributions,
one per each possible intervention

[Image from https://ieeexplore.ieee.org/abstract/document/9363924]
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Inference through Counterfactuals
(Causal)
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Counterfactuals?

The ladder of causal inference [J. Pearl, Causation, Cambridge University Press, 2009]

= Prediction

Given the probability distribution P (X ) and some observations X, = x,,
determine the probability P(X., = x, | X, = x,) forsome unobserved variables X,

= |[ntervention

Intervene (i.e., force a change in value) on some variables X ; and determine
the probability of effects P(X, = x. | do(X; = x;))

= Counterfactual

Having observed X, = &, andits effects X. = T, what could be the probability
of different effects :cé, 7é x. if some conditions X . C X, were different?

Artificial Intelligence 2024-2025 Causal Inference [49]



Counterfactual Inference

= Counterfactual

Having observed X, = @, and its effects X. = &, what could be the probability
of different effects :c;, =+ . ifsome conditions X . C X, were different?

A few relevant aspects:

* Prediction and Intervention occur in the same world,
whereas counterfactuals require alternative worlds

» Conceptually, counterfactuals relate to potential outcomes
(“what could it be the outcome, were the condition different?”)

» Counterfactual inference can be performed at either individual
or population level (more to follow)

Artificial Intelligence 2024-2025 Causal Inference [50]



Counterfactual Inference

From J. Pearl, Primer, 2016 (see suggested readings)

1. Abduction (i.e.,, going in reverse). use a complete observation &, to determine the values u
of the unobservable variables U

2. Action: create a sub-model of M by replacing the structural equations for X .
with X . = @, (counterfactual values)

3. Prediction: use the sub-model to compute x. (the effects) by using w, . and x, \ X,
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Counterfactual Inference (linear case)

From J. Pearl, Primer, 2016 (see suggested readings)

1. Abduction (i.e.,, going in reverse). use a complete observation &, to determine the values u
of the unobservable variables U

2. Action: create a sub-model of M by replacing the structural equations for X .
with X . = @, (counterfactual values)

3. Prediction: use the sub-model to compute x. (the effects) by using w, . and x, \ X,

Example, in the linear case:

G . =Ug
D :=Fk +5G+Up
R := ko + B2G + 83D 4+ Ug

Assume all parameters are known
(complete identification of A )
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Counterfactual Inference (linear case)

From J. Pearl, Primer, 2016 (see suggested readings)

1. Abduction (i.e.,, going in reverse). use a complete observation &, to determine the values u
of the unobservable variables U

2. Action: create a sub-model of M by replacing the structural equations for X .
with X . = @, (counterfactual values)

3. Prediction: use the sub-model to compute x. (the effects) by using w, . and x, \ X,

Example, in the linear case:

UG = Yo

up :=d, — k1 — £19,

UR ‘= To — k? — /8290 + ﬁSdo

Replace with observed values and solve for U
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Counterfactual Inference (linear case)

From J. Pearl, Primer, 2016 (see suggested readings)

1. Abduction (i.e.,, going in reverse). use a complete observation &, to determine the values u
of the unobservable variables U

2. Action: create a sub-model of M by replacing the structural equations for X .
with X . = @, (counterfactual values)

3. Prediction: use the sub-model to compute x. (the effects) by using w, . and x, \ X,

Example, in the linear case:

g = ua

d = dc counterfactual value

effect |Te|= ko + P29, + B3d. + uRr

Plug back values w , impose counterfactual
value d,. and compute the resulting effect 7,
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Counterfactual Inference, probabilistic case

From J. Pearl, Primer, 2016 (see suggested readings)

1. Abduction (i.e.,, going in reverse). use a complete observation &, to determine the values u
of the unobservable variables U

2. Action: create asub-model of M by replacing the structural equations
with X . = @, (counterfactual values)
3. Prediction: use the sub-model to compute x. (the effects) by using w, . and x, \ T,

More in general, even keeping the assumption of complete identification of M,
what happens if some functions are not one-to-one for the values of U ?

Note: this is the main point in which the causal hypothesis becomes fundamental

CAUSALITY: functions are considered as non-invertible, regardless
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Counterfactual Inference, probabilistic case

From J. Pearl, Primer, 2016 (see suggested readings)

1. Abduction (i.e.,, going in reverse). use a complete observation &, to determine the values u
of the unobservable variables U

2. Action: create asub-model of M by replacing the structural equations
with X . = @, (counterfactual values)

3. Prediction: use the sub-model to compute x. (the effects) by using w, . and x, \ X,

Example, non-invertible case:

G . =Ug
D — fD(G, UD)
R = fR(GaDa UR)

M s still completely identified
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Counterfactual Inference, probabilistic case

From J. Pearl, Primer, 2016 (see suggested readings)

1. Abduction (i.e.,, going in reverse). use a complete observation &, to determine the values u
of the unobservable variables U

2. Action: create asub-model of M by replacing the structural equations
with X . = @, (counterfactual values)

3. Prediction: use the sub-model to compute x. (the effects) by using w, . and x, \ X,

Example, non-invertible case:
G = g,
R = fR(907 dOa UR) — To

Consider observed values
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Counterfactual Inference, probabilistic case

From J. Pearl, Primer, 2016 (see suggested readings)

1. Abduction (i.e.,, going in reverse). use a complete observation &, to determine the values u
of the unobservable variables U

2. Action: create asub-model of M by replacing the structural equations
with X . = @, (counterfactual values)

3. Prediction: use the sub-model to compute x. (the effects) by using w, . and x, \ X,

Example, non-invertible case:
G = g,
R = fR(907 dOa UR — To

In general, it is not possible to solve for U i
there may be a whole set of values of uUp
compatible with r,,
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Counterfactual Inference, probabilistic case

From J. Pearl, Primer, 2016 (see suggested readings)

1. Abduction (i.e., going in reverse). use a complete observation T, to update the
probability distribution P(U || X, = x,))

2. Action: create a sub-model of M by replacing the structural equations
with | X . = x| (counterfactual values)

3. Prediction: use the sub-model and the updated distribution to compute the probability
distribution of possible effects .
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Counterfactual Inference, probabilistic case

From J. Pearl, Primer, 2016 (see suggested readings)

1. Abduction (i.e., going in reverse). use a complete observation T, to update the
probability distribution P(U | X, = x,)

2. Action: create asub-model of M by replacing the structural equations
with X . = @, (counterfactual values)

3. Prediction: use the sub-model and the updated distribution to compute the probability
distribution of possible effects .

Example, non-invertible case:

g
=
[
3
[

Y P(R=r.,Ug =ug|X, =)

ur€ Ug|r,

Z/{Rh“e = {U’R : fR(go:d(buR) — Te}
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Counterfactual Inference, probabilistic case

From J. Pearl, Primer, 2016 (see suggested readings)

1. Abduction (i.e., going in reverse). use a complete observation &, to update the
probability distribution P(U | X, = x,)

2. Action: create asub-model of M by replacing the structural equations
with X . = @, (counterfactual values)

3. Prediction: use the sub-model and the updated distribution to compute the probability
distribution of possible effects

This is called unit or individual-level counterfactual inference
since it starts from the observation (possibly complete) of a specific case

It requires the complete identification of M (including the distribution P(U, X))
Otherwise, there are too many degrees of freedom, and the inference problem is ill-posed
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Counterfactual Inference, population level

What kind of counterfactual inference can be performed when the model M
is NOT completely identified?

In other words, when what we have is the distribution P (X ) over endogenous variables
as derived from actual observations?

Perhaps we should change the question somewhat:
what other kind of counterfactual inference could be useful in such case?
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Path-Specific Counterfactual Evidence

Suppose that, as an extension to the previous model, we now assume that drug D
has an observable side-effect M which also affects patient’s recovery R

It is independent from gender G
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Path-Specific Counterfactual Evidence

Suppose that, as an extension to the previous model, we now assume that drug D
has an observable side-effect M which also affects patient’s recovery R

It is independent from gender G

Now the model has two causal paths: one direct and another indirect, mediated by M

We might want to know what are the causal effects of each path
in general, i.e., at the population level
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Path-Specific Counterfactual Evidence

D=d

P

Intervention on D alone will not give the answer, as both paths need to be considered at once
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Path-Specific Counterfactual Evidence

)
e
General idea (intuitive): splitting node D in two and letting different paths ‘see’ different values
SCM model M
G :=Ug
D = fp(G,Up)
M = fyp(D,Upy)
R:= fr(G,D,M,Ug)
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Path-Specific Counterfactual Evidence

General idea (intuitive): splitting node D in two and letting different paths ‘see’ different values
Modified SCM model M’

G :=Ug

D = G.U When this is feasible, differences in path-specific effects can be evaluated
fD ( ’ D) from the observational distribution P(X) alone

M = fM(D,UM)
R = fR(GaD =d 7M7 UR)
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Counterfactual Inference
(see GeNle ‘berkeley_path_specific’ attachment)

Download the GeNle tool for free at: https://www.bayesfusion.com/genie/
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https://www.bayesfusion.com/genie/

dentifiability of Path-Specific Effects

= Path-Specific Criterion (simplified)

In a SCM model M, path-specific effectsof T over Y with a mediator M are identifiable
iff it exists an adjustmentset W of variables such that:

* novariablein W ison, oris a descendant of any variables on, a causal path
(excluding the descendants of 1" alone)

» thevariablesin W block (in the sense of graphical models)
all the non-causal paths between 7" and Y

» thevariablesin W block (in the sense of graphical models)
all the non-causal paths between 7" and M

» thevariablesin W block (in the sense of graphical models)
all the non-causal paths between M and Y

Extra requirements
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