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An aside:
The K-means algorithm
(3lternate optimization)
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Vector quantization

READY!

10 Modes READY! 10 Modes

Original data Quantization (compression via prototypes)

The basic idea is to replace each real-valued vector x € R® with avalue w; € R*
which belongs to a finite codebook of k prototypes 0 := {w1,...,w}

Each data vector is encoded by using the index of the most similar prototype, where
similarity is measured in terms, for instance, of Euclidean distance:

w(x) = argmin,, ||z — wj||

For instance, part of mpeg4 and QuickTime (Apple) video compression algorithms work in this way
and so does the Ogg Vorbis audio compression algorithm
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k-means (Generalized Lloyd’s Algorithm — Vector quantization)

Givenaset D :={xy,...,x N} of observations (i.e. vectors in R%

Clustering problem: given k, find a set of k prototypes 6 := {w, ..., w}
and an assignment function w : D — 6 such that the objective (loss) function:

Z lz; — w(ws)||”

is minimized.
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k-means (Generalized Lloyd’s Algorithm — Vector quantization)

k-means algorithm:

1) Position the k prototypes at random
2) Assign each observation to its closest prototype

w(w;) := argmin,, [|z; — wj||

3) Position each prototype at the centroid of the observations assigned to it

w; = Z T where D(w;) :={x; € D | w(x;) = w,}
D('wa)

4) Unless no prototype was moved in step 3), go back to step 2)

This algorithm converges to a local minimum of J (D, )
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k-means (Generalized Lloyd’s Algorithm — Vector quantization)
Why does the algorithm work: alternate optimization (also ‘coordinate descent’)
Step 2): Assign observations while keeping the k prototype fixed
w(zx;) = argmin,,, ||z; — wj|

which minimizes each of the termsin J(D, 0) Z |z — w(z;)|?

Step 3): Reposition the k prototypes while keeping the assignments fixed

lemz w(z:)||* = Z > (@

J D(w;)
0 0 1 0 1
J(D,0) = (5137;—’1,0-)2 (x; —w; ) (x; —w;)
s Ow; 2 D%) R D%) j j
0 1
= 5w 3 Y (@ +wi -2z wy) = Y (w;—a)
i 2 D(w;) D(w;)

then, by imposing iJ(D 6) =0 we obtain

ow;

1
7 D(w;) Z i
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k-means (Generalized Lloyd’s Algorithm — Vector quantization)

Discussion of the k-means algorithm

a) Ateach step of the algorithm J (D, #) could not increase: it could only decrease or stay equal

b) The algorithm is a variant of a gradient descent, in which at each step
the gradient descent is performed on one subset of variables only

c) It must reach a fixed point, where both gradients vanish

d) But the only guarantee is that the algorithm reaches a local minimum
(unless it gets stuck in a saddle point)
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k-means (Generalized Lloyd’s Algorithm — Vector quantization)

Givenaset D := {x1,...,xy} of observations (i.e. vectors in RY
andaset 6 := {w,...,wr} of K prototypes (i.e. vectors in R?)
Voronoi cell

V(w;):={z € R ||l — w,|| < [lz —wl ,VI#j}

Voronoi tesselation: the complex of all Voronoi cells of 6

Algorithm (rewritten):
1) Position the k prototypes at random
2) Assign each observation to its Voronoi cell

w(z;) == w; | x; € V(w;)

3) Position each prototype at the centroid of the observations in its Voronoi cell

1
W e vy 2

{zic€V(w;)}

4) Unless no prototype was moved in step 3), go back to step 2)
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k-means

An example run of the algorithm

The landmarks (empty circles)
become black when :
they cease to move a) data sct, D

o) 5 Lloyd iterations h) 6 Llovd iterations i) 7 Lloyd iterations
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The Expectation-Maximization (EM)
algorithm
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Expected value of 3 random variable

(also expectation)

Basic definition More concise notation
Ex[X]:= ) xP(X=u) E[X]:= ) x P(z)
zeX reX
Continuous case
A linear operator E[X] ::/ z pla)de
E[X + Y] = E[X] + E[Y] vex
ElcX] = cE[X]

Conditional expectation

Ex[X]Y =y =E[X|Y =y]:= > 2 P(X =z|]Y =y)

Iterated expectation (see Wikipedia)
Ex[X] = Ey[Ex[X[Y]]
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Joint Expected Value

The expected value of a function f of a set of random variables is  {X}
E[f({Xi})]:= ) f{X:}) P{Xi})
{X\}

the sum is over all possible combinations of values of the random variables

(Unless specified otherwise, the E operator acts over all the random variables enclosed)

The extension to the continuous case is obvious
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Expectation Maximization: a preliminary example

a Maximum likelihood Figure from http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html
o HTTTHHTHTH 5H.5T
~ 24
# of heads ° HHHHTHHHHH gH,1T %=22+6 080
in 10 tosses
o HTHHHHHTHH 8H,2T 9
%=g4 11045
o HTHTTTHHTT 4H,6T

o THHHTHHHTH 7H, 3T
/ 24H,6T 9H, 11T

5 sets, 10 tosses per set

= An experiment with two coins

At each step, one coin is selected at random (with equal probability)

and then tossed ten times
Random variables: Y numberofheads, X selected coin (i.e A orB)
Parameters to be learnt: 6 = {04, O} probabilities of landing on head of A and B
When the results are fully observable, by MLE:

0 — Ny_1,x=4 0% — Ny—1x=B
A= B~
Nx—a Nx—p
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Expectation Maximization: a preliminary example

d Maximum likelihood

o HTTTHHTHTH
© HHHHTHHHHH
° HTHHHHHTHH
o HTHTTTHHTT
o THHHTHHHTH

S

5 sets, 10 tosses per set

= An experiment with two coins

At each step, one coin is selected at random (with equal probability)

and then tossed ten times

Random variables: Y number of heads,
Parameters to be learnt: 6 = {04, O} probabilities of landing on head of A and B

Figure from http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html

5H,5T
9H, 1T é,l:EfiE:u.su
8, 2T o
4H,6T o1 0
7H,3T

24 H,6T 9H, 11T

X selected coin (i.e AorB)

= Whatif X is hidden (= latent, = unobserved)?

The results of each sequence of coin tosses are known, but not the coin selected
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Expectation Maximization: a preliminary example

a Maximum likelihood Figure from http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.htmi
o HTTTHHTHTH 5H,5T
o HHHHTHHHHH  9H 1T é,l:EfiE:U-EU
° HTHHHHHTHH [ 8H2T o
Q) HTHTTTHHTT PP TS
o THHHTHHHTH | 7H&T
55915.10.@5595.:%1 24H,6T 9H, 11T
= Whatif X is hidden (= latent, = unobserved)?
Likelihood
P(D|6)=PH{YW}y|6)= > PHIYD, XD} 6)
{xX®}
MLE
0" := argmax, » PH{Y",xD)}]0)

(X0}
* This optimization problem is intractable, in general
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Expectation Maximization: a preliminary example

a Maximum likelihood Figure from http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html
o HTTTHHTHTH 5H, 5T
.24
o HHHHTHHHHH  9HAT %.=55 6080
° HTHHHHHTHH [ 8H2T
9
%=g4 11045
o HTHTTTHHTT 4H,6T
o THHHTHHHTH 7H, 3T
/ 24H,6T 9H, 11T

5 sets, 10 tosses per set

= Whatif X is hidden (= latent, = unobserved)?

Intuitive idea: use expected values for unobserved variables

1. Define an initial (random) guess §(®)
2. Compute Qi(X(i)) = P(X(i) | Y(i);H(t)) E-step

3. Maximize
glt+1) — argmax, ZEQi(X(i))[Y(i) | X(i);é(t)] M-step

(]
4. Unless some convergence criterion has been met, go to step 2.
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Expectation Maximization: a preliminary example

E-step

HHHHTHHHHH
9H,1T HTHHHHHTHH

HTHTTTHHTT

4H,6T

=72H,08T =18H,02T

=14H 21T =26H,39T

24H,6T 9H,N1T

=21.3H,86T =11.7H,84T

y
" . i 4 ain_ 213
Initial random estimate of 04,0 | } ______________________ 0, = 57 186 =0.71

~_ 6,"=0.80

®'> 6,"'~0.52

Converged?
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Expectation Maximization: a preliminary example

E-step

HHHHTHHHHH
9H,1T HTHHHHHTHH

HTHTTTHHTT

4H,6T

=72H,08T =18H,02T

=14H 21T =26H,39T

24H,6T 9H,N1T

=21.3H,86T =11.7H,84T

y
" . i 4 ain_ 213
Initial random estimate of 04,0 | } ______________________ 0, = 57 186 =0.71

~_ 6,"=0.80

®'> 6,"'~0.52

Converged?
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Expectation Maximization: a preliminary example

Qi(XDY) .= p(Xx@ Y(i);é(t))

Compute the
probability distribution
of hidden observations

E-step (see next)

S5H, 5T HTTTHHTHTH 9_45}:0 U_55xo =22H,22T =28H,28T
HHHHTHHHHH
9H, 1T HTHHHHHTHH {}ngxo ﬂ,g{}xo =72H,08T =1.8H,02T
HTHTTTHHTT
8H,2T THHHTHHHTH {}.?330 (},z?xo ~B59H 15T =21H,05T
4H 6T {}.35x° [}.65:-:0 ~14H,21T ~26H,39T
7H,3T G,EExo 0.35x o ~45H,19T =265H,11T
24 H,6T 9H, 11T =21.3H,.86T =11.7H, 84T
Initial random estimate of éA,éB '“ r é;”:%xﬂ.ﬂ @
| } :|'| 7 ‘ il
sin__ 117 6.~
O =117 +84 08 0.80
@"’ 6,"~0.52
Converged?
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given theresult Y and current parameter estimate
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Expectation Maximization: a preliminary example

PYD =y | XD =2:00)P(XD =g | §V))

P(XW =z |Y® = y;é(t)) —

. , ' 10
Compute the where PYW =y | XV =z,0) = (
probability distribution E-step P(XD =2 |6) =05 Y
of hidden observations
5H,5T HTTTHHTHTH 9_45}:0 U_55xo =22H, 22T =28H,28T
HHHHTHHHHH
8H,1T HTHHHHHTHH {}ngxo ﬂ,g{}xo =~7.2H,08T =18H,02T
HTHTTTHHTT
8H,2T THHHTHHHTH {},?3;{0 G.E?xo =59H, 15T =21H,05T
4H,6T {}.35x° [}.65:-:0 ~14H,21T ~26H,39T
7H 3T G,EExo 0.35x o ~45H, 19T ~26H,11T
24H,6T 9H, 11T =213H.86T =11.7H,84T
Initial random estimate of éA,éB '“ r E};%%:D.H @
' | ' ’ M-step
g, 11.7 6.~
O =117 +84 08 0.80
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Converged?

SPY® =g | XO =z;00)P(XEO =g | hO))

) oz o
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Expectation Maximization: a preliminary example

(i) (i) Use 'expected observations’
IE:*Q%-(X(i))[ Y | YV =y, 9] — Z Y Qz(X — x) instead of actual observations
M5

to update ML estimations

=Y yP(XY =z | YYD =y;0)

E-step
SH, 5T HTTTHHTHTH (_}_45}:0 5_55,{0 =22H,22T =28H,28T
HHHHTHHHHH
9H, 1T HTHHHHHTHH thgxo [}Izﬂxo ~7.2H,08T =1.8H,02T
HTHTTTHHTT
8H,2T THHHTHHHTH {1?3;{0 [},z?xo =~59H,15T =21H,05T
4H,6T ﬂ.35x° [}.55:-:0 ~14H,21T  =26H,39T
7H3T G,EExo 0.35x o ~45H,1.9T  =25H,1.1T
24H,6T 9H, 11T =21.3H,86T =11.7H, 84T
Initial random estimate of éA éB “" [‘ 1. L:ﬂ 71 @
’ i R, P— AT 213+86 .
} M-step
(1) 11.7 - : T
ﬁE ""'.I 11?- + 314 U.EB I Y ==1 LN HA G.Bﬂ
Q)_/ 6,"~0.52
MLE using ‘expected observations ¢
Converged?
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Convergence of the EM algorithm
(in the discrete case)
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An aside: Jensen's inequality

A relationship between probability and geometry vyl v f(x)is (strictly) convex

P=[Xy, f(X)]
; P +A(P, — Py)

When f is convex function

FERX:}) <E[f({X:i})]

f is convex when for any two points p; and p;
the segment (p; — ;) is not below f

P2=[X,, f(X5)]
N

That is, when 1 1 : 1
AM(zi) + Q=N f(z;) > fAx; + (1= N)z;), YA€ [0,1] X X2 X3 Xy
Furthermore, T is strictly convex when

() + (1= N f(2;) 2 fOhzs + (1= Nay), YA € (0,1)

Y
Vv

Corollary:

when f is strictly convex, if and only if all the variables in {X,} are constant
itis true that

FERXG]) <E[f({Xi})]

Dual results also hold for concave functions
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An aside: Jensen’s inequality

A relationship between probability and geometry v 1 f(x)is (strictly) convex
When f is convex function P
FE{X:}]) <E[f({Xi})]

To see this, consider

P =A1P1t AoP, + A3Ps + 44D,
i.e. a linear combination of p; points

This is an affine combination if Z Ai=1
and it is a convex combination if also \i >0, Vi

3
A Xt AoXy + AgXs + 44X,

When the A; define a probability, then p is a convex combination of p; points

Any convex combination of p; points lies inside their convex hull (see figure)
and therefore above f :

Z Aif(zi) = f(z Ai;)

Corollary: the only way to make the convex hull be on f
is to shrink it to a single point (i.e. the Jensen’s corollary)
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Incomplete observations

Likelihood function with hidden random variables
L(|D) = P(D|) = [ P(D"™6)

(01D) = ) log P(D"™]6) = ) log > P(D"™ {X;}|6x)
m m {Zi}
/ Arbitrary probability distributions

_ . () v 1y PP, {X;}]0)

Jensen’s inequality: log is concave

P(D™) {X,}|0 P(D™) {X,;}|0
— ZlogEQm)({X@-}) [ (Q(m)({{X@-}}J )] > ZEQ(M)({Xi}) llog (Q(m)({{Xi}})| |

- ) (1,1 log LR {Xi}16)
2. 2. @ o gy
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Expectation- Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)
Log-likelihood function:
P(D'"™ {X;}]6)
00|D) > (m) (X 1)1 ’
(0|D) > Z{;Q (X} log — o

This inequality becomes equality ‘ when this term is constant (see Jensen’s corollary)

1) Keep 6 constant, define Q™ ({Z;}) so that the right side of the inequality is maximized

m , . P(D(m)v{XﬁHg) . P(D(m)a{X%HG) . . m (m)
QM({X,)) = S POt (X318~ PO™E) - P{X}D™ . 0) = ply,

(X} These numbers can be computed from the
graphical model (i.e. as an inference step)

2) Then maximize the log-likelihood while keeping Q'™ ({Z;}) constant
(m) .
= argmaxj Z Z p(m) log P 1 Xi}10)

{Xi} (m) This is also called the entropy of Q™ ({X;})
m {X;} Pixy (i.e. a constant measure of the distribution)

= orgmeg ) | DG e PO LX) = 3 i lowrR,
m X; X,

= argmax, Z Z pgﬂ;z} log (D™ {X,;}]6)
m {Xi}

Artificia] Intelligence 2023-2024
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Expectation- Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)
Log-likelihood function and its estimator:

(D), {X:}10)
(oD) = 303 @ ({xihlog L
> 2 QUIX)

Algorithm:
1) Assign the 6 at random

2) (E-step) Compute the probabilities
Py, = QUM{Xi}) = P{X:}D™,0)
3) (M-step) Compute a new estimate of 6

0 = argmax, Y Y pi'y, log P(D™ {X;}[6)
m {X;}

4) Go back to step 2) until some convergence criterion is met

The algorithm converges to a local maximum of the log-likelihood
The effectiveness of algorithm depends on the form of P({X;}|D'™,8) (see step3)
In particular, when this distribution is exponential... (e.g. Gaussian — see next slide)
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An aside:
the EM algorithm in the continuous case
(Mixture of Gaussians)
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EM Algorithm: mixture of Gaussians

Model:

The hidden variable X has K possible values, the observable variable Y is a pointin R?

P(X — k) = P / Multivariate normal distribution

P(Y =y|X = k) = N(y; i, Zx) = (2m)"¥2(det B3,)7'/? exp <—1

i.e. the condition probabilities are normal distributions ’
The observations are a set D= {y®, ..., yN} of points in R¢
Algorithm:
1) Foreach valuek, assign ¢, , u, and %, at random
2) (E-step) For all the y™ in D compute the probabilities
py” = P(X = k™, b, Bk) = dp - N (@™ g, Bi)
3) (M-step) Compute the new estimates for the parameters

1 m
O = Engﬁ )

S p{ ™y (m) S0 (y — ) (y — )"
e = S Zp = = m
> py > p™

4) Go back to step 2) until some convergence criterion is met

Artificia] Intelligence 2023-2024
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EM Algorithm: mixture of Gaussians

Model:

The hidden variable X has K possible values, the variable Y is a pointin R

P(X =k) := ¢
P(Y =y|X = k) = N(y; i, Zi) = (2m)"2(det )~ /% exp (—%
i.e. the condition probabilities are normal distributions
The observations are a set D= {y®W, ..., yN} of points in R?
Proof (of the M-step):

S i log PY™, X = k|6, puk, S

m k

— Zngﬂ) log P(Y(m)|X =k, pr, X)) P(X = kl|or)

m k
m _ _ 1 B
- S (o om0 ) (Lo
m k

Artificia] Intelligence 2023-2024
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EM Algorithm: mixture of Gaussians

Model:

P(X =k) =

P(Y =y|X = k) = N(y; i, Zi) = (2m)"2(det )~ /% exp (—§(y —pp)'E
i.e. the condition probabilities are normal distributions

The hidden variable X has Kk possible values, the variable Y is a pointin R

1

The observations are aset D= {y®, ..., yN} of pointsin R?

Proof (of the M-step):

op;j

= —ZZp(m)( (™ — )

U;m

m mT m mT
_ _ZZP( )( (y™" Sy + S e — 20 5, m«:))

Mjm

By imposin (m) 2Tyl
y imposing: Z p; S u) =0
See the link in the web page for the derivations of other parameters ...

Artificia] Intelligence 2023-2024

=

My =

Z p(m)y(m)

Zp(m)

- m)

ZZP,C (log( )~ (det Ek)_1/2) + (—%(y(m) — ) Z ™~ uk)) + logaﬁk)
oty - Mk))
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The EM alqorithm
for learning with missing data
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Missing Values
= Hidden Variables

Some of the variables may be hidden, i.e., non observable ‘by design’
Example: ‘Hidden Markov Model’

* Incomplete Observations

Sometimes, however, observations may be missing ‘by accident’ and not ‘by design’
Example: ‘Naive Bayesian Classifier’

What if some classifications Y are missing, or a few features X; are not available?
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Missing Values: Observability Model

= Observed and Unobserved Variables
Let’s consider a graphical model with a set of random variables:

X ={Xq,.... X}
In each actual observation (i.e., a data item)
X = x{m o xmn
each value X i(?:) may be either observed or unobserved (i.e., missing)

determined by a binary random variable O x, € {0, 1}

An observability model for a graphical model with random variables X
is a set of binary random observability variables

OX = {OXU “ . ;OXR}
with probability distribution

Pmissing(Xa OX) — P(X) Pmissing(OX ‘X)

probability distribution with no missing values
Artificia] Intelligence 2023-2024
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Missing Values: MCAR

= Missing Completely at Random (MCAR)
MCAR assumption

(X 1 Ox)
It entails that:

Pm'issing(Xa OX) — P(-X) Pmissing(OX)

This is tempting and it could ease all subsequent computations...
... butitis too strong, and hardly enforceable in many practical cases

Moral: we need a weaker assumption
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Missing Values: MAR
= Missing at Random (MAR)

Consider a generic data item, possibly with missing values

xm .= x0my x

obs Missing values
ya N\ need NOT be for the same
observed missing variables in each data item

MAR assumption, for each data item:

(x\™ 1 ox | XU

obs

Namely, the values of the missing variables are independent from their observability
given the values of the observed variables

It is still a strong assumption, yet much more realistic...
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Missing Values: MAR
= Missing at Random (MAR)

MAR assumption, for each data item:

(x\™ 1L ox | X

obs

This entails:

Pmissing(X(m)a OX) — Pmissing(X(m) Xi(L?ZZ)ﬂ OX)

obs

obs obs

— P(X(m) X;g?;;)) sz'ssing(OX |X(m))

obs ? obs

Prissing(X0 0x) = 37 P(XU, X)) Prissing(Ox | X 0

obs obs obs
Xhid

Pm?lssing(X(m) OX) — P(X(m)) szsszng(OX|X(m)) — This is the relevant property

obs ? obs obs
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Likelihood under MAR

OON
\ \ ‘ (X 1L ox | X5

Variables and parameters in an observability model
as a graphical model

Likelihood
L(6,¢ | D) =[IY_, P(D(™) | 6,4) where: D .= {xm x(mhy
10,9 | D) =Y _ log P(D™ | 0,7))
= Yo log (PXG X0 | 0.4) Prusesing(Ox| X 52, X170, )

N m m m
= S log (POX, X5 110) Prsaing(Ox| X))

=N _log P(XUY. X | 0) 4+ SN _ 108 Prnissing(Ox | X7 )

m=1 obs ? obs

We are interested in optimizing 0 ... yet we have only observed values
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Likelihood under MAR

A

Likelihood (for observed values)
10| D) := Y0 _ log P(X ;|

— quj@:1 log ZX}EZ? P(X

N
— Zm:l IOg ZX}E:;L) (

(X

(m) |
hid

Ox | X(m)>

obs

Variables and parameters in an observability model
as a graphical model

0)
G x| o)
P(XS o) p(x( | X5, 0)

)

Looks promising: using probabilities instead of missing values ...

but this may be very hard to optimize in general

Artificia] Intelligence 2023-2024

Unsupervised Learning [39]



Learning CPTs for a graphical model via MLE

Model: random variables plus the graph of dependencies
Observations: dataset of values, from completely observed outcomes
Parameters (to be determined): all conditional probabilities (i.e. all CPTs)
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Tpam) N Nea [elpE N L= Neo. reo
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00 o I SNl,Fo
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1100 Nl—}\_rl A=0
1101 - A—0
1/1 0 Np—o, 4=1
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P(RIL)

The MLE for each CPT is determined
as a relative frequency of occurrence in the dataset

===
=i k=1)

What happens if some of the values are missing?
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Learning CPTs for a graphical model via EM

Fundamental idea: using probabilities of observations

In the completely observed case: probabilities are estimated as frequencies of occurrence

T | P(T)

P(A|T,F)
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Learning CPTs for a graphical model via EM

Fundamental idea: using probabilities of missing observations
N
Let's consider a dataset [ = {X(Z)}
i=1

Each data item X may contain some missing data this value is missing

Example: X (V) = (Xl(z) = :El,XQ(i) = xQ,X?Ei) =7?)
Define X ) asone possible completion of x@, namely one in which there are no missing data
(X1 =21, X5 = 5, X" = 0)
(X{ =1, X = 20, X5 =1

Note that there will be as many completions of X () gs there are combinations of possible values for the missing data
For any complete observation, X (1) — x0) i.e., there is only one possible completion that coincides with the data item itself

Example: assuming that X3 € {0,1}, are the two possible completions of X (2)

Likewise, X(()?S is the part of X 9 which contain the actual observations
Example: X(()?S = (X{Z) = xl,Xéi) = x3)
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Learning CPTs for a graphical model via EM

Fundamental idea: using probabilities of observations

In the completely observed case: probabilities are estimated as frequencies of occurrence
More in general:

Nx.
Xz where:  Z = parents(X;)
Nz

In the EM algorithm, use estimated occurrences:

A~

N
NxiZ  whee Nx =Y Y P(XO | X0 0)

obs’

(7')
/\/ \ Sum extended to all possible completions

In words, any incomplete observations ‘splits up’ and contributes with the probabilities of possible completions
Note that, when all observations are complete:

Nx = Nx
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Learning CPTs for a graphical model via EM

Fundamental idea: using probabilities of observations

Algorithm:

1) Assign parameters 0(©) at random
2) Compute P(X | Q(t)) E-step

3) Update all parameters using estimated occurrences:

~

t+1) _ Nx, z o |
9&5% — T = where all estimations are made using P(X ‘Q(t)) M-step

Nz

3) Go back to step 2) until some convergence criterion is met
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