Artificizl Intelligence

A course about foundations

UNIVERSITA
DI PAVIA

Reinforcement Learning

Marco Piastra

Artificial Intelligence 2023-2024 Reinforcement Learning [1]

Multi-Armed Bandit

Artificial Intelligence 2023-2024 Reinforcement Learning [2]

Multi-Armed Bandit

L o (, ¥ /“ bl -1
A row of N old-style slot machines \ 3 \ ' &
[| BaS|C defInItIOnS / [image from wikipedia]

N arms or bandits

Each arm a yields a random reward r with probability distribution P(r | a)
For simplicity, only Bernoullian rewards (i.e. either O or 1) will be considered here

Each timetin a sequence, the player (i.e. the agent) selects the arm 7(t)
In other words, 7 is the policy adopted by the agent
" Problem

Find a policy = that maximizes the total reward over time
The policy will include random choices i.e. it will be stochastic

Artificial Intelligence 2023-2024 Reinforcement Learning [3]

Multi-Armed Bandit: strategies

* Informed (i.e. optimal) strategy
At all times, select the bandit with higher probability of reward:
7*(t) = argmax,P(r =1|a)

Clearly, this strategy is optimal but requires knowing all distributions P(r | a)
With enough data (e.g. from other players), these distributions can be learnt

= Random strategy

At all times, select a bandit a at random, with uniform probability

How does the Random strategy compare with the optimal, informed strategy?

Artificial Intelligence 2023-2024

Reinforcement Learning [4]

Multi-Armed Bandit: basic definitions

= Actions, Rewards
a € A inthe multi-armed bandit case a € {1,..., N}
r € R with Bernoulli (binary) reward r € {0,1}

= Probability distribution (unknown)
P(R|A)the probability of reward R for action A (i.e. two random variables)
= Policy
7 : NT — A ateach time, defines which action will be taken, it may be stochastic

= Q-value
The expected reward of action a

Qa) :=E[R|A=a] =¥, rP(r|A=a)

= Optimal Value
Maximum expected reward

V®i=Q(a”) = maxQ(a)

Artificial Intelligence 2023-2024 Reinforcement Learning [5]

Multi-Armed Bandit: evaluating strateqies
= Total Expected Regret (TER)

How far from optimality a policy is, considering the total reward over T trials
For just one sequence of T trials, the Total Regret with expected rewards is

action taken at step t

T
L(T):==TV* = Q(x(t))
t=1
In a more general definition, the Total Expected Regret is

N N
L(T) :==TV* =) E[T.(T)]Q(a) =) | E[T.(T)]A,

number of times action a is taken in T trials (i.e. a random variable)
where

A, =V*—=Q(a)

Artificial Intelligence 2023-2024 Reinforcement Learning [6]

Multi-Armed Bandit: evaluating strateqies
= Total Expected Regret (TER)

N N
L(T) :=TV* — ZE[Ti(T)]Q(a) = E[T.(T)]A,

number of times action a is taken in T trials (i.e. a random variable)

where

A, =V*—Q(a)

With the optimal policy z* the total expected regretis O.

Whereas, with the random policy the total expected regret grows linearly over time:

N

= T

L(T) = N E A, ...since, with a random strategy &[T, (T')] = —
a=1

Artificial Intelligence 2023-2024

Reinforcement Learning [7]

Multi-Armed Bandit: Online learning

Adaptive policy: exploration vs. exploitation
exploration: make trials over the set of N arms to improve on estimates Q(a)
exploitation: make use of the current best estimates Q(a)

= Greedy policy

Initialize all the estimates ()(a) atrandom
Repeat:

1) select the bandit with the current best estimated reward a = argmaXaQ(a)
2) update the current estimate about a as

Tq __— reward of arm a at trial t
Z Ta,t
_t=1

A

Q(CL) = T/ Total number of times the arm a has been played
a

Artificial Intelligence 2023-2024 Reinforcement Learning [8]

Multi-Armed Bandit: Online learning

Adaptive policy: exploration vs. exploitation
exploration: make trials over the set of N arms to improve on estimates Q(a)
exploitation: make use of the current best estimates)(a)

= g-greedy policy (0<e<1)

~

Initialize all the estimates Q(a) atrandom
Repeat: A

1) with probability (1 — ¢) select the bandit a = argmax,Q(a)
else (i.e. with probability €) select one bandit at random

2) update the current estimate about a

I, __— reward of arm a at trial t
Z Ta,t
_t=1

A

Q(CL) = T/ total number of times the arm a has been played
a

Artificial Intelligence 2023-2024

Reinforcement Learning [9]

Multi-Armed Bandit: Online learning

Adaptive policy: exploration vs. exploitation
exploration: make trials over the set of N arms to improve on estimates Q(a)
exploitation: make use of the current best estimates Q(a)

» Theoretical comparison of different strategies (Total Expected Regret)

After a certain period of time,

the greedy strategy stops exploring /
and exploits its estimates random /- greedy
whereas the e-greedy strategy ’
keeps exploring and improving

c-greedy

decaying e-greedy

] 1 2 3 B] L] 7 8 9 10 1" 12 13 14 15 16 17 18 19

Time-steps

Einitial

t

Decaying e-greedy strategy: & =

Artificial Intelligence 2023-2024 Reinforcement Learning [10]

Multi-Armed Bandit: evaluating strateqies

= The two greedy strategies

They are biased: they depend on the initial random estimates
Optimistic variant: initially, set all Q(a) := 1
In this way, all action will be taken at least once

The average total regret grows linearly, in the long run
In fact:
" on average, the greedy strategy will get stuck in a suboptimal choice
= the e-greedy strategy will continue to choose an arm at random (with probability ¢)

Can we do any better?

The decaying e-greedy strategy does that...
Is there a minimum TER, that is, a lower bound?

Artificial Intelligence 2023-2024

Reinforcement Learning [11]

Multi-Armed Bandit: Optimal online learning

= | ower bound theorem [Lai & Robbins 1985]

Consider a generic, adaptive (i.e. learning) strategy for the multi-armed bandit problem with binary

reward (i.e. 7 € {0,1})

_— A,
Th—>mooL(T) > lnTa|Aa>O kl(Q(aJ)a V*) A, = V* —Q(a)

where
kl(Q(a), V") := Q(a)In Q‘ﬁf) +(1—Q(a))ln (21__62&2”;)

\ Kullback-Leibler divergence (see Wikipedia)

In other words, we can achieve logarithmic growth for the total expected regret, but not better:
on average, any adaptive strategy will choose suboptimal bandits a minimum number of times

. InT
e e (O

Artificial Intelligence 2023-2024

Reinforcement Learning [12]

Multi-Armed Bandit: UCB strateqy

" Upper confidence bound (UCB) Strategy [Auer, Cesa-Bianchi and Fisher 2002]

Initialize all the estimates of the expected reward Q(a) := 0

Play each arm once (to avoid zeroes in the formula below)
total number of trials

Repeat: number of times
9]n T the arm a has been played
1) select the bandit a = argmax, (+ 4/
2) update the current estimate)
as the average reward 2N T
J L N=10
(T/N)
Theorem
. In'T Arm chosen at random
With the UCB strategy, lim E[T,(T)] < +c
T— oo o A?L U

1 i.e.a (small) constant
where it can be shown that — >
Az~ K(Q(a), V™)

(i.e. there is a reasonably small gap between the two bounds — near optimality)

Artificial Intelligence 2023-2024

11

0.5

Numerical example of the
confidence bound term
with random playing

||||||||||
100 200 300 400 500 600 700 800 900 1000
T

Reinforcement Learning [13]

Multi-Armed Bandit: Thompson Sampling

= Thompson Sampling strateqy (also ‘Bayesian Bandit) [Thompson, 1933]
Initialize all the expected reward Q(a) :~ Beta(z;1,1)

i.e. assume this as a random variable
Repeat: with this distribution

~

1) sample each of the N distributions to obtain an estimate ()(a)
2) select the bandit « = argmax,Q(a)

3) update the posterior distribution
Q(a) :~ Beta(z; Re + 1, T, - R, +1)

total number of times the arm has been played

total (Bernoulli) reward from this arm (i.e. number of wins)

Theorem [Kaufmann et al,, 2012]

The Thompson Sampling strategy has essentially the same theoretical bounds
of the UCB strategy

Artificial Intelligence 2023-2024 Reinforcement Learning [14]

Multi-Armed Bandit: Thompson Sampling

* Thompson Sampling strateqy (also ‘Bayesian Bandit’) [Thompson, 1933]
Example run with 3 arms: trace of the posterior probabilities for each Q(a)

Posteriors After 1 pull

Posteriors After 2 pulls

20 20
e O R B T R O S
10 10
05 0.5
00 H H H i 00 H H
i B i i i i
%30 02 T 0.6 0.8 10 o 0z 04 0.6 08 10
ground truth: Q(a) - ! Puster!mrs After!5 pulls 0 Pusterl?rs After 1!5 pulls
30 R A R : :
pAg oro-somponoseonolioosomasossososettomesaasososse
20
15 L
10 L
0.5 — e e e e -
%0 02 04 0.6 0.8 10 %o 0z 04 0.6 08 10
5 Posteriors After 25 pulls ; Posteriors After 50 pulls
Y SO S S (AN : NS P I (S N
E o LT ERIE SRR S 2_: """"""
3 R R e s S T 3L
D — .
1 1-
%o 02 04 0.6 0.8 10 0 0z 04 0.6 08 10
. Posteriors After 100 pulls . Posteriors After 200 pulls
- : : ;) I S S S | W
10 12
8 e SN SOOI SO SEPURSURON N) SR
6 B B e e T
s IS SN OO SR | N
4 T L T PRPTPERITEY . . TERERN
2 T — e T T b
[04 0.6 30 0z 04 0.6 08 10
% Posteriors After 400 pulls 5 Posteriors After 1000 pulls
20 : i i i 0 i i i i
i
15 0
10 15
10
3 5

Artificial Intelligence 2023-2024

[image from: http://camdp.com/blogs/multi-armed-bandits]

Reinforcement Learning [15]

Multi-Armed Bandit: Thompson Sampling

= Thompson Sampling strateqy (also ‘Bayesian Bandit) [Thompson, 1933]

In practical experiments, this strategy shows better performances in the long run
[Chapelle & Li, 2011]

5 Expected Total Regret of Mutlit-armed Bandit strategies

= upper_credible choice
= payesian_bandit_choice
40 - == uch_bayes

after » pulls
=]

20 -

Exepected Total Regret

1 1 1 1
0 2000 4000 G000 8000 10000
Number of pulls

Actually, Thompson Sampling is a preferred strategy at Google Inc.
(see https://support.google.com/analytics/answer/28468827hl=en)

[image from: http://camdp.com/blogs/multi-armed-bandits]

Artificial Intelligence 2023-2024 Reinforcement Learning [16]

Markov Decision Process (MDP)

Artificial Intelligence 2023-2024 Reinforcement Learning [17]

Basic assumptions

Agent

Environment
St —» St+1

\

[image from: https://arxiv.org/pdf/1811.12560.pdf]

St+1

The Environment; is in state s ——— ¢

An Agent observes state s: and performs action a;

The Environment state transitions from S¢ — S¢+1

The Agent receives reward ¢

oo
Cumulative reward: p ._ Z ry

Artificial Intelligence 2023-2024

t=0

Reinforcement Learning [18]

Basic assumptions

Agent

The Environment: is in state s;

Environment
St —» St+1

\

[image from: https://arxiv.org/pdf/1811.12560.pdf]

St+1

time (discrete)

An Agent observes state s: and performs action a;

The Environment state transitions from S¢ — S¢+1

The Agent receives reward 7+

Artificial Intelligence 2023-2024

Reinforcement Learning [19]

An example: grigworld

1 2 3 4
1
The state of the agent is the position on the grid:
.

e.g.(1,1),(3,4),(2,3)

At each time step, the agent can move one box
in the directions <« Tl — with probability 0.8
/ the agent will end up here

The effect of each move is somewhat stochastic, however:
for example, a move T has a slight probability of producing
a different (and perhaps unwanted) effect

| .
Entering each state yields the reward shown in each box above T butwith probability 0.2
it might end up here

There are two absorbing states: entering either the green or the red box
means exiting the gridworld and completing the game

» What is the best (i.e. maximally rewarding) movement policy?

Artificial Intelligence 2023-2024 Reinforcement Learning [20]

Markov Decision Process (MDP)

1 2 3 4
1 Formalization and abstraction
of the gridworld example
.

Markov Decision Process: < S, A, r, P,y >
Asetof states: S = {s1,2,...}
A setofactions: A = {ai,as,...}

A reward function: r: S — R

A transition probability distribution : P(S;1+1 | S¢, A;) (also called a model)
Markov property: the transition probability depends only on the previous state and action

P(St—|—1 | StaAt) — P(St—l—l | StaAt'} St—laAt—lv St—?aAt—Qa ..)
A discountfactor: 0 <~v <1

Artificial Intelligence 2023-2024 Reinforcement Learning [21]

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a deterministic policy: = :S — A
In other words, the agent always chooses its action depending on the state alone

Given a policy 7 , the state value function is defined, for each state s as:
V7 (s) :==E[r(S) + 7 (Se1) +7*7(Se42) + ... | 7, Sy = 5]

Note the role of the discount factor: avalue v < 1 means that that future rewards
could be weighted less (by the agent) than immediate ones

Note also that all states S; must be described by random variables :
i.e. the policy is deterministic, yet the state transition is not

Note also that when the reward is bounded, i.e. 7(S) < rmpax

Z'y r(Sy) < rmaXZ'y — rmaX%
t=0 \ -

for v < 1 thisis the geometric series

Artificial Intelligence 2023-2024 Reinforcement Learning [22]

Markov Decision Process (MDP): policies and values

The agent is supposed to adopt a deterministic policy: ©:S — A
In other words, the agent always chooses its action depending on the state alone

Given a policy 7 , the state value function is defined, for each state s as:
VW(S) = E[T‘(St) —+ ’}/T'(St_|_1) + ’}/2?“(5754_2) + ... | T, St = S]

Note the role of the discount factor: avalue v < 1 means that that future rewards
could be weighted less (by the agent) than immediate ones

Note also that all states S; must be described by random variables :
i.e. the policy is deterministic, but the state transition is not

In the gridworld example:
= The set of states is finite
= The set of actions is finite

= Forevery policy, each entire story is finite
Sooner or later the agent will fall into one of the absorbing states

Artificial Intelligence 2023-2024 Reinforcement Learning [23]

Bellman equations
By working on the definition of value function:
V™ (s) :=E[r(Sy) +yr(Ses1) + ¥°r(Ses2) + ... | 7, S = 3]
E[r(St) +v(r(Se+1) +9r(Ses2) +...)| 7, St = s
r(s) + YE[r(Sit1) +y7r(Sig2) + ... [T, 5 = 5]
)
)

r(s) +v2 o P(s" | s,m(s)) - E[r(Ses1) + y7r(Seq2) +...| m, Sip1 = §']
r(s) +v22s,,, P(Sey1 | s5,7(s)) - V™ (Si41)

This means that in a Markov Decision Process:

VT(s) =7(s) +72s,,, P(Ses1|5,7m(s)) - VT (Ses1)

This is true for any state, so there is one such equation for each of those

If the set of states is finite, there are exactly | S| (linear) Bellman equations for |S| variables:
in general, for any deterministic policy, V" can be computed analytically

Artificial Intelligence 2023-2024 Reinforcement Learning [24]

Optimal policy — Optimal value function

= Basic definitions
V*(s) :=maxV7"(s), Vs € S

7*(s) := argmax_V7"(s), Vs € §

Property: for every MDP, there exists such an optimal deterministic policy (possibly non-unique)

With Bellman Equations:
mas, V7 (s) = r(s) + ymasy (S, P | 5.7(5) - V(Sian)
S,

)
VE(s) = r(s) + ymaxy (T, P(Sir | 5,7(s) - V(i)
r(s) +ymax, (T, P(Sie1 | 5.0)- V*(Sta1))

Therefore;

7*(s) = argmax, (ZS}H P(Sii1 | s,a)V* (St+1))

\ once V'* has been determined,

7 can be determined as well

Computing V™ directly from these equations is unfeasible, however
There arein fact | A|l°! possible strategies ...

Artificial Intelligence 2023-2024 Reinforcement Learning [25]

Reinforcement Learning

(model-based)

Artificial Intelligence 2023-2024 Reinforcement Learning [26]

Optimal value function: value iteration

= Value iteration algorithm

Initialize: V(S) =T (S) , Vs €S Note that there is no policy:
Repeat: all actions must be explored

1) For every state, update: V(s) := r(s) —I—fymaXZP(s' | s,a)V(s")
a

Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in S,
this algorithm converges to V'*

Artificial Intelligence 2023-2024 Reinforcement Learning [27]

Value itera’cion and op’cimal policy

Initialize states
(e.g. using rewards as initial values)

Artificial Intelligence 2023-2024

.

- u L
L -

Define the optlmal policy as:

T (s) = argmaxa@s P(St+1 s a) V*(Ses1))

Reinforcement Learning [28]

Optimal policy: policy iteration

= Policy iteration algorithm

Initialize ﬂ‘(3) ,Vs € S atrandom This step is computationally expensive:
Repe at: either solve the equations or use value iteration

— (with fixed policy)
1) Foreach state, compute: V(s) := V™ (s)

2) Foreach state, define: 7(s) := argmax, Z P(s' | s,a)V(s")
Theorem: for every fair way (i.e. giving an equal chance) of visiting the states in 5,

this algorithm converges to *

As with the value iteration algorithm, this algorithm uses partial estimates

to compute new estimates.
Itis also greedy, in the sense that it exploits its current estimate V'™ (s)

Policy iteration converges with very few number of iterations,
but every iteration takes much longer time than that of value iteration

The tradeoff with value iteration is the action space:
when action space is large and state space is small, policy iteration could be better

Artificial Intelligence 2023-2024

Reinforcement Learning [29]

Reinforcement Learning
(model-free)

Artificial Intelligence 2023-2024 Reinforcement Learning [30]

Molde-based vs. model-free reinforcement learning

» Value iteration and policy iteration are offline algorithms
The model, i.e. the Markov Decision Process is known
What needs to be learnt is the optimal policy 7*

In the algorithmes, visiting states just means considering them:
there needs not be an agent which actually plays the game

= Different conditions: learning by doing ...
Suppose the model (i.e. the MDP) is NOT known, or perhaps known only in part

In particular, it might not be known the transition function P(St+1 | S, At)
Such scenario is also called ‘model-free’

The agent, then, must learn by doing... that is, actually playing the game

Artificial Intelligence 2023-2024 Reinforcement Learning [31]

Action value function

An analogous of the value function V'™

Given a policy 7 , the action value function is defined, for each pair (s,a) as:

Q7(s,a) =3 g, P(Sey1]s,a) - V7 (St41)

=25, P(St+1]8,a) - E[r(Seq1) + 7 (Ses2) + ... | T, S
=2 .5,,, P(Set1 | s,a) - [r(Seq1) + E[yr(Seq2) + ... [7, Siqa]]
=25, P(St+1] s,a) - [r(St+1) + Q7 (St1, m(Se41))]

In other words, Q@™ (s, a) is the expected value of the reward in Sy 11
by taking action a in state s and then following policy ot from that point on

Following a similar line of reasoning, the optimal action value function is

Q*(s,a) = Zst—l—l P(Sii1 | s,a) - [r(Sip1) +ymaxy Q*(Sii1,a’)]

Artificial Intelligence 2023-2024

Reinforcement Learning [32]

Q-Learning

* Q-learning algorithm (e-greedy version)

Initialize Q(s,a) atrandom, put the agent is in a random state s
Repeat:

A

1) Select the action argmax,Q(s,a) with probability (1 — ¢)
otherwise, select @ at random

2) Theagentis now in state s’ and has received the reward T
3) Update Q(s,a) by

AQ(s,a) = alr + ymaxy Q(s',a') — Q(s, a)]

————— Exponential Moving Average
(see later...)

Note that step 1) is closely similar to a multi-armed bandit:

in each state, the agent has to choose one among all actions in A
and this will produce a random reward....

Artificial Intelligence 2023-2024

Reinforcement Learning [33]

Q-Learning

» Q-learning algorithm

Theorem (Watkins, 1989): in the limit of that each action is played infinitely often
and each state is visited infinitely often and a — 0 as experience progresses, then

~

Q(s,a) = Q" (s,a)

with probability 1

The Q-learning algorithm bypasses the MDP entirely,
in the sense that the optimal strategy is learnt without learning the model P(S¢11 | St, A¢)

Artificial Intelligence 2023-2024 Reinforcement Learning [34]

0.6 v v -
Global Temperatures

An aside: moving averages

0.4
—— Annual Average

- — Five Year Average
Following non-stationary phenomena ‘

= Average T
Definition: vy = T kzlka

-0.2

Temperature Anomaly (°C)

-0.41®

1880 1900 1920 1940 1960 1980 2000

Running implementation: [image from wikipedial

T—1
1
v = T(UT + ; ’l)k) = —(’UT + (T — 1)@T—1)
1 1 1
=Vp_1+ =(vp —Up_1) = T vp + (1 — T)@T—l
\

= Exponential Moving Average (EMA)
U, ‘= QUL + (1 — Oz) VUr—1,ay O C [O, 1]
“the weight of newer observations remains constant”

Artificial Intelligence 2023-2024 Reinforcement Learning [35]

An aside: moving averages
= Exponential Moving Average (EMA)

V. ‘= QU + (1 — Oé) Ur—1,a, ¢ € [0, 1]

Expanding:
Uta =0+ (1 —) Vi1 4

b

(1—a)™

“the weight
of older observations
diminishes with time”

[|mage from Wlklpedla

=avi+ (1 —a)(avi—1 + (1 — a)Vi—2.4)
=avi+ (1 —a)(avi—1 + (1 —a)(avi—2 + (1 — @)Ti—3.4))

= a (v + (1 -

The weight of past contributions decays as
(1 —)

A SMA with n previous values
is approximately equal to an EMA with

2
n—+1

O =

Artificial Intelligence 2023-2024

Q)vi_1+ (1 —a)vi_2)+ (1 —a)’v;_34

Index (Monthly)

S&P 500 Total Return

1,600

1,000

"]
Q
=]

600

400

200

Computerized Investing

NNNNNNNNNNNN

N\ NN > >
° b’ Qf

Q
Q ’\, ‘o ‘b Qf "v b(b
el % o) el ’\-
I N N N I AN . SN ~9° e&“ m@ '1,@ -

Reinforcement Learning [36]

Q-Learning revisited

= Q-learning algorithm (e-greedy version)

Initialize (s, a) at random, put the agent is in a random state s
Repeat:

~

1) Select the action a = argmax,Q)(s, a) with probability (1 — &)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward 7

~

3) Update Q(s,a)by
AQ(s,a) = afr + ymax, Q(s',a’) — Q(s, a)]
By rewriting step 3)
Q(s,a) = Q(s,a) + AQ(s,a) = Q(s,a) + afr + ymaxy Q(s',a') — Q(s, a)]

A A

= afr + ymaxy Q(s',a")] + (1 — a)Q(s, a)

Exponential Moving Average

compare with (see before):

Q*(s,a) = ZSt—l—l P(Siy1|s,a) - [r(Sip1) +ymaxy Q*(Siy1,a’)]

Expectation

Artificial Intelligence 2023-2024 Reinforcement Learning [37]

SARSA

= SARSA algorithm (e-greedy version)

Initialize Q(s, a) atrandom, put the agent is in a random state s
Repeat:

A

1) Select the action a = argmax,_,Q(s,a) with probability (1 — ¢)
otherwise, select a at random

2) Theagentis now in state s’ and has received the reward r

A~

3) Selectthe action @’ = argmax,Q(s’, a) with probability (1 — &)
otherwise, select ¢’ at random

4) Update Q(s, a) by

AQ(s,a) = alr + 105,) — (s, a)
I No more 'max’ here

Q-learning is a an off-policy algorithm: each update involves max Q(s’, a,’)
(i.e. exploration is not taken into account) @

SARSA is a an on-policy algorithm: each update involves Q(S’, a')
(which involves the next policy action, exploration included)

Artificial Intelligence 2023-2024 Reinforcement Learning [38]

SARSA vs Q-Learning

= Cliff World

'S"is the start
'G' is the goal
Each white boxhas r = —1

'The Cliff' region has 7 = —100
and entails going back to 'S’

= Experimental Results

SARSA finds a sub-optimal but safer path
since its learning takes into account
the € risk of going off the cliff

Q-learning finds the optimal path
but, occasionally, it falls off the cliff
during learning due to the € -greedy strategy

Artificial Intelligence 2023-2024

r=-1 safe path
optimal path
S The Cliff G
Sarsa
25
Reward -50-
per Q-learning
epsiode
75
_100 I I | I 1
0 100 200 300 400 500
Episodes

Reinforcement Learning [39]

Reinforcement Learning Method's

[image from: https://arxiv.org/pdf/1811.12560.pdf]

Experience
MOd,EI Acting
learning
Model-free
[Model] RL Value/p olich

Planning

Artificial Intelligence 2023-2024 Reinforcement Learning [40]

	Slide 1
	Slide 2: Multi-Armed Bandit
	Slide 3: Multi-Armed Bandit
	Slide 4: Multi-Armed Bandit: strategies
	Slide 5: Multi-Armed Bandit: basic definitions
	Slide 6: Multi-Armed Bandit: evaluating strategies
	Slide 7: Multi-Armed Bandit: evaluating strategies
	Slide 8: Multi-Armed Bandit: Online learning
	Slide 9: Multi-Armed Bandit: Online learning
	Slide 10: Multi-Armed Bandit: Online learning
	Slide 11: Multi-Armed Bandit: evaluating strategies
	Slide 12: Multi-Armed Bandit: Optimal online learning
	Slide 13: Multi-Armed Bandit: UCB strategy
	Slide 14: Multi-Armed Bandit: Thompson Sampling
	Slide 15: Multi-Armed Bandit: Thompson Sampling
	Slide 16: Multi-Armed Bandit: Thompson Sampling
	Slide 17: Markov Decision Process (MDP)
	Slide 18: Basic assumptions
	Slide 19: Basic assumptions
	Slide 20: An example: gridworld
	Slide 21: Markov Decision Process (MDP)
	Slide 22: Markov Decision Process (MDP): policies and values
	Slide 23: Markov Decision Process (MDP): policies and values
	Slide 24: Bellman equations
	Slide 25: Optimal policy – Optimal value function
	Slide 26: Reinforcement Learning (model-based)
	Slide 27: Optimal value function: value iteration
	Slide 28: Value iteration and optimal policy
	Slide 29: Optimal policy: policy iteration
	Slide 30: Reinforcement Learning (model-free)
	Slide 31: Molde-based vs. model-free reinforcement learning
	Slide 32: Action value function
	Slide 33: Q-Learning
	Slide 34: Q-Learning
	Slide 35: An aside: moving averages
	Slide 36: An aside: moving averages
	Slide 37: Q-Learning revisited
	Slide 38: SARSA
	Slide 39: SARSA vs Q-Learning
	Slide 40: Reinforcement Learning Methods

