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Probability Space
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Probability Space (preliminary definition)

= Probability space
A triple (W,X, P)

| T

Possible worlds  Event Space Probability Measure
(a.k.a. Sample  (a collection of )
Space) subsets over W) P> — [Ov 1]

The intuitive definition is simple enough,
its mathematical translation ... not so much
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Event Space: 3 collection of subsets of possible worlds

= Boolean algebra
A non-empty collection of subsets X of a set W such that:
1) A, BeYk — AUuBeX
2) AeY = A°eX
3) gl

Corollary:
The sets @ e W belong to any Boolean algebra generated on W

2 is also closed under binary intersection

= g-algebra
A non-empty collection of subsets 2 of a set IV such that:
1) Ap € 2, Vk € NT — (UzozlAk) € X —

This is a stronger requirement:

C
2) AeX > Ae X closeness under countable union
3) ey Hence a o-algebra is a boolean algebra
Corolla ry: but not vice-versa

The sets @ and W belong to any o- algebra generated on W
2 is also closed under countable intersection
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Probability Measure

= g-algebra (Event Space)
A non-empty collection of subsets X of a set W such that:
1) Ay e X, VEe NT — (Ujey Ak) € X
2) AeY = A°eX
3) gl

* Probability measure over a g-algebra (i.e., over the events)

A function P : ¥ — |0, 1]

l.e. P assigns a measure (i.e. a real number)
to each elements of a o-algebra X of subsets of W

1) VA€ X, P(A) >0
2) Ay, Ay € ¥ aredisjoint = P(A1 U Ay) = P(Ay) + P(A»)
Ay € X, VE € NT arealldisjoint = P (U;—, Ax) = > ey P(Ax)
3) P(@)=0
4) P(A°)=1-P(A)  (whichimplies P(W) = 1)
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Probability Space

= Probability space
A triple (W,X, P)

| T

Possible worlds  Event Space Probability Measure

(a o-algebra over W) Py [O, 1]

Why bothering so much with these (very) technical definitions?

= Rationale (just a few hints)

Closure w.r.t. countable unions of a o-algebra (as well as countable additivity of P)
is required for dealing with infinite sequences of events

A o-algebra is included in the power set of W (i.e., the collection of all its possible subsets):
requiring closure on countable union is a restriction, to ensure measurability

(see the so-called Banach-Tarski paradox for counterexamples)
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An Aside: Probability is Systemic

In general __— lItfollows from the additivity property

P(AUB)=P(A)+P(B)—P(ANB)

If AN B = @ then events A and B are disjoint
P(AUB) = P(A)+ P(B)

(*) Notethat ANB =@ = P(ANB)=0
but not vice-versa: as an event can have zero probability without being empty

(**) Unlike in propositional logic, knowing P(A) and P(B) is not sufficient
for determining P(AU B)

Namely, probability is not compositional ...
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Discrete Probability
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Studying basic properties™: (*) in a finitary setting

A simpler setting that allows a more intuitive definition of fundamental properties

Basic assumption: the set of possible worlds W is finite

» Finite event space

> is a finite collection of subsets

In such setting
boolean algebra = o-algebra

Events could also be defined via propositional logic
(ala de Finetti, 1937)

= Finitely additive probability measure

Just summations, no integrals
Computability will be always guaranteed
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Random Variables*

(*) In a finitary setting
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Partitions, random variables*

= Partition
A finite collection A, of disjoint subsets (i.e. events) such that

UAi:W

A o-algebra can be generated from a partition
by taking its closure under union and complement
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Partitions, random variables*

(*) In a finitary setting

= Random Variable (i.e. a convenient way to define a g-algebra)

Let X be a variable having a finite set of possible values {z, x5, ..., .}
In each possible world, the variable X is assigned a specific value z;

The set of possible assignments {X = z;, X = z,, ... X = x, } defines a partition over W
A o-algebra can be obtained by taking the closure of the partition under union and complement

X =z; defines an event (i.e. a subset of W)

X =1; and X =g; aredisjoint events , whenever i # j

PX=z,UX =x2;)=P(X =ua;) + P(X = z;)

Random variables having binary values are also said to be binomial (also Bernoullian)
Random variables with multiple values are also said to be multinomial
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Random variables, joint distribution*

(*) In a finitary setting

Multiple random variables

In practice, in a probabilistic representation, there will be multiple random variables

Example:
X, occurrence of a word ¢ in the body of an email (binomial)
Y classification of that email as spam (binomial)

The intersection of two or more o-algebras is a o-algebra
Together, a collection of random variables defines a partition of W

= Joint Probability Distribution

for a given set of random variables, e.q. X, Y, Z

It is a function that associates a value in [0, 1] to each individual combination of values
PX=xY=yZ=2)

Given that X, Yand Z define each a partition over W :

>N Y PX=aY=yZ=2)=1
T Y z
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Random variables: notation*

(*) In a finitary setting

= Random variables, events and o-algebras

Sometimes the notation can be ambiguous

Examples:
P(X)

This is the probability measure over the g-algebra generated by the random variable X
P(X =)

This the probability (i.e. a value in [0,1] ) associated to the event X = x
P(X,Y =y)

This is the probability measure over the g-algebra generated by the random variable X
in the subspace of W corresponding to the event Y=y

Artificial Intelligence 2024-2025 Probapbilistic Reasoning [14]



Fundamental Operations®

(*) In a finitary setting
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Marginalization*

Removing a random variable from a joint distribution
Given a joint probability distribution
P(X,Y)

The marginal probability P(X) is obtained via a summation:

yey
A marginal probability can be a joint probability as well ...

P(X,Y) :== Y P(X,Y,Z=2z)

z€EZ

Marginal probability, shorthand notation with values of Y omitted:

P(X) = P(X,Y
( ) ; ( ’ ) ~~__ Shorthand

notation
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(*) In a finitary setting
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Conditionalization®

Exploring ‘what if something becomes known

(*) In a finitary setting

Given a joint probability distribution
P(X,)Y)

The conditional probability P(X | Y =y) isdefined as:

P(X|Y =y
FIY =0 = T =y)
A conditional probability can be a joint probability as well ...
P(X,Y, 7 = z)
P(X,Y | Z =

Conditional probability, more general notation:

P(X,Y)

P(Y) ~ Conditional probabilities for the whole o-algebra generated by Y
(it represents a family of probability measures)

P(X|Y)

Artificia] Intelligence 2024-2025 Probabilistic Reasoning [17]



Conditionalization®

Exploring ‘what if something becomes known
Conditional probability, more general notation:

P(X,Y)
PY)

(*) In a finitary setting

P(X|Y) :=

Assume both variables are binary XY € {0, 1}

PX|Y=0) = = ](jé’fy:o)o)
PX|Y=1) = Pgé’/y:l)l)

Each value of the conditioning variable defines a distinct event (sub)space
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Chain Rule

Starting point: a joint distribution

P(X,Y, Z)
conditioningon X : : )
P(X.,Y, Z
PY. Z|X) = —

which implies:
P(X,Y,Z)=P(X) P(Y,Z|X)

then, conditioningon Y :

p(zx,y) = LU 21X)

P(Y]X)

which implies:
P(Y,Z|X)=PY|X) P(Z|X,Y)
hence and finally:
P(X,Y,Z)=P(X) PlY|X) P(Z|X,Y)

Univariate factorization of the joint distribution
\ Any other sequence of

conditionalization would do
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Inference
(without learning)
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Probabilistic Inference* (general structure)

(*) In a finitary setting

» General structure of probabilistic inference problems
The starting point is a fully-specified joint probability distribution
P(X1,Xo,...,X,)

In an inference problem, the set of random variables {Xl, Xo, ..., Xn} is divided into three categories:

1) Observed variables {X o} having a definite (and supposedly known) value
2) Irrelevant variables {X;} which are neither observed nor directly part of the answer
3) Relevant variables {X,} which are part of the answer we seek

In general, the problem is finding:

P({XT}|{XO}) — Z P({Xr}a {Xz}|{XO})
{Xi}
= “Decidability” (“computability”) is guaranteed (*in a finitary setting)
Given that the joint probability distribution is completely specified

= Computational efficiency can be a problem

The number of value combinations to be considered in the summation
grows exponentially with the number of random variables in { X,.} U {X;}
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Bayes’ Theorem™ (1. Bayes, 1764)

(*) In a finitary setting

= Definition
A relation between conditional and marginal probabilities
P(Y|X)P(X)
P(X|Y) =

P (Y| X) isalso called the likelihood L(X | Y)

The theorem follows from the definition of conditional probability (chain rule)
P(X,Y)=PX|Y)P(Y) = P(Y|X)P(X)
Furthermore, given the definition of marginalization:

PY) = ZP(X’ V)= ZP(Y|X)P(X) . Alsocalled

‘law of total probability’
it follows an alternative formulation of the Bayes’ theorem:

 PYIX)P(X)
PR = = Py p(x)
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Example: information and bets

= Two envelopes, only one is extracted

One envelope contains two red tokens and two black tokens, it is worth $1.00
One envelope contains one red token and two black tokens, it is valueless

The envelope has been extracted.

Before posing you bet, you are allowed to extract on token from it

a) The token is black. How much do you bet ?
b) The token is red. How much do you bet ?

Purpose: showing that Bayes’ Theorem makes the representation easier
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Independence
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Independence, conditional independence

* Independence (also marginal independence)

Two variables are independent
iff their joint probability can be factorized into the product of marginals

<X1lY> < P(X,)Y)=P(X)P(Y) & <Y1lX>
3N CP(X)Y) P(X)P(Y)

= Conditional independence

Two variables are conditionally independent given a third variable,
iff their joint conditional probability can be factorized into the product of conditional marginals

<XlY|Z> o P(X,Y|Z)=P(X|Z)P(Y|Z) <  <YLlX|Z>
- P(X|Y,Z) = PI(D)((}’/E)Z) — P(XIL@TZ(?Z) — P(X|2)

CAUTION: the two forms of independence are distinct!
<XLY>=%<XLlY|Z> <XLY|Z> 2 <XL1Y>
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Independence, conditional independence

[from Wikipedia, “Conditional Independence”]

These are two examples illustrating conditional independence. Each cell &J
represents a possible outcome. The events R, B and Y are represented by the areas
shaded red, blue and yellow respectively. And the probabilities of these events are

shaded areas with respect to the total area. In both examples R and B are R, BandY here are subsets, i.e. events,
conditionally independent given ¥ because: / not random variables
Pr(RNB |Y) =Pr(R|Y)Pr(B| YY"

but not conditionally independent given not ¥ because:

Pr(RN B |notY) # Pr(R|not Y)Pr(B | not Y).

The example above shows that (marginal or conditional) independence of two specific events
does NOT imply (marginal or conditional) independence of the whole o-algebras
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Continuous Random Variables
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Continuous random variables chints)

Although intuitively similar, dealing with continuous random variables is technically difficult

Consider a continuous randomvariable X € X — 4 ontinuous value space:

e.g. the real interval [0, 1]
oreven [—00, +00]

X = x does not describe an event in a continuous setting
For technical reasons (of measurability), a point must have probability zero

Events need to be subsets, or better, intervals:
XgCL,XSb, a’<X§b\Assuminga<b

Probability measures these subsets

P(X <b)=P(X <a)+ Pla< X <)
These two events are

Pla< X <b) = P(X <b)— P(X < a)

disjoint

Py(z)=P(X<z)

Shorthand notation
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Density and Cumulative Distribution
= Probability Density Function (pdf)

It is defined as the derivative

px(ﬂj‘) — dpx(.’L')

dx
provided that it exists everywhere in X’ and is non-negative: px(x) > 0

* Probability Measure as Cumulative Distribution Function (CDF)

Cumulative Distribution Function (CDF)

AN b
Pla < X <b) ::f px(x) dx

probability density function (pdf)
As a probability measure, it must integrate to unity

] px(x)dr=1
zeX

Note that p(x) may well be above 1 (its integral over the value space X will be equal to one)
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Expected value of a random variable

(also: Expectation)

Basic definition* More concise notation*
Ex[X]:=) xP(X =ux) E[X]:= )  Px(x)
reX rEX Also denoted as:
Continuous case HX
E[X] := / x px(z)dx
TEX

Expectation is a linear operator
EX +Y]|=E[X]|+ E[Y]
ElcX] = cE[X]

Conditional expectation*
Ex[X]Y =y =E[X|Y =y]:= ) 2 P(X =z|Y =y)
(*) In a finitary setting
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Variance of 3 random variable

Basic definition

Var(X) := Ex[(X — Ex[X))’] = Ex[(X —ux)?]

Also denoted as: O X

where¥*:

Var(X) = Y P(X =2z) (z— p)?

Variance is not a linear operator

Conditional Variance

Var(X|Y =vy) =Ex[(X —Ex[X|Y =y])? |V =]

Variance lemma
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ox = 4/ Var(X)

Standard Deviation

(*) In a finitary setting
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