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Artificial Intelligence
A Course About Foundations
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Machine Learning
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Types of machine learning problems

{d (1), d (2), ..., d (N)}

▪

{d (1), d (2), ..., d (N)}

P

▪

{d (1), d (2), ..., d (N)}

P
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{d (1), d (2), ..., d (N)} 

S (i) ai ri



v(< r1, r2, ..., rn >)
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Observations and Independence

{X, Y}

N d (1) = (X (1), Y (1)),  ...  , d (N) = (X (N), Y (N))

▪

{X(1), X(2), ... , X(N)}
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ML = Representation + Evaluation + Optimization

▪

▪

D

P

▪
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Maximum Likelihood Estimator
(MLE)
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Likelihood
P(X) 

 P(X)  P(X) 

D = {d (1), d (2), ..., d (N)}

▪

P(X)

P(D | ) 
D

{D(1), ... , D(N)} 
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Maximum Likelihood Estimator (MLE)
P(X) 

 P(X)  P(X) 

D = {d (1), ... , d (N)}

▪

log
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MLE as optimization
(Analytical Way)
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Example: coin tossing (Bernoulli Trials)

X X = 1 X = 0 

 := {  }  P(X = 1) = ,  P(X = 0) = 1  

D = {d (1) ={X (1) = x (1)}, d (2) ={X (2) = x (2)}, ... ,  d (N) ={X (N) = x (N)}}

▪

NX=1 N

{d (1), ... , d (N)} 

NX=1 X =1 (i.e. heads) N 
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Example: coin tossing (Bernoulli Trials)

▪

▪

P(X | )
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Naïve Bayesian Classifier

D = {d (1) ={Y (1) = 1, X1
(1) = 1, ... , Xn

(1) = 0}, 

… ,

d (N) ={Y2
(N) = y(N), X1

(N) = x1
(N), ... , Xn

(N) = xn
(N)}}

▪

(<Xi  Xj | Y>)

X1

Y

X2 ... Xn
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Naïve Bayesian Classifier

▪

P

X1

Y

X2 ... Xn
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Naïve Bayesian Classifier

▪

D k

 k

X1

Y

X2 ... Xn
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Naïve Bayesian Classifier

▪

i j k

X1

Y

X2 ... Xn
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MLE and discrete probability distributions

▪

The maximum likelihood estimator (MLE) for any discrete probability distribution

over a dataset is calculated by determining the proportion of times

each outcome occurs in the dataset

This method uses the relative frequencies of the outcomes

to provide the best estimate of their probabilities
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MLE and discrete probability distributions

▪

The maximum likelihood estimator (MLE) for any discrete probability distribution

over a dataset is calculated by determining the proportion of times

each outcome occurs in the dataset

This method uses the relative frequencies of the outcomes

to provide the best estimate of their probabilities

When considering conditional probabilities,

the MLE can be applied within specific subspaces of the dataset

by focusing on the subset of the data where that condition is met
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MLE for Graphical Models:
A Practical Rule
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Learning CPTs for a graphical model via MLE
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Learning CPTs for a graphical model via MLE
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Learning CPTs for a graphical model via MLE

T F

A S

L

R

T F
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Bayesian Learning:
Maximum a Posteriori (MAP)

estimator
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Bayesian learning
▪



▪ D

▪

D

▪
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Beta distribution
n > 0

  > 0

▪   > 0

 

Beta(;1,1) Beta(;2,2) Beta(;10,10) Beta(;2,3)

(*) In a finitary setting
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Conjugate prior distributions

𝛼𝑃 𝛽𝑃



𝛼𝐷 𝛽𝐷
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Conjugate prior distributions

PP  +

𝛼𝐷 𝛽𝐷
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Conjugate prior distributions
i

PP  +
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Anti-spam filter

▪

D

ijk

 k

X1

Y

X2 ... Xn
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Bayesian Learning:
MAP for Graphical Models
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Learning CPTs for a graphical model

T F

A S

L

R

T F
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Machine Learning
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ML = Representation + Evaluation + Optimization

▪

▪

D

P

▪
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