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Back to Propositional Logic
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Horn Clauses (in L)

= Definition

A Horn Clause is a wff in CF
that contains at most one literal in positive form

* Three types of Horn Clauses:

Rule: two or more literals, one positive

Examples: {B, =D, —=A, =C}, {A, =B} (equivalentto: (D AAAC)—>B, B—>A)
Facts: just one positive literal

Examples: {B}, {A}

Goal: one or more literals, all negative
Examples: {—B}, {—A, —B}

More terminology:
Rules and facts are also called definite clauses
Goals are allo called negative clauses

Artificial Intelligence 2024-2025 SLD Resolution [3]



Lost in Translation...

Many wffs can be translated into Horn clauses:

(AANB)>C
—-(AAB)VC
—AvV =BV C
A—> (B AC)
—AV (BACQC)
(FAVB)A(—-AVC)
(A vV B),(mAvV O
(AvB)>C
—-(AvB)VC
(A A-B)VC
(FAVC)A(—B VO
(-AvVv C),(—-BvVvC

But not all of them:
(AN -B)>C

~(AA —B)VC
~AVBVC

A— (B VC)
~AVBVC
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SLD Resolution

Linear resolution with Selection function for Definite clauses

= Algorithm

Starts from a set of definite clauses (also the program) + a goal
1) At each step, the selection function identifies a literal in the goal (i.e. subgoal)
2) All definite clause applicable to the subgoal are selected, in the given order

3) The resolution rule is applied generating the resolvent

Termination: either the empty clause { } is obtained or step 2) fails.

Example:
Selection function: leftmost subgoal first
Definite clauses: {C}, {D}, {B, =D}, {A, —B, —=C}
Goal: {—A}
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SLD trees

SLD derivations {—A}

Example: {C}, {D}, {B, =D}, {A, =B, =C} goal {—A} & {-B,-C}
In this example each subgoal can be resolved in one mode only 5 |
This is not true in general § {~D, =C}
v {-C}
|
{}
= SLD trees (= trace of all SLD derivations from a goal)
Example: {C}, {D}, {B, —F}, {B, —E}, {B, =D}, {A, =B, =C} goal {—A}
A few new rules have been added: there are now different possibilities
{—A} Selection function:
| leftmost subgoal first
{—-B, =C}
|
{-F, =C} {—-E, -C} {-D, =C}
| | |
X X {—-C}
|
{}

Each branch correspond to a possible resolution for a subgoal
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SLD Resolution

= Aresolution method for Horn clauses in Ly
It always terminates
ltiscorrect: T = I'E¢
ItiscompleteeT'Ep = 'l

= Computationally efficient

It has polynomial time complexity (w.r.t the # of propositional symbols occurring in T and ¢)
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SLD resolution
in First-Order Logic
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Horn Clauses in L,

The definition is very similar to the propositional case

» Horn Clauses (of the skolemization of a set sentences)
Each clause contains at most one literal in positive form

Facts, rules and goals
Fact: a clause with just an individual atom
{Greek(socrates)}, {Pyramid(x)}, {Sister(sally, motherOf(paul))}
Rule: a clause with at least two literals, exactly one in positive form

{Human(x), —=Greek(x)},

Vx (Greek(x) - Human(x))

{—Female(x), —Parent(k(x),x), —Parent(k(y),y), Sister(x,y)}
VxVy ((Female(x) A 3z (Parent(z,x) A Parent(z,y))) — Sister(x,y))

{—Above(x,y), On(xk(x))}, {—Above(x,y), On(j(y).y)}
VxVy (Above(x,y) — (3dz On(x,z) A Av On(v,y)))

Goal: a clause containing negative literals only

{—Mortal(socrates)}

{—Sister(sally,x), —Sister(x,paul)}
Negation of  3x (Sister(sally,x) A Sister(x,paul))
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SLD Resolution in Ly

" |[nput: a program IT and a goal ¢
Program I (i.e. a set of definite clauses: rules + facts) in some predefined linear order:
Y11Y2 1 e 1¥Vn (each y; is a definite clause)

Goal @ (i.e. a conjunction of facts in negated form), which becomes the current goal y

Note: the selection function for the current goal and subgoal

will be discussed in the next slide
Procedure:

1) Select a negative literal —a (i.e.the subgoal) in the current goal v
2) Scan the program (in the predefined order) to identify a clause candidate literal v,
3) Try unifying —a and std(y,) (i.e. apply the standardization of variables to ')

4) If there is a unifier o of —a and std(y,), replace the current goal with the resolvent
of Std(yi) [0] and y[o] (i.e.apply o to both y and std(y;) then generate the resolvent)

5) Then, if the resolvent is the empty clause, terminate with success,
otherwise select a new current goal and resume from step 1)

6) Else, if the unification fails , scan the program and select a new candidate literal y,
and resume from step 3)

7) Else, if there are no further clauses in the program, select a new current goal and resume from step 1)
8) If all the goals in the tree have been fully explored, terminate with failure
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SLD Resolution in L,

= Two alternative selection functions:

Depth-first (which is the most common...)
= Always select the most recent goal, i.e. the resolvent which has been generated last, as the current goal ¢
= Then, in the current goal ¢, select the leftmost subgoal —a not selected yet

= When the current goal ¢ is fully explored and no new resolvent has been generated, select the next most recent
goal in the tree (backtracking)

Breadth-first
= Always select the [east recent goal as the current goal ¢
= Then, in the current goal ¢, select the leftmost subgoal —a not selected yet
= When the current goal ¢ is fully explored select the next least recent goal in the tree

Comparison

Breadth-first is a fair selection function, in the sense that every possible resolution will be eventually attempted (i.e. ‘it leaves
nothing behind’).
Depth-first tends to save memory and be more efficient, but it is NOT fair (more to follow)
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SLD Trees

= Example (depth-first selection function):

IT = {{Human(x), =Greek(x)}, {Mortal(y), =Human(y)},
{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}

goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1: {ﬂMolrtaI(x)} []
{—Mortal(x)}, {Mortal(y,), =Human(y,),} ||
I

2:{— Humaln(yl)} [X/y,]
{—Human(y,)}, {Humangxl), —Greek(x,)} [x/y,]

3: {—Greek(xy)} [x/yI[y:/x]
S
{—Greek(x;)} {Greek(socrates)} [x/y,|[y,/x,]

4: {3 Xy Qly./x1[x,/socrates]
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SLD Trees

. Example (depth-first selection function, forcing full exploration of SLD tree):

IT = {{Human(x), =Greek(x)}, {Mortal(y), =Human(y)},
{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}

goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1: {ﬂMolrtaI(x)} []
{—Mortal(x)}, {Mortal(y,), =Human(y,),} ||
I
2: {ﬁHumalln(yl)} [X/y,]
{—Human(y,)}, {Human?xl), —Greek(x,)} [x/y,]

30 {—Greek(xy)} DXy Iy, /%]

S
{—Greek(x;)} {Greek(socrates)} [x/y,|[y,/x,]
{—Greek(x;)} {Greek(plato)} [x/y,I[y./x,] \

{—Greek(x,)} {Greek(aristotle?} EOARNA
4: {3 Xy Qly./x1[x,/socrates] 5: {F Xty 1y /X 1[x,/plato] 6: {} Xy 1ly./X.1[x,/aristotle]
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SLD Trees

= Another example (depth-first selection function):

IT = {{Mortal(felix), —Cat(felix)}, {Human(x), —=Greek(x)}, {Mortal(y), =Human(y)},

{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}
goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1: {ﬂMoqtaI(x)} []
{—Mortal(x)}, {Mortall(felix), —Cat(felix)} [| {—Mortal(x)}, {Mortal(y,), ~Human(y,).} ||
|

2: =Cat(felix) [x/felix] 3:{- Humarll(yl)} [X/y,]
| {—Human(y,)}, {Humangxl), —Greek(x,)} [x/v,]

goal 2: cannot be resolved
4: {—Greek(xy)} [x/yJ[y:/x ]
I

{—Greek(x,)} {Greek(socrates)} [x/v,|[y./x]

{3} Xty 1ly./x{][x,/socrates]

Artificia] Intelligence 2024-2025

SLD Resolution [14]



*The discreet charme of functions

= Representing data structures: lists ofitems [a, b, c, ...]
Symbolsin X

cons/2
it’s a function that associates items (e.g. a) to a list (e.g. [b, c])
cons(a, cons(b, cons(c, nil))) represents the list [a, b, ]

Append/3
it’s a predicate: each pair of lists X and y is associated to their concatenation z

nil
it’s a constant, represents the empty list.

Axioms (AL)

Vx Append(nil, x, x)
Vx Vy Vz (Append(x, Yy, z) > Vs Append(cons(s, X), Y, cons(s, 2)))

Examples of entailment
{AL + 3z Append(cons(a, nil), cons(b, cons(c, nil), z) }
= Append(cons(a, nil), cons(b, cons(c, nil)), cons(a, cons(b, cons(c, nil))))
{AL + 3dx Ay Append(x, y, cons(a, cons(b, nil)))}

= Append(cons(a, nil), cons(b, nil), cons(a, cons(b, nil)))
= Append(nil, cons(a, cons(b, nil)), cons(a, cons(b, nil)))
= Append(cons(a, cons(b, nil)),nil, cons(a, cons(b, nil)))
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The world of lists

= Lists ofitems[a, b, c, ...]

cons/2

it’s a function that associates items (e.g. a) to a list (e.g. [b, c])
cons(a,cons(b,cons(c,nil))) is the list [a, b, ]

Append/3

it’s a predicate: each pair of lists X and y is associated to their concatenation z
nil

it’s a constant, the empty list.

Shorthand notation (Prolog): [] < nil
[a] < cons(a,nil)
[a,b] < cons(a,cons(b,nil))
[a][b,c]] < cons(a,[b,c])

Axioms (AL)

Vx Append(nil,x,x)
VxVyVz (Append(x,y,z) — Vs Append([s,x].y,[s.z]))
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The world of lists

Problem: ¥x Append(nil, x, x) E 3y ¥x Append(nil, cons(y, X), cons(a, X))

1: Vx Append(nil, x, x), =3y Vx Append(nil, cons(y, X), cons(a, X)) (refutation)
2: Vx Append(nil, x, x), Yy Ix —=Append(nil, cons(y, x), cons(a, X)) (prenex normal form)
3: {Append(nil, x, x)}, {—~Append(nil, cons(y, k(y)), cons(a, k(y)))}

(k/1 is a Skolem function, clausal form)
(N.B. there is no skolemization in Prolog : the programmer does it)

The pair of literals
Append(nil, x, x), =Append(nil, cons(y, k(y)), cons(a, k(y))))
... contains the same predicate Append/3 but the arguments are different

There is however an MGU o = [x/cons(a, k(a)), y/a] that yields
{Append(nil, cons(a,k(a)), cons(a,k(a)))}, {—Append(nil, cons(a, k(a)), cons(a, k(a)))}
From this, the resolvent is the empty clause.
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The world of lists in Prolog

% Identical to built-in predicate append/3, although it uses "cons"

% as a defined predicate, thus allowing trace-ability.

append (cons (S ,X) ,Y,cons(S,Z2)) :- append(X,Y,Z).
append (nil X, X) .

oe

WARNING: express your queries with cons. Examples:

oe

?- append(cons(a,nil), cons(b,cons(c, nil)) ,cons(a,cons(b,cons(c, nil)))).

?- append(X,Y,cons(a,cons(b,cons(c, nil)))).

o
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Infinite SLD Trees ( Birness of SLD)

= An example:

T = {{S(a,b)}, {S(b,c)}, {S(x,2), =S(x.y), =S(y,2)}}
—|¢ = {_'S(a,X)}

goal: —iS(a,x) [
{=S(ax)}, I{S(a,b)} []
{} [x/b]

Easy...
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Infinite SLD Trees (Birness of SLD)

= An example:

T = {{S(a,b)}, {S(b,c)}, {S(x,2), =S(x.y), =S(y,2)}}
—|¢ = {_'S(a,X)}

goal: —iS(a,X) [ —_—
{—=S(@ax)}, l{S(a,b)} 0 {=S@x)} {S(x3,25), =S(X3,Y3), —S(¥3:23)} [1
I
1} [x/0] {=3S(ays), ~S(ys,z3)} [x5/a, X/z;]

I
{—~S(a.ys), —S(Ya,Z5)}, {S(a,b)} [X/z3, X4/a, y4/b]
I
{—S(b.z5)} [X/z3, x5/2]
I
{—S(b,z3)}, {S(b,c)} [X/z5, x4/a]

{} [¥/z,, >I<3/a, z,/c] (= [x/c])

Forcing to backtrack...
(easy again)
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Infinite SLD Trees (Birness of SLD)

= An example:

T = {{S(a,b)}, {S(b,c)}, {S(x,2), =S(x.y), =S(y,2)}}
—|¢ = {_'S(a,X)}
goal: =S(a,x) []

S
[...]  {7S@x)} {S(x3,23), Jls(x3,y3), —3(Y3.Z3)} [
{—S(a,y3), =S(y3,25)} [X5/a, x/z5]
{—3(@ys), ﬂS(ya,Zg)}! {5(a.b)} [x/z5, x4/a]
{—-S(b,z?,)}I [X/z5, X5/a]
{—S(b,z5)}, {S(lla,c)} [X/z5, X5/a] {—S(b,25)}, {S(X4.24), =S(X4,Ys), —S(V424)} [X/z3, X5/2]

| |
{3} [¥/zs, X412, 25/c] (= [x/c]) {=S(0.y4), 7S(Yas2a)} [X/23, Xq/a, Z5/24, X4/0]
|
{=3(0.y4), 7S(Ya,2)} {S(X5:25), =S(Xs,Y5), —S(Ys5:25)} [X/z5, X312, 25124, X,/b]
. |
Zz;f,;’l?tge jg f;f""“c" a {=S(b.ys), ~S(¥s.25), —S(2524)} l[x/zg, X8, 25/24, X4/, Y425, Xs/b]
[...]
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Infinite SLD Trees (Birness of SLD)

= A second example:
I = {{S(x,2), =S(x,y), =S(y.2)}.{S(a.b)}, {S(b.c)}}

_'¢ = {_IS(aIX)} i Notice the change in clause ordering.....
goal: —iS(a,x) [
{—~S(ax)}, {S(x1,21), =S(X3,y1), —~S(y1,z0)} [

|
{—=S@y1), =S(yn.z)} [xi/a, x/z,]
|
{=S@y1), =Sz} {S(X2.25), =S(X2.Y2), =S(Y2:22)} [Xi/a, X/z4]
|
{=S(22,21), =S(X2,Y,), =S(Y2.22)} [X1/a, X2y, X,/a, y,/2,]
|
(]

The infinite loop occurs immediately ...
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Infinite SLD Trees ( Birness of SLD)

= A second example:
I = {{S(x,2), =S(x,y), =S(y.2)}.{S(a.b)}, {S(b.c)}}

_'¢ = {—-S(a,x)} — Notice the change in clause ordering.....
goal: ﬂlS(a,X) [l

{~S(@x)}, {S(x1,21), ~S(X1,y1), =S(y1,21)} (1 {—=S(a,x)}, {S(a,b)} []
|

{=S(@ay,), ﬁS(yll,zl)} [x./a, X/z,] {3 [x/b]
{—S(ayy), ~S(y1.z0)} {S(%2.25), l_'S(Xzy)’z), ~S(Y222)} [Xi/a Xzl £=5(a,0)} {S(XaZs), = S(XaYa), —S(VaZ)} [
{—S(z221), ~S(x2.Y2), ﬂS(yl,zz)} [x:1/a, X/zy, X,/a, y1/7,] {—S(ays), ﬂS(ylg,zg)} [xs/a, X/z5]
[.!.] {—S(ays), _'S(Y3123)}|, {S(a,b)} [x/z3, x4/a]
{ﬁS(b,ze,)}I [X/25, x5/a]
{—S(b.z3)}, {S(I!),c)} [X/z3, x4/a]

0 [¥/zs, >|<3/a, 2,/c] (= [x/c])

The infinite loop occurs immediately ...

Backtracking never occurs in this case (due to the infinite loop),
yet, if it occurred it would have produced the two correct results
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Infinite SLD Trees (Birness of SL.D)

= Moral
* Inboth previous examples the infinite loop (i.e. divergence) is unavoidable
* Yetin thefirst one, the method first produces the right results and then diverges
* Soin the first case the result is complete (i.e. all entailed formulae are derived)
while in the second case the method is not
A fair selection function is such that no possible resolution will be postponed
indefinitely: that is, any possible resolution will be performed, eventually.

In the two previous examples, we used a depth-first exploration method of the SLD tree:

which is not complete (in the above sense)
A breadth-first exploration method is fair hence it is complete (in the above sense)

In actual programming systems (e.g. Prolog) the depth-first is preferred for memory efficiency
since the breadth-first method forces to keep (most of) the whole SLD tree in memory
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