Artificial Intelligence

A course about foundations

First-Order Resolution

Marco Piastra

Artificial Intelligence 2024–2025 First-Order Resolution [1]

Propositional Resolution

- a) Refutation $\Gamma \cup \{\neg \varphi\}$ and translation into *conjunctive normal form* (CNF) $\beta_1 \wedge \beta_2 \wedge ... \wedge \beta_n$ where each β_i is a disjunction of literals (i.e. A or $\neg A$)
- b) Translation of $\Gamma \cup \{\neg \varphi\}$ in *clausal form* (CF) $\{\beta_1, \beta_2, \dots, \beta_n\}$ where each β_i is a *clause* (i.e. a set of literals, representing a disjunction)
- c) Exhaustive application of the resolution rule
 - 1) Selection of two clauses $\{\beta_1, \beta_2, \dots, \beta_n, \alpha\}, \{\neg \alpha, \gamma_1, \gamma_2, \dots, \gamma_m\}$
 - 2) Generation of the *resolvent* $\{\beta_1, \beta_2, \dots, \beta_n, \alpha\}, \{\neg \alpha, \gamma_1, \gamma_2, \dots, \gamma_m\} \vdash \{\beta_1, \beta_2, \dots, \beta_n, \gamma_1, \gamma_2, \dots, \gamma_m\}$

Termination conditions:

- 1) The empty clause has been derived (success)
- 2) No further resolutions are possible *fixed point* (*failure*)

Clausal Form in L_{FO}

- 1) Refutation: $\Gamma \cup \{\neg \varphi\}$
- 2) Translation into *prenex normal form* (PNF):

All wff are now in the form:

 $Qx_1Qx_2 \dots Qx_n\psi$ (the matrix ψ does not contain quantifiers)

3) Removal of all existential quantifiers - skolemization:

All wff are now in the form:

 $\forall x_1 \ \forall x_2 \dots \ \forall x_m \chi$ (the *skolemized matrix* χ does not contain quantifiers)

Given that all wffs are universal sentences, the universal quantifiers can just be omitted

Example:

1: $\forall x (P(x) \rightarrow (\exists y \ Q(x,y) \land R(y)))$

2: $\forall x (\neg P(x) \lor (\exists y \ Q(x,y) \land R(y)))$ (removing \rightarrow)

2: $\forall x \exists y (\neg P(x) \lor (Q(x,y) \land R(y)))$ (PNF)

3: $\forall x (\neg P(x) \lor (Q(x, k(x)) \land R(k(x))))$ (Skolemization, with a <u>new</u> function k/1)

4: $\neg P(x) \lor (Q(x, k(x)) \land R(k(x)))$ (omitting universal quantifiers)

Just atoms, connectives and parentheses...

Clausal Form in L_{FO}

- 1) Refutation: $\Gamma \cup \{\neg \varphi\}$
- Translation into PNF:

All wff are now in the form:

 $Qx_1Qx_2 \dots Qx_n\psi$ (the matrix ψ does not contain quantifiers)

3) Removal of all existential quantifiers - skolemization:

All wff are now in the form:

 $\forall x_1 \ \forall x_2 \dots \ \forall x_m \chi$ (the *skolemized matrix* χ does not contain quantifiers) Given that all wffs are universal sentences, the universal quantifiers can just be omitted

4) The *clausal form* can be obtained by just treating *atoms* as *propositions* and applying the rules of propositional logic

First translate in conjunctive normal form (CNF) and then in clausal form (CF)

Example:

```
5: \neg P(x) \lor (Q(x, k(x)) \land R(k(x))) (from before)
6: (\neg P(x) \lor Q(x, k(x))) \land (\neg P(x) \lor R(k(x))) (CNF, by distributing \lor)
7: \{\neg P(x), Q(x, k(x))\}, \{\neg P(x), R(k(x))\} (Clausal Form)
```

Unificare necesse est, for resolution

```
• Problem: \Gamma \models \varphi?
        \Gamma \equiv \{ \forall x \, (Greek(x) \rightarrow Human(x)), \, \forall x \, (Human(x) \rightarrow Mortal(x)), \, Greek(socrates) \} 
        \varphi \equiv Mortal(socrates)
      Refutation, translation, clausal form:
        1: \{\forall x (Greek(x) \rightarrow Human(x)), \forall x (Human(x) \rightarrow Mortal(x)), Greek(socrates), \}
              \neg Mortal(socrates)
                                                                        (\Gamma \cup \{\neg \varphi\}) is already in PNF, no skolemization is needed)
        2: \{\{Human(x), \neg Greek(x)\}, \{Mortal(x), \neg Human(x)\}, \{Greek(socrates)\}, \}
              \{\neg Mortal(socrates)\}\}
                                                                        (Clausal Form)
      Resolution method (attempt):
        3: Try resolving: \{\neg Mortal(socrates)\}, \{Mortal(x), \neg Human(x)\}
                                                  Technically, no resolution is applicable: no pairs of complementary literals
                           Intuitively though,
                           the two literals \neg Mortal(socrates) and Mortal(x) <u>are</u> complementary, somehow...
```

Artificial Intelligence 2024–2025 First–Order Resolution [5]

Unification

Replacing variables with terms to render two atoms identical

Unifier

A substitution of variables with terms $\sigma = [x_1 = t_1, x_2 = t_2 \dots x_n = t_n]$ that makes two complementary literals α and $\neg \beta$ resolvable

That is, it makes the two atoms *identical*: $\sigma(\alpha) = \sigma(\beta)$

- Obviously, a unifier does not necessarily exist: for instance, P(g(x, f(a)), a) and $\neg P(g(b, f(w)), k(w))$ are not unifiable
- MGU most general unifier

It is the minimal *unifier* of α and $\neg \beta$

MGU
$$\mu \Leftrightarrow \forall \sigma \exists \sigma' : \sigma = \mu \cdot \sigma'$$

Any other unifier can be obtained as a composition of μ

Constructing the MGU

Martelli and Montanari's algorithm

Input: $[s_1 = t_1, s_2 = t_2 \dots s_n = t_n]$

(a system of *symbolic* equations)

Procedure:

Exhaustive application of the following rules to the system of symbolic equations (each rule *transforms* the original system)

(1) $f(s_1,...,s_n) = f(t_1,...,t_n)$

replace by the equations $s_1 = t_1, ..., s_n = t_n$,

(2)
$$f(s_1,...,s_n) = q(t_1,...,t_m)$$
 where $f \neq q$

halt with failure, < Applies even when

delete the equation,

Applies even when either m or n are 0
 (i.e. with constants)

(3)
$$x = x$$

(4) t = x where t is not a variable

replace by the equation x = t,

(5) x = t where x does not occur in t and x occurs elsewhere

apply the substitution $\{x/t\}$ to all other equations

(6) x = t where x occurs in t and x differs from t

halt with failure.

Unless an explicit failure occurs (i.e. by rules (2) or (6)), the procedure terminates with success when no further rule is applicable

Constructing the MGU: examples

Example:
$$[f(x, a) = f(g(z), y), h(u) = h(d)]$$

 $[x = g(z), y = a, h(u) = h(d)]$
 $[x = g(z), y = a, u = d]$

Example:
$$[f(x, a) = f(g(z), y), h(x, z) = h(u, d)]$$

 $[x = g(z), y = a, h(x, z) = h(u, d)]$

$$[x = g(z), y = a, h(g(z), z) = h(u, d)]$$

$$[x = g(z), y = a, u = g(z), z = d]$$

$$[x = g(d), y = a, u = g(d), z = d]$$

Rule (1) on
$$f(x, a) = f(g(z), y)$$

Rule (1) on
$$h(u) = h(d)$$
, MGU

Rule (1) on
$$f(x, a) = f(g(z), y)$$

Rule (5) on
$$x = g(z)$$

Rule (1) on
$$h(g(z), z) = h(u, d)$$

Rule (5) on
$$z = d$$
, MGU

Example:
$$[f(x, a) = f(g(z), y), h(x, z) = h(d, u)]$$

$$[x = g(z), y = a, h(x, z) = h(d, u)]$$

$$[x = g(z), y = a, h(g(z), z) = h(d, u)]$$

$$[x = g(z), y = a, g(z) = d, z = u]$$

Rule (1) on
$$f(x, a) = f(g(z), y)$$

Rule (5) on
$$x = g(z)$$

Rule (2) on
$$g(z) = d$$
 FAILURE

Standardization of variables is also necessary

■ Example: $\Gamma \models \varphi$? (transitive property - in clausal form) $\{ \forall x \forall y \forall z (L(x,y) \land L(y,z)) \rightarrow L(x,z) \}, L(a,b), L(b,c), L(c,d) \} \models L(a,d)$? $\Gamma \equiv \{ \{ \neg L(x,y), \neg L(y,z), L(x,z) \}, \{ L(a,b) \}, \{ L(b,c) \}, \{ L(c,d) \} \}$ $\varphi \equiv \{ L(a,d) \}$

Refutation and resolution:

```
1: {{¬L(x,y), ¬L(y,z), L(x,z)}, {L(a,b)}, {L(b,c)}, {L(c,d)}, {¬L(a,d)}}
2: Unify and resolve {¬L(x,y), ¬L(y,z), L(x,z)} and {¬L(a,d)}:
```

[x=a, z=d] with resolvent { $\neg L(a,y)$, $\neg L(y,d)$ }

- 3: Unify and resolve $\{\neg L(x,y), \neg L(y,z), L(x,z)\}$ and $\{\neg L(a,y), \neg L(y,d)\}$: [x=a, z=y] with resolvent $\{\neg L(a,y), \neg L(y,y), \neg L(y,d)\}$
- 4: This seems to lead nowhere: $\neg L(y,y)$ will never be resolved in $\Gamma \cup \{\neg \varphi\}$

Why is this??

Standardization of variables is also necessary

Example: $\Gamma \models \varphi$? (transitive property - in clausal form) $\Gamma \equiv \{\{\neg L(x,y), \neg L(y,z), L(x,z)\}, \{L(a,b)\}, \{L(b,c)\}, \{L(c,d)\}\}$ $\varphi \equiv \{L(a,d)\}\$ Refutation and resolution, <u>standardize</u> variables before each resolution (i.e. rename all variables with new, unique names) 1: $\{\{\neg L(x,y), \neg L(y,z), L(x,z)\}, \{L(a,b)\}, \{L(b,c)\}, \{L(c,d)\}, \{\neg L(a,d)\}\}$ 2: Unify and resolve $\{\neg L(x_1, y_1), \neg L(y_1, z_1), L(x_1, z_1)\}$ and $\{\neg L(a, d)\}$: $[x_1=a, z_1=d]$ with resolvent $\{\neg L(a, y_1), \neg L(y_1, d)\}$ 3: Unify and resolve $\{\neg L(x_2, y_2), \neg L(y_2, z_2), L(x_2, z_2)\}$ and $\{\neg L(a, y_3), \neg L(y_3, d)\}$: $[x_2=a, z_2=y_3]$ with resolvent $\{\neg L(a, y_2), \neg L(y_2, y_3), \neg L(y_3, d)\}$ 4: Unify and resolve $\{\neg L(a, y_4), \neg L(y_4, y_5), \neg L(y_5, d)\}$ and $\{L(a, b)\}$: $[y_A=b]$ with resolvent $\{\neg L(b, y_5), \neg L(y_5, d)\}$ 5: Unify and resolve $\{\neg L(b, y_5), \neg L(y_5, d)\}$ and $\{L(b, c)\}$: $[y_5=c]$ with resolvent $\{\neg L(c,d)\}$ 5: Resolve $\{\neg L(c,d)\}$ and $\{\underline{L}(c,d)\}$: resolvent {} (success)

Resolution with unification for L_{FO}

A <u>correct</u> procedure for $\Gamma \vdash \varphi$ in L_{FO}

- a) Refutation $\Gamma \cup \{\neg \varphi\}$,
- b) Prenex normal form and skolemization $sko(\Gamma \cup \{\neg \varphi\})$
- c) Translation of $sko(\Gamma \cup \{\neg \varphi\})$ into CNF hence into CF
- d) Repeat application of the resolution method:
 - 1) Selection of two clauses $\{\beta_1, \beta_2, \dots, \beta_n, \alpha\}, \{\neg \alpha', \gamma_1, \gamma_2, \dots, \gamma_m\}$
 - 2) Standardization of variables (i.e. create new copies of the two clauses having <u>new</u> and <u>unique</u> variables)
 - 3) Construction of the MGU μ (if it exists) for the two literals α e α'
 - 4) Generation of the resolvent by applying of μ $\{\beta_1, \beta_2, \dots, \beta_n, \alpha\}[\mu], \{\neg \alpha', \gamma_1, \gamma_2, \dots, \gamma_m\}[\mu] \vdash \{\beta_1, \beta_2, \dots, \beta_n, \gamma_1, \gamma_2, \dots, \gamma_m\}[\mu]$
- e) Until
 - 1) The empty clause has been derived (success)
 - 2) No further resolutions are possible *fixed point* (*failure*)

Note: the method is not guaranteed to <u>terminate</u> (i.e. it might *diverge*)

The method might diverge...

```
Problem: \{ \forall x (Q(f(x)) \rightarrow P(x)) \} \models \exists x (P(f(x)) \land \neg Q(f(x))) ? (The answer is <u>negative</u>: there is no entailment)
```

Refutation:

```
 \{ \forall x (Q(f(x)) \rightarrow P(x)) \} \cup \{ \neg \exists x (P(f(x)) \land \neg Q(f(x))) \}  Prenex normal form:  \{ \forall x (Q(f(x)) \rightarrow P(x)) \} \cup \{ \forall x \neg (P(f(x)) \land \neg Q(f(x))) \}  (no skolemization required) Clausal form:  \{ Q(f(x)) \rightarrow P(x) \} \cup \{ \neg (P(f(x)) \land \neg Q(f(x))) \}   \{ \neg Q(f(x)) \lor P(x) \} \cup \{ \neg P(f(x)) \lor Q(f(x)) \}   \{ \{ \neg Q(f(x)), P(x) \}, \{ \neg P(f(x)), Q(f(x)) \} \}
```

Resolution:

```
1: \{\neg Q(f(x_1)), P(x_1)\}, \{\neg P(f(x_2)), Q(f(x_2))\}, [x_1/f(x_2)] \vdash \{\neg Q(f(f(x_2))), Q(f(x_2))\}

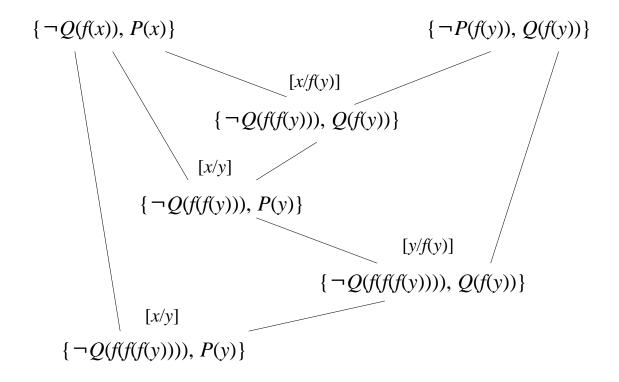
2: \{\neg Q(f(x_3)), P(x_3)\}, \{\neg Q(f(f(x_4))), Q(f(x_4))\}, [x_3/x_4] \vdash \{\neg Q(f(f(x_4))), P(x_4)\}

3: \{\neg Q(f(f(x_5))), P(x_5)\}, \{\neg P(f(x_6)), Q(f(x_6))\}, [x_5/f(x_6)] \vdash \{\neg Q(f(f(f(x_6)))), Q(f(x_6))\}

4: \{\neg Q(f(x_7)), P(x_7)\}, \{\neg Q(f(f(f(x_8)))), Q(f(x_8))\}, [x_7/x_8] \vdash \{\neg Q(f(f(f(x_8)))), P(x_8)\}
```

Artificial Intelligence 2024-2025

The method might diverge...



(Standardization of variables not shown, for simplicity)

•

Artificial Intelligence 2024–2025 First-Order Resolution [13]

Properties of resolution with unification

• The method is *correct* in L_{FO}

If the method finds the empty clause for $sko(\Gamma \cup \{\neg \varphi\})$ then $\Gamma \models \varphi$

• Is the method *complete* in L_{FO} ?

Within the limits of semi-decidability, yes (Robinson, 1963)

When $\Gamma \models \varphi$, the method will eventually find the empty clause for $sko(\Gamma \cup \{\neg \varphi\})$

Very often (but not in the worst case) the method is more efficient than the one in the corollary of Herbrand's theorem

The advantage is due to *lifting* (the method can resolve also non-ground clauses)

When $\Gamma \not\models \varphi$, the method might diverge

CAUTION: Unless the selection procedure is \underline{fair} (more on this topic to follow) the method might diverge even when $\Gamma \models \varphi$

Critical aspect:

Selecting the clauses and literals to be resolved

Artificial Intelligence 2024-2025