Artificial Intelligence

A Course About Foundations

UNIVERSITA
DI PAVIA

Horn Clauses and SLD Resolution

Marco Piastra

Artificial Intelligence 2024-2025 SLD Resolution [1]

Back to Propositional Logic

Artificial Intelligence 2024-2025 SLD Resolution [2]

Horn Clauses (in L)

= Definition

A Horn Clause is a wff in CF
that contains at most one literal in positive form

* Three types of Horn Clauses:

Rule: two or more literals, one positive

Examples: {B, =D, —=A, =C}, {A, =B} (equivalentto: (D AAAC)—>B, B—>A)
Facts: just one positive literal

Examples: {B}, {A}

Goal: one or more literals, all negative
Examples: {—B}, {—A, —B}

More terminology:
Rules and facts are also called definite clauses
Goals are allo called negative clauses

Artificial Intelligence 2024-2025 SLD Resolution [3]

Lost in Translation...

Many wffs can be translated into Horn clauses:

(AANB)>C
—-(AAB)VC
—AvV =BV C
A—> (B AC)
—AV (BACQC)
(FAVB)A(—-AVC)
(A vV B),(mAvV O
(AvB)>C
—-(AvB)VC
(A A-B)VC
(FAVC)A(—B VO
(-AvVv C),(—-BvVvC

But not all of them:
(AN -B)>C

~(AA —B)VC
~AVBVC

A— (B VC)
~AVBVC

Artificia] Intelligence 2024-2025

(rewriting —)
(De Morgan - CF —itiis a rule)

(rewriting —)
(distributing V)
(CF - two rules)

rewriting —)
De Morgan)
distributing V)
CF - two rules)

(
(
(
(

(rewriting —)
(De Morgan)

(rewriting —)

SLD Resolution [4]

SLD Resolution

Linear resolution with Selection function for Definite clauses

= Algorithm

Starts from a set of definite clauses (also the program) + a goal
1) At each step, the selection function identifies a literal in the goal (i.e. subgoal)
2) All definite clause applicable to the subgoal are selected, in the given order

3) The resolution rule is applied generating the resolvent

Termination: either the empty clause { } is obtained or step 2) fails.

Example:
Selection function: leftmost subgoal first
Definite clauses: {C}, {D}, {B, =D}, {A, —B, —=C}
Goal: {—A}

Artificia] Intelligence 2024-2025

{—=A}

~_{A -B,—=C}
{—-B, =C}

1B, ~D}
{—=D, =C}

~1b}

G
{3

SLD Resolution [5]

SLD trees

SLD derivations {—A}

Example: {C}, {D}, {B, =D}, {A, =B, =C} goal {—A} & {-B,-C}
In this example each subgoal can be resolved in one mode only 5 |
This is not true in general § {~D, =C}
v {-C}
|
{}
= SLD trees (= trace of all SLD derivations from a goal)
Example: {C}, {D}, {B, —F}, {B, —E}, {B, =D}, {A, =B, =C} goal {—A}
A few new rules have been added: there are now different possibilities
{—A} Selection function:
| leftmost subgoal first
{—-B, =C}
|
{-F, =C} {—-E, -C} {-D, =C}
| | |
X X {—-C}
|
{}

Each branch correspond to a possible resolution for a subgoal

Artificia] Intelligence 2024-2025

SLD Resolution [6]

SLD Resolution

= Aresolution method for Horn clauses in Ly
It always terminates
ltiscorrect: T = I'E¢
ItiscompleteeT'Ep = 'l

= Computationally efficient

It has polynomial time complexity (w.r.t the # of propositional symbols occurring in T and ¢)

Artificial Intelligence 2024-2025 SLD Resolution [7]

SLD resolution
in First-Order Logic

Artificial Intelligence 2024-2025 SLD Resolution [8]

Horn Clauses in L,

The definition is very similar to the propositional case

» Horn Clauses (of the skolemization of a set sentences)
Each clause contains at most one literal in positive form

Facts, rules and goals
Fact: a clause with just an individual atom
{Greek(socrates)}, {Pyramid(x)}, {Sister(sally, motherOf(paul))}
Rule: a clause with at least two literals, exactly one in positive form

{Human(x), —=Greek(x)},

Vx (Greek(x) - Human(x))

{—Female(x), —Parent(k(x),x), —Parent(k(y),y), Sister(x,y)}
VxVy ((Female(x) A 3z (Parent(z,x) A Parent(z,y))) — Sister(x,y))

{—Above(x,y), On(xk(x))}, {—Above(x,y), On(j(y).y)}
VxVy (Above(x,y) — (3dz On(x,z) A Av On(v,y)))

Goal: a clause containing negative literals only

{—Mortal(socrates)}

{—Sister(sally,x), —Sister(x,paul)}
Negation of 3x (Sister(sally,x) A Sister(x,paul))

Artificia] Intelligence 2024-2025

SLD Resolution [9]

SLD Resolution in Ly

" |[nput: a program IT and a goal ¢
Program I (i.e. a set of definite clauses: rules + facts) in some predefined linear order:
Y11Y2 1 e 1¥Vn (each y; is a definite clause)

Goal @ (i.e. a conjunction of facts in negated form), which becomes the current goal y

Note: the selection function for the current goal and subgoal

will be discussed in the next slide
Procedure:

1) Select a negative literal —a (i.e.the subgoal) in the current goal v
2) Scan the program (in the predefined order) to identify a clause candidate literal v,
3) Try unifying —a and std(y,) (i.e. apply the standardization of variables to ')

4) If there is a unifier o of —a and std(y,), replace the current goal with the resolvent
of Std(yi) [0] and y[o] (i.e.apply o to both y and std(y;) then generate the resolvent)

5) Then, if the resolvent is the empty clause, terminate with success,
otherwise select a new current goal and resume from step 1)

6) Else, if the unification fails , scan the program and select a new candidate literal y,
and resume from step 3)

7) Else, if there are no further clauses in the program, select a new current goal and resume from step 1)
8) If all the goals in the tree have been fully explored, terminate with failure

Artificial Intelligence 2024-2025 SLD Resolution [10]

SLD Resolution in L,

= Two alternative selection functions:

Depth-first (which is the most common...)
= Always select the most recent goal, i.e. the resolvent which has been generated last, as the current goal ¢
= Then, in the current goal ¢, select the leftmost subgoal —a not selected yet

= When the current goal ¢ is fully explored and no new resolvent has been generated, select the next most recent
goal in the tree (backtracking)

Breadth-first
= Always select the [east recent goal as the current goal ¢
= Then, in the current goal ¢, select the leftmost subgoal —a not selected yet
= When the current goal ¢ is fully explored select the next least recent goal in the tree

Comparison

Breadth-first is a fair selection function, in the sense that every possible resolution will be eventually attempted (i.e. ‘it leaves
nothing behind’).
Depth-first tends to save memory and be more efficient, but it is NOT fair (more to follow)

Artificial Intelligence 2024-2025 SLD Resolution [11]

SLD Trees

= Example (depth-first selection function):

IT = {{Human(x), =Greek(x)}, {Mortal(y), =Human(y)},
{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}

goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1: {ﬂMolrtaI(x)} []
{—Mortal(x)}, {Mortal(y,), =Human(y,),} ||
I

2:{— Humaln(yl)} [X/y,]
{—Human(y,)}, {Humangxl), —Greek(x,)} [x/y,]

3: {—Greek(xy)} [x/yI[y:/x]
S
{—Greek(x;)} {Greek(socrates)} [x/y,|[y,/x,]

4: {3 Xy Qly./x1[x,/socrates]

Artificia] Intelligence 2024-2025

SLD Resolution [12]

SLD Trees

. Example (depth-first selection function, forcing full exploration of SLD tree):

IT = {{Human(x), =Greek(x)}, {Mortal(y), =Human(y)},
{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}

goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1: {ﬂMolrtaI(x)} []
{—Mortal(x)}, {Mortal(y,), =Human(y,),} ||
I
2: {ﬁHumalln(yl)} [X/y,]
{—Human(y,)}, {Human?xl), —Greek(x,)} [x/y,]

30 {—Greek(xy)} DXy Iy, /%]

S
{—Greek(x;)} {Greek(socrates)} [x/y,|[y,/x,]
{—Greek(x;)} {Greek(plato)} [x/y,I[y./x,] \

{—Greek(x,)} {Greek(aristotle?} EOARNA
4: {3 Xy Qly./x1[x,/socrates] 5: {F Xty 1y /X 1[x,/plato] 6: {} Xy 1ly./X.1[x,/aristotle]

Artificia] Intelligence 2024-2025

SLD Resolution [13]

SLD Trees

= Another example (depth-first selection function):

IT = {{Mortal(felix), —Cat(felix)}, {Human(x), —=Greek(x)}, {Mortal(y), =Human(y)},

{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}
goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1: {ﬂMoqtaI(x)} []
{—Mortal(x)}, {Mortall(felix), —Cat(felix)} [| {—Mortal(x)}, {Mortal(y,), ~Human(y,).} ||
|

2: =Cat(felix) [x/felix] 3:{- Humarll(yl)} [X/y,]
| {—Human(y,)}, {Humangxl), —Greek(x,)} [x/v,]

goal 2: cannot be resolved
4: {—Greek(xy)} [x/yJ[y:/x]
I

{—Greek(x,)} {Greek(socrates)} [x/v,|[y./x]

{3} Xty 1ly./x{][x,/socrates]

Artificia] Intelligence 2024-2025

SLD Resolution [14]

*The discreet charme of functions

= Representing data structures: lists ofitems [a, b, c, ...]
Symbolsin X

cons/2
it’s a function that associates items (e.g. a) to a list (e.g. [b, c])
cons(a, cons(b, cons(c, nil))) represents the list [a, b,]

Append/3
it’s a predicate: each pair of lists X and y is associated to their concatenation z

nil
it’s a constant, represents the empty list.

Axioms (AL)

Vx Append(nil, x, x)
Vx Vy Vz (Append(x, Yy, z) > Vs Append(cons(s, X), Y, cons(s, 2)))

Examples of entailment
{AL + 3z Append(cons(a, nil), cons(b, cons(c, nil), z) }
= Append(cons(a, nil), cons(b, cons(c, nil)), cons(a, cons(b, cons(c, nil))))
{AL + 3dx Ay Append(x, y, cons(a, cons(b, nil)))}

= Append(cons(a, nil), cons(b, nil), cons(a, cons(b, nil)))
= Append(nil, cons(a, cons(b, nil)), cons(a, cons(b, nil)))
= Append(cons(a, cons(b, nil)),nil, cons(a, cons(b, nil)))

Artificial Intelligence 2024-2025 SLD Resolution [15]

The world of lists

= Lists ofitems[a, b, c, ...]

cons/2

it’s a function that associates items (e.g. a) to a list (e.g. [b, c])
cons(a,cons(b,cons(c,nil))) is the list [a, b,]

Append/3

it’s a predicate: each pair of lists X and y is associated to their concatenation z
nil

it’s a constant, the empty list.

Shorthand notation (Prolog): [] < nil
[a] < cons(a,nil)
[a,b] < cons(a,cons(b,nil))
[a][b,c]] < cons(a,[b,c])

Axioms (AL)

Vx Append(nil,x,x)
VxVyVz (Append(x,y,z) — Vs Append([s,x].y,[s.z]))

Artificial Intelligence 2024-2025 SLD Resolution [16]

The world of lists

Problem: ¥x Append(nil, x, x) E 3y ¥x Append(nil, cons(y, X), cons(a, X))

1: Vx Append(nil, x, x), =3y Vx Append(nil, cons(y, X), cons(a, X)) (refutation)
2: Vx Append(nil, x, x), Yy Ix —=Append(nil, cons(y, x), cons(a, X)) (prenex normal form)
3: {Append(nil, x, x)}, {—~Append(nil, cons(y, k(y)), cons(a, k(y)))}

(k/1 is a Skolem function, clausal form)
(N.B. there is no skolemization in Prolog : the programmer does it)

The pair of literals
Append(nil, x, x), =Append(nil, cons(y, k(y)), cons(a, k(y))))
... contains the same predicate Append/3 but the arguments are different

There is however an MGU o = [x/cons(a, k(a)), y/a] that yields
{Append(nil, cons(a,k(a)), cons(a,k(a)))}, {—Append(nil, cons(a, k(a)), cons(a, k(a)))}
From this, the resolvent is the empty clause.

Artificia] Intelligence 2024-2025

SLD Resolution [17]

The world of lists in Prolog

% Identical to built-in predicate append/3, although it uses "cons"

% as a defined predicate, thus allowing trace-ability.

append (cons (S ,X) ,Y,cons(S,Z2)) :- append(X,Y,Z).
append (nil X, X) .

oe

WARNING: express your queries with cons. Examples:

oe

?- append(cons(a,nil), cons(b,cons(c, nil)) ,cons(a,cons(b,cons(c, nil)))).

?- append(X,Y,cons(a,cons(b,cons(c, nil)))).

o

Artificial Intelligence 2024-2025 SLD Resolution [18]

Infinite SLD Trees (Birness of SLD)

= An example:

T = {{S(a,b)}, {S(b,c)}, {S(x,2), =S(x.y), =S(y,2)}}
—|¢ = {_'S(a,X)}

goal: —iS(a,x) [
{=S(ax)}, I{S(a,b)} []
{} [x/b]

Easy...

Artificia] Intelligence 2024-2025 SLD Resolution [19]

Infinite SLD Trees (Birness of SLD)

= An example:

T = {{S(a,b)}, {S(b,c)}, {S(x,2), =S(x.y), =S(y,2)}}
—|¢ = {_'S(a,X)}

goal: —iS(a,X) [—_—
{—=S(@ax)}, l{S(a,b)} 0 {=S@x)} {S(x3,25), =S(X3,Y3), —S(¥3:23)} [1
I
1} [x/0] {=3S(ays), ~S(ys,z3)} [x5/a, X/z;]

I
{—~S(a.ys), —S(Ya,Z5)}, {S(a,b)} [X/z3, X4/a, y4/b]
I
{—S(b.z5)} [X/z3, x5/2]
I
{—S(b,z3)}, {S(b,c)} [X/z5, x4/a]

{} [¥/z,, >I<3/a, z,/c] (= [x/c])

Forcing to backtrack...
(easy again)

Artificia] Intelligence 2024-2025

SLD Resolution [20]

Infinite SLD Trees (Birness of SLD)

= An example:

T = {{S(a,b)}, {S(b,c)}, {S(x,2), =S(x.y), =S(y,2)}}
—|¢ = {_'S(a,X)}
goal: =S(a,x) []

S
[...] {7S@x)} {S(x3,23), Jls(x3,y3), —3(Y3.Z3)} [
{—S(a,y3), =S(y3,25)} [X5/a, x/z5]
{—3(@ys), ﬂS(ya,Zg)}! {5(a.b)} [x/z5, x4/a]
{—-S(b,z?,)}I [X/z5, X5/a]
{—S(b,z5)}, {S(lla,c)} [X/z5, X5/a] {—S(b,25)}, {S(X4.24), =S(X4,Ys), —S(V424)} [X/z3, X5/2]

| |
{3} [¥/zs, X412, 25/c] (= [x/c]) {=S(0.y4), 7S(Yas2a)} [X/23, Xq/a, Z5/24, X4/0]
|
{=3(0.y4), 7S(Ya,2)} {S(X5:25), =S(Xs,Y5), —S(Ys5:25)} [X/z5, X312, 25124, X,/b]
. |
Zz;f,;’l?tge jg f;f""“c" a {=S(b.ys), ~S(¥s.25), —S(2524)} l[x/zg, X8, 25/24, X4/, Y425, Xs/b]
[...]

Artificial Intelligence 2024-2025 SLD Resolution [21]

Infinite SLD Trees (Birness of SLD)

= A second example:
I = {{S(x,2), =S(x,y), =S(y.2)}.{S(a.b)}, {S(b.c)}}

_'¢ = {_IS(aIX)} i Notice the change in clause ordering.....
goal: —iS(a,x) [
{—~S(ax)}, {S(x1,21), =S(X3,y1), —~S(y1,z0)} [

|
{—=S@y1), =S(yn.z)} [xi/a, x/z,]
|
{=S@y1), =Sz} {S(X2.25), =S(X2.Y2), =S(Y2:22)} [Xi/a, X/z4]
|
{=S(22,21), =S(X2,Y,), =S(Y2.22)} [X1/a, X2y, X,/a, y,/2,]
|
(]

The infinite loop occurs immediately ...

Artificial Intelligence 2024-2025 SLD Resolution [22]

Infinite SLD Trees (Birness of SLD)

= A second example:
I = {{S(x,2), =S(x,y), =S(y.2)}.{S(a.b)}, {S(b.c)}}

_'¢ = {—-S(a,x)} — Notice the change in clause ordering.....
goal: ﬂlS(a,X) [l

{~S(@x)}, {S(x1,21), ~S(X1,y1), =S(y1,21)} (1 {—=S(a,x)}, {S(a,b)} []
|

{=S(@ay,), ﬁS(yll,zl)} [x./a, X/z,] {3 [x/b]
{—S(ayy), ~S(y1.z0)} {S(%2.25), l_'S(Xzy)’z), ~S(Y222)} [Xi/a Xzl £=5(a,0)} {S(XaZs), = S(XaYa), —S(VaZ)} [
{—S(z221), ~S(x2.Y2), ﬂS(yl,zz)} [x:1/a, X/zy, X,/a, y1/7,] {—S(ays), ﬂS(ylg,zg)} [xs/a, X/z5]
[.!.] {—S(ays), _'S(Y3123)}|, {S(a,b)} [x/z3, x4/a]
{ﬁS(b,ze,)}I [X/25, x5/a]
{—S(b.z3)}, {S(I!),c)} [X/z3, x4/a]

0 [¥/zs, >|<3/a, 2,/c] (= [x/c])

The infinite loop occurs immediately ...

Backtracking never occurs in this case (due to the infinite loop),
yet, if it occurred it would have produced the two correct results

Artificial Intelligence 2024-2025 SLD Resolution [23]

Infinite SLD Trees (Birness of SL.D)

= Moral
* Inboth previous examples the infinite loop (i.e. divergence) is unavoidable
* Yetin thefirst one, the method first produces the right results and then diverges
* Soin the first case the result is complete (i.e. all entailed formulae are derived)
while in the second case the method is not
A fair selection function is such that no possible resolution will be postponed
indefinitely: that is, any possible resolution will be performed, eventually.

In the two previous examples, we used a depth-first exploration method of the SLD tree:

which is not complete (in the above sense)
A breadth-first exploration method is fair hence it is complete (in the above sense)

In actual programming systems (e.g. Prolog) the depth-first is preferred for memory efficiency
since the breadth-first method forces to keep (most of) the whole SLD tree in memory

Artificia] Intelligence 2024-2025

SLD Resolution [24]

	Slide 1
	Slide 2: Back to Propositional Logic
	Slide 3: Horn Clauses (in LP)
	Slide 4: Lost in Translation…
	Slide 5: SLD Resolution
	Slide 6: SLD trees
	Slide 7: SLD Resolution
	Slide 8: SLD resolution in First-Order Logic
	Slide 9: Horn Clauses in LFO
	Slide 10: SLD Resolution in LFO
	Slide 11: SLD Resolution in LFO
	Slide 12: SLD Trees
	Slide 13: SLD Trees
	Slide 14: SLD Trees
	Slide 15: *The discreet charme of functions
	Slide 16: The world of lists
	Slide 17: The world of lists
	Slide 18: The world of lists in Prolog
	Slide 19: Infinite SLD Trees (fairness of SLD)
	Slide 20: Infinite SLD Trees (fairness of SLD)
	Slide 21: Infinite SLD Trees (fairness of SLD)
	Slide 22: Infinite SLD Trees (fairness of SLD)
	Slide 23: Infinite SLD Trees (fairness of SLD)
	Slide 24: Infinite SLD Trees (fairness of SLD)

