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An aside:
The K-means algorithm
(3lternate optimization)
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¥1.4

Vector quantization

READY!

10 Modes READ! 10 Modes

Original data Quantization (compression via prototypes)

The basic idea is to replace each real-valued vector & € R® with avalue w; € R*
which belongs to a finite codebook of k prototypes 0 := {w+,...,w}

Each data vector is encoded by using the index of the most similar prototype, where
similarity is measured in terms, for instance, of Euclidean distance:

w(z) := argmin,, ||z — wj||
For instance, part of mpeg4 and QuickTime (Apple) video compression algorithms work in this way
and so does the Ogg Vorbis audio compression algorithm
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k-means (Generalized Lloyd’s Algorithm — Vector quantization)

Givenaset D :={xy,...,x N} of observations (i.e. vectors in R%)

Clustering problem: given k, find a setof k prototypes 6 := {w,...,w;}

and an assignment function w : D — 6 such that the objective (loss) function:

Z i — w(ws)||”

is minimized.
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k-means (Generalized Lloyd’s Algorithm — Vector quantization)

k-means algorithm:

1) Position the k prototypes at random
2) Assign each observation to its closest prototype

w(x;) := argmin,, ||@; — wjl||

3) Position each prototype at the centroid of the observations assigned to it

1
wj = Z T where D(w;) :=={x; € D | w(x;) = w;}
Dluw,)| 2

4) Unless no prototype was moved in step 3), go back to step 2)

This algorithm converges to a local minimum of J(D, )
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k-means (Generalized Lloyd’s Algorithm — Vector quantization)
Why does the algorithm work: alternate optimization (also ‘coordinate descent’)
Step 2): Assign observations while keeping the k prototype fixed
w(zx;) = argmin,, ||z; — w;||

which minimizes each of the termsin J(D, 0) Z |z — w(z;)|”

Step 3): Reposition the k prototypes while keeping the assignments fixed

lemz w(z:)||* = Z > (@

J D(w;)
0 0 1 0 1
——J(D,0) = (x; —w,;)? = (; —w;) T (x; — w),)
s Ow; 2 D%u:j) TR D(Zw:j) 3 j
0 1
= 3w 3 Y. (@ +wi—2a] wy) = Y (w;—a)
72 D) D (w;)

then, by imposing iJ(D 6) = 0 we obtain

ow;

1
7 D(wy) Z v
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k-means (Generalized Lloyd’s Algorithm — Vector quantization)

Discussion of the k-means algorithm

a) Ateach step of the algorithm J (D, #) could not increase: it could only decrease or stay equal

b) The algorithm is a variant of a gradient descent, in which at each step
the gradient descent is performed on one subset of variables only

c) It must reach a fixed point, where both gradients vanish

d) But the only guarantee is that the algorithm reaches a local minimum
(unless it gets stuck in a saddle point or a plateau)
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k-means (Generalized Lloyd’s Algorithm — Vector quantization)

Givenaset D := {x1,...,xy} of observations (ie. vectorsin RY
andaset 6 := {w,...,wr} of K prototypes (i.e. vectors in R%)
Voronoi cell

V(w)) = {z e R | [lx — w;|| < [|l& —wil| .,V # j}

Voronoi tesselation: the complex of all Voronoi cells of 6

Algorithm (rewritten):
1) Position the k prototypes at random
2) Assign each observation to its Voronoi cell

w(x;) == w,; | z; € V(wy)

3) Position each prototype at the centroid of the observations in its Voronoi cell

1
W = e v, 2

{zieV(w;)}

4) Unless no prototype was moved in step 3), go back to step 2)
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k-means

An example run of the algorithm

The landmarks (empty circles)
become black when :
they cease to move a) data set D

o) 5 Lloyd iterations h) 6 Llovd iterations i) 7 Llovd iterations
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The Expectation-Maximization (EM)
algorithm
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Expected value of 3 random variable

(also expectation)

Basic definition More concise notation
Ex[X] := Zg;p(X:g;) E[X] := pr(ag)
reX reX
Continuous case
A linear operator E[X] ::/ z p(z)de
E[X + Y] = E[X] + E[Y] vex
ElcX] = cE[X]

Conditional expectation

Ex[X|Y =y =E[X|Y =y]:= ) 2 P(X =a|Y =y)

Iterated expectation (see Wikipedia)
Ex[X] = Ey[Ex[X[Y]]
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Joint Expected Value

The expected value of a function f of a set of random variables {X } is
Elf{XiD] == ) f{Xi}) PH{X:})
{X\}
the sum is over all possible combinations of values of the random variables

(Unless specified otherwise, the E operator acts over all the random variables enclosed)

The extension to the continuous case is obvious
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Expectation Maximization: a preliminary example

a Maximum likelihood Figure from http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html
Q HTTTHHTHTH 5H, 5T
- 24
# of heads ° HHHHTHHHHH gH, 1T 0=55 6080
in 10 tosses
° HTHHHHHTHH [8HET o
H‘E=m=ﬂ.45
o HTHTTTHHTT 4H 6T
o THHHTHHHTH 7TH, 3T
e 24H,6T 9H 11T

5 sets, 10 tosses per set

= An experiment with two coins

At each step, one coin is selected at random (with equal probability)

and then tossed ten times
Random variables: Y numberofheads, X selected coin (i.e AorB)
Parameters to be learnt: 0 = {04, O} probabilities of landing on head of A and B
When the results are fully observable, by MLE:

0* _ Ny_—1,x=a 0% — Ny—1,x=B

Nx—a B Nx—p
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Expectation Maximization: 3 preliminary example
Figure from http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html

da Maximum likelihood

Q HTTTHHTHTH 5H,5T
s 24
° HHHHTHHHHH  9HAT %=34 6080
o HTHHHHHTHH [8H2T o
H‘E=m=ﬂ.45

o HTHTTTHHTT 4H,6T

o THHHTHHHTH 7H, 3T
/ 24H,6T 9H, 11T

5 sets, 10 tosses per set

= An experiment with two coins

At each step, one coin is selected at random (with equal probability)
and then tossed ten times
Random variables: Y numberofheads, X selected coin (i.e AorB)
Parameters to be learnt: 0 = {04, O} probabilities of landing on head of A and B

= Whatif X is hidden (= latent, = unobserved)?

The results of each sequence of coin tosses are known, but not the coin selected
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Expectation Maximization: a preliminary example

a Maximum likelihood Figure from http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.htmi
Q HTTTHHTHTH 5H,5T
o HHHHTHHHHH  9HAT §4=24215=U-3'3
° HTHHHHHTHH [8H2T o
Q HTHTTTHHTT aHeT B O+T1 0%
o THHHTHHHTH | ZH&T
55915.10.@5595:;91 24H,6T 9H, 11T
= Whatif X is hidden (= latent, = unobserved)?
Likelihood
P(D|6)=PHYD} 0)= > PHIYD, X160
{X®}
MLE
0" := argmax, Z P (YD x| g)

(X0}
* This optimization problem is intractable, in general
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Expectation Maximization: a preliminary example

a Maximum likelihood Figure from http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html
Q HTTTHHTHTH 5H.5T
- 24
o HHHHTHHHHH  9HAT %.=55 6080
° HTHHHHHTHH [8H2T
s 9 _
H‘E—m—ﬂ.ﬁlﬁ
o HTHTTTHHTT 4H, 6T

o THHHTHHHTH TH, 3T
/ 24H,6T 9H, 11T

5 sets, 10 tosses per set

= Whatif X is hidden (= latent, = unobserved)?

Intuitive idea: use expected values for unobserved variables

1. Define an initial (random) guess (%) A
2. Compute Qi(X(i)) = P(X(i) | Y(i);é’(t)) E-step
3. Maximize

gt+1l) — argmaxy ZEQi(X(i))[Y(i) | X(i);é(t)] M-step

(]
4. Unless some convergence criterion has been met, go to step 2.
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Expectation Maximization: a preliminary example

E-step

HHHHTHHHHH
gH, 1T HTHHHHHTHH

HTHTTTHHTT

4H,6T

=72H, 08T =18H,02T

=14H 21T =26H,39T

24H,6T 9H, 11T

=21.3H,86T =11.7H,84T

p
4 s 213
l} ...................... A "‘21_3+B_Emu'?1

e AT
B 11.7+84

Initial random estimate of 0 4,0p

~_ 6, "=0.80

®'> 6,"'~0.52

Converged?

0.58
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Expectation Maximization: a preliminary example

E-step

HHHHTHHHHH
gH, 1T HTHHHHHTHH

HTHTTTHHTT

4H,6T

=72H, 08T =18H,02T

=14H 21T =26H,39T

24H,6T 9H, 11T

=21.3H,86T =11.7H,84T

p
4 s 213
l} ...................... A "‘21_3+B_Emu'?1

e AT
B 11.7+84

Initial random estimate of 0 4,0p

~_ 6, "=0.80

®'> 6,"'~0.52

Converged?

0.58
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Expectation Maximization: a preliminary example

Qi(XD).= P

Compute the
probability distribution
of hidden observations

E-step

(X |y, 40

probability of having used coin X for sequence i
given theresult Y and current parameter estimate
(see next)

SH, 5T HTTTHHTHTH 9_45}:0 UEE’:O =22H,22T =28H,28T
HHHHTHHHHH
9H, 1T HTHHHHHTHH {}ngxo D'EMO =72H,08T =1.8H,02T
HTHTTTHHTT
8H, 2T THHHTHHHTH {}.?330 (},z?xo ~59H 15T =21H,05T
4H 6T {}.35x° [}.65:-:0 ~14H,21T ~26H,39T
7H,3T G,EExo 0.35x o ~45H, 19T  =25H,11T
24H,6T 9H, 11T =213H. 86T =11.7H,84T
- : A A - s 213 @
Initial random estimate of 6 4,60p r IIIIIIIIIIIIIIIIIIIIIIIII g, = 573486 =0.71
. } M-step
A 11.7 - :m]__
d; S 7484 0.58 0.80
@"" 6,"=0.52
Converged?
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Expectation Maximization: a preliminary example

P(YD =y | X0 = 2,00 )P(XO) =z | §0))

p(X(i) =z | y () — y;é(t)) _

SPY® =g | XO = 2;00)P(X0O =g | 1))

. ) . 10 _
Compute the where POY® =y | X0 = 2,0) = ( ) Y (1—6,)10¥
probability distribution E-step P(XD =2 (0)=05 Y
of hidden observations
5H, 5T HTTTHHTHTH 9_45}:0 UEE’:O =22H, 22T ~28H,28T
HHHHTHHHHH
9H, 1T HTHHHHHTHH {}ngxo D'EMO =72H,08T =1.8H,02T
HTHTTTHHTT
8H,2T THHHTHHHTH {},?3;{0 G.E?xo =59H. 15T =21H,05T
4H,6T {}.35x° [}.65:-:0 ~14H 21T ~26H,39T
7H,3T G,EExo 0.35x o ~45H,1.9T =26H, 11T
24 H, 6T 9H, 11T =21 3H.86T =11.7TH, 84T
Initial random estimate of éA, éB '“ r é;”x %xﬂ.ﬂ @
i | ' ’ M-step
g, 1.7 6"~
O =117 +8.4~ 08 0.80
@"" 6,"~0.52
Converged?
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Expectation Maximization: a preliminary example

(i) (i) Use 'expected observations’
EQ%-(X@))[ Y | YV =y, 9] — Z Y Qz(X — x) instead of actual observations
M5

to update ML estimations

=> y P(XW =z | Y =y;0)

E-step
SH, 5T HTTTHHTHTH 9_45}:0 ﬂ_55xo =22H, 22T =28H,28T
HHHHTHHHHH
9H,1T HTHHHHHTHH thgxo U'EMO ~7.2H,08T =~1.8H,02T
HTHTTTHHTT
8H,2T THHHTHHHTH ﬂ,?sxo [},z?xo =~59H 15T =21H,05T
4H6T ﬂ.35x° [}.65:-:0 ~14H,21T  =26H,89T
7H,3T G,EExo 0.35x o ~45H 19T  =25H,11T
24H,6T 9H, 11T =21.3H,86T =11.7H,84T
Initial random estimate of é»‘A 633 “" [‘ o= L:ﬂ 71 @
’ i R, PE— AT 213+86 .
} M-step
ﬂ|_1]__ 11.? — : 1. n“n]-:-e
ﬁE ""'111?- + 314 U.EB I Y A ‘.\. HA G.Bﬂ
@‘f 6,"~0.52
MLE using ‘expected observations ¢
Converged?
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Convergence of the EM alqorithm*
(in the discrete case)
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An aside: Jensen's inequality

A relationship between probability and geometry y| \ f(x)is (strictly) convex

P=[Xy, f(X)]
| P, +A(P, — Py)

When f is convex function

FERX:}) <E[f({X:})]

f is convex when for any two points p; and p;
the segment (p; — p;) is not below f

P2=[X,, f(X5)]
1 P3=[Xs, f(X

That is, when 1 1 : |
(@) + (L= Nf(e) = fOa+ (1= Nay), VA€ 0,1 X % s X
Furthermore, T is strictly convex when

M () + (1= N f(25) 2 f(hzs + (1= Nay), YA € (0,1)

\ 4

Corollary:

when f is strictly convex, if and only if all the variables in {X,} are constant
itis true that

FERX:}) <E[f(1Xi})]

Dual results also hold for concave functions
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An aside: Jensen's inequality

A relationship between probability and geometry vy 1 f(x)is (strictly) convex
When f is convex function P
FE{X:}]) <E[f({Xi})]

To see this, consider

P =A1P1t AoP, + A3Ps + 44D,
i.e. a linear combination of p; points

This is an affine combination if Z Ai=1
and it is a convex combination if also i >0, Vi

3
A Xt AoXy + AgXs + 44X,

When the A; define a probability, then p is a convex combination of p; points

Any convex combination of p; points lies inside their convex hull (see figure)
and therefore above f :

Z Aif(zi) = f(Z Ai;)

Corollary: the only way to make the convex hull be on f
is to shrink it to a single point (i.e. the Jensen’s corollary)
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Incomplete observations

Likelihood function with hidden random variables
L(|D) = P(DIp) = [ P(D"™6)

(01D) = ) log P(DU™]6) = ) log > P(D"™ {X;}|6)
m m {Zi}
/ Arbitrary probability distributions

_ o (om) v PP, {X;}]0)
210k 2 QTN e

Jensen’s inequality: log is concave

P(DU™) {X;}|0 P(D™) {X,1]0
= ZlOgEQ(m)({X@'}) [ (Q(m)({{)(%}})| )] > Z]EQ(M)({XTL}) llog (Q(m)({{Xz}})| )

_ ) (£ x 1) 1o DT AXi16)
2. 2 @ o = gy
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Expectation- Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)
Log-likelihood function:

(D), {X:}16)
D) = 3030 QX s o
2 QUI({X:D

This inequality becomes equality ‘ when this term is constant (see Jensen’s corollary)

1) Keep 6 constant, define Q™ ({Z;}) so that the right side of the inequality is maximized

P(D'"™, {X:}]0) P(D"™, {X:}]0)
(M{X;}) = A = I = PUXGHD™, ) = ply)
(X} These numbers can be computed from the

graphical model (i.e. as an inference step)

2) Then maximize the log-likelihood while keeping Q'™ ({Z;}) constant

(m)
(m) P(D'™ ,{X;}|0)
— argmaxy Z Z Pyx,ylog (m) This i also called the entropy of Q™ ({X;})
m {X;} Pixy (i.e. a constant measure of the distribution)
= argnan, 3 [ 3 63, 1 PO, 040) — Y o{) s
mo \{X:} {Xi}
= argmax, Z Z pgg_} log (D™ {X,;}]6)
m {X;}

Artificia] Intelligence 2024-2025
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Expectation- Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)
Log-likelihood function and its estimator:

P(D™, {X;}]0)
(OID) = Y > QUM ({Xi}) log —=
e QUM ({X:})

Algorithm:
1) Assign the 6 at random

2) (E-step) Compute the probabilities
Py, = QUM{Xi}) = P{X:}D™,0)
3) (M-step) Compute a new estimate of 6

6 = argmax, Z Z pgn}}z} log P(D™), {X,}]6)
m {X;}

4) Go back to step 2) until some convergence criterion is met

The algorithm converges to a local maximum of the log-likelihood
The effectiveness of algorithm depends on the form of P({X;}|D'™,8) (see step3)
In particular, when this distribution is exponential... (e.g. Gaussian — see next slide)
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An aside:
the EM algorithm in the continuous case*
(Mixture of Gaussians)
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EM Algorithm: mixture of Gaussians

Model:

The hidden variable X has Kk possible values, the observable variable Y is a point in R

P(X — k) = / Multivariate normal distribution

PY =y|X = k) = N(y; e, Sx) := (2m) "2 (det Sx) /2 exp (—%(y — ) 2y — ﬂk))

i.e. the condition probabilities are normal distributions
The observations are a set D= {y®, ..., yN} of points in R?
Algorithm:
1) Foreach valuek, assign ¢, , u, and %, at random
2) (E-step) For all the y™ in D compute the probabilities
™ = P(X = kg™, dp, iy Zk) = b - N (@™ g, )
3) (M-step) Compute the new estimates for the parameters

1 m
ok = Ezpé :

> py™ym) S ™ (g — ) (y — )
B = m Sk = - -
> py" > py"

4) Go back to step 2) until some convergence criterion is met

Artificia] Intelligence 2024-2025
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EM Algorithm: mixture of Gaussians

Model:
The hidden variable X has K possible values, the variable Y is a pointin R
P(X =k) := ¢y

P(Y = y|X =k) = N(y; pir, Zi) = (2m)~*(det Tp) ™% exp (—%(y — k) Sy - mc))
i.e. the condition probabilities are normal distributions
The observations are a set D= {y®W, ..., yN} of points in R?
Proof (of the M-step):

SN i log P(Y™, X = |6k, pux, S

m k

m k
m . - 1 .
= > > " (log (27 /2 (det ) 7%) + <—§(y—uk)TEk1(y—uk)) +10g<,0k>
m k
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EM Algorithm: mixture of Gaussians

Model:

P(X =k) =

The hidden variable X has Kk possible values, the variable Y is a pointin R

_ _ 1 _
P(Y = y|X =k) = N(y; pir, Zi) = (2m)~*(det Tp) ™% exp (—§(y — ) Sy - mc))
i.e. the condition probabilities are normal distributions
The observations are aset D= {y®, ..., yN} of pointsin R

Proof (of the M-step):

O -
:—zzw( W )

IJ’Jm

IJ’Jm

By imposing: (m) (Ty—1 _  Ty—1) _
yimposing: " pi™ (2787 — plEt) =0
See the link in the web page for the derivations of other parameters ...

Artificia] Intelligence 2024-2025

Z p{™ym)

Z p(m)

ZZpk (log( 2m) "2 (det Ty,) 1/2) + (—%(y(m) — ) =™ —%)) +10g<bk)

T m
Ekl(y( )_Hk))

m mT m mT
_ _ZZP( )( (v Sy S e — 20 X ﬂk))
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The EM alqorithm
for learning with missing data
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Missing Values
= Hidden Variables

Some of the variables may be hidden, i.e., non observable ‘by design’
Example: ‘Hidden Markov Model’

o

* Incomplete Observations

Sometimes, however, observations may be missing ‘by accident’ and not ‘by design’
Example: ‘Naive Bayesian Classifier’

What if some classifications Y are missing, or a few features X; are not available?
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Missing Values: Observability Model

= Observed and Unobserved Variables
Let’s consider a graphical model with a set of random variables:

X ={X1,..., X},}
In each actual observation (i.e., a data item)
X0 .= {x\™ . xmy
each value X ,L-(i) may be either observed or unobserved (i.e., missing)

determined by a binary random variable O x, € {0, 1}

An observability model for a graphical model with random variables X
is a set of binary random observability variables

OX = {OXU “ . ;OXR}
with probability distribution

Pmissing(Xa OX) — P(X) Pmissing(OX ‘X)

probability distribution with no missing values
Artificia] Intelligence 2024-2025
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Missing Values: MCAR

= Missing Completely at Random (MCAR)
MCAR assumption

(X 1 Ox)
It entails that:

Pmissing(Xv OX) — P(X) Pmissing(OX)

This is tempting and it could ease all subsequent computations...
... butitis too strong, and hardly enforceable in many practical cases

Moral: we need a weaker assumption
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Missing Values: MAR
= Missing at Random (MAR)

Consider a generic data item, possibly with missing values

xm .= xmyxim

obs Missing values
ya N\ need NOT be for the same
observed missing variables in each data item

MAR assumption, for each data item:

(x\™ 1L ox | XU

obs

Namely, the values of the missing variables are independent from their observability
given the values of the observed variables

It is still a strong assumption, yet much more realistic...
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Missing Values: MAR
= Missing at Random (MAR)

MAR assumption, for each data item:

(x\™ 1L ox | x)

obs

This entails:

Pmissing(X(m)a OX) — Pmissing(X(m) Xf(;;)a OX)

obs

= P(XU XY Ping(Ox | X0 X )

obs obs ?

obs obs

Prissing(XU,0x) = 37 P(XU, X)) Prising(Ox | X 00

obs ? obs obs
Xhid

Pm?lssing(X(m) OX) — P(X(m)) szsszng(OX|X(m)) ____—— Thisis the relevant property

obs ? obs obs
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Likelihood under MAR

ON
e

(X" L Ox | X5

obs

Variables and parameters in an observability model
as a graphical model

Likelihood
L0, | D) =]5_, P(D(™) |

m=

where:

D = {x G x (i)

obs ?

0,9)

10,9 | D) =Y _ log P(D(™ | 0,1))

N m
— Zmzl log (P(Xc()bs)7

N m
Zm:l log (P(Xc(JbS)’

Xi(;:l) | 97 w) Pmissing(oX|X£?;?a X}(LZZ)J 9: 1/)))

X}S;Z) | 9) szsszng(OX |X£ZL); w))

N
Zmzl

obs *

log P(X) x (™)

-+ ZTNn:I 1Og Pmissing(OX |X(m) )

obs ?

1 0)

We are interested in optimizing 0 ...

Artificia] Intelligence 2024-2025
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Likelihood under MAR

o
Ta
Ox (X7 L ox | X5
\ hid X obs
@ @ Variables and parameters in an observability model

as a graphical model

Likelihood (for observed values)
(0| D):=3N_ log P(X\"™| 6)

m=1 obs

N m m
— Zm:1 log Zxéﬂf) P(X(()bs), i(ud) | 9)

N m m m
- Zm:l log ZX}E:;L) (P( c()bs)| 9) ( f(wd) | Xc()bs)79))

Looks promising: using probabilities instead of missing values ...

Artificia] Intelligence 2024-2025
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Learning CPTs for a graphical model via MLE

Model: random variables plus the graph of dependencies
Observations: dataset of values, from completely observed outcomes
Parameters (to be determined): all conditional probabilities (i.e. all CPTs)

Nr—o Np—g N
/ y F=1
TIpm| N Nr=1 [elpE N N Ns—o, F=0
0] o N 0] o N
1, ® 1| e F|S|PESI|F) =y
S=1, F=0
00| e
0l1| o Nr—o
1lo] ® | —— —— Ng=o,r=1
T/ F|A|[PA|TF) 11 ° Np_
8 8 2 Ng=1, F=1
Ni=o, A=0 Np_y
0/1]0 N
0 1|1 Al L A=0 N
11010 0l o0 L=1, A=0
1101 01| o Na=o
111]0 c 10, o | R Ni—o, A=1
1111 101 °© Ny
L RIPRIL) 21L=1, A=1
00 Na-1
011 e The MLE for each CPT is determined
1.0 as a relative frequency of occurrence in the dataset
1)1

What happens if some of the values are missing?
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Learning CPTs for a graphical model via EM

Fundamental idea: using probabilities of observations
In the completely observed case: probabilities are estimated as frequencies of occurrence

T [P(T) F P(F)
; 2 Ns—o, r=0
) 3 PSIF) Nrg

P(A|T,F)

R IR, O O[T
R O, O W

P(L|A)

=== =1
===

R ok ook o>

= O R O

Rk, O o>

P(RIL)

===
=i k=1)
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Learning CPTs for a graphical model via EM

Fundamental idea: using probabilities of missing observations
N
Let's consider a dataset [ = {X(Z)}
i=1

) (i) . .
Each data item X may contain some missing data this value is missing

Example: X (V) = (Xfi) = :El,XQ(i) = xQ,X?Ei) =7)
Define X as one possible completion of X (¥, namely one in which there are no missing data
(X1 =1, X5 = 5, X5 = 0)
(X =20, X = 20, X =1

Note that there will be as many completions of X () gs there are combinations of possible values for the missing data
For any complete observation, X (1) — x () i.e., there is only one possible completion that coincides with the data item itself

Example: assuming that X3 € {0,1}, are the two possible completions of X (2)

Likewise, X(()?S is the part of X (9 which contain the actual observations
Example: X(()?S = (X{Z) = xl,Xéi) = I3)
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Learning CPTs for a graphical model via EM

Fundamental idea: using probabilities of observations

In the completely observed case: probabilities are estimated as frequencies of occurrence
More in general:

Nx.
Xz where:  Z = parents(X;)
Nz

In the EM algorithm, use estimated occurrences:

~

N
NxizZ  whee Nx =Y Y P(XO | X8 0)

obs?

(7’)
/\/ \ Sum extended to all possible completions

In words, any incomplete observations ‘splits up’ and contributes with the probabilities of possible completions
Note that, when all observations are complete:

Nx = Nx
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Learning CPTs for a graphical model via EM

Fundamental idea: using probabilities of observations

Algorithm:

1) Assign parameters 09 at random
2) Compute P(X | Q(t)) E-step

3) Update all parameters using estimated occurrences:

~

t+1) _ Nx, z o |
Q&ﬂ% — T = where all estimations are made using P(X ‘Q(t)) M-step

Nz

3) Go back to step 2) until some convergence criterion is met
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