Artificial Intelligence

A course about foundations

UNIVERSITA
DI PAVIA

Probabilistic Reasoning:
Numerical Supervised Learning

Marco Piastra

Artificial Intelligence 2023-2024 Numerical Supervised Learning [1]



Proloque:
Logistic Regression
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Graphical Models Redux

= Naive Bayesian Classifier

////QF\\ -HK%waszWﬂiﬂ&W)
- A 'generative' model
OREONON

Classification

= Alternative model*

/////' \\\\\\ P(Y,X1,...,X,) = P(Y|X1,...,Xn) [ [ P(X))

PY =1|X4,...,X,)
PY =0[X1,...,X,)

Classification

Just reverting the arrows ...
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Graphical Models Redux

= Naive Bayesian Classifier

mn

//<§%?\\ P(Y,Xy,....X,) = PY) [ P(XilY)
= A 'generative' model
OREONON

Classification

= Alternative model*
" P(Y,X1,....X,) =P(Y|X1,...,X,)P(X1,...,X,)

@ Classification P(Y =1]Xy,..., Xn) >\
P(Y =0|X41,...,X,)

Removing any independence hypotheses ...
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Graphical Models Redux

= Alternative model*
“ P(Y,X1,...,X,) = P(Y|X1,...,X,)P(X1,..., X,)

Classification P(Y — 1|X1’ tee Xn)

@ P(Y =0|Xy,...,X,)

> A

It may sound promising...
No counter-intuitive independence assumptions (as compared to Naive Bayesian Classifier)
It is enough to learn one conditional distribution P(Y|X1,...,X,)

The MLE is the relative frequency

Ny Xy Xt
P(Y p— y|X1 = :El, . '7X?'L — :E’!'l) — Y—yaxl— 19"'5-X'n, n

NX1=SE1,...,Xn:.’L'n
However...

2" probabilities will have to be learnt
Hardly any real-world dataset will contain all possible combinations ...
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Logistic Regression

» Graphical Model

“ PY,Xq,...,X,) =PY|X1,..., X)) P(X1,..., X,)
Classification P(Y =1|Xy,..., Xn) >\
@ P(Y =0|Xy,...,X,)
For convenience, define: _
L1
plx):=PY =1|X1=21,....,X,, =x,) where x:= i.e. avector
T

PY=1|X1=x1,..., X, = x,) p(x)

P(Y:0|X1:$1,...,Xn:$n) B 1—]?(113)

OK. How can we define p(x) then?
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Logistic Regression

= Graphical Model
0 P(Y,X1,....X,) = P(Y|X1,..., X2)P(X1,..., X,)
p(ﬂf) :P(Y:1|X1:$17 7Xn_33n)
@ Classification p(z) >\
1 —p(z)
Logit transform:
p(z) el (@) 1
]_ s = o s =
the sigmoid
Assume f(x) linear function
~ avector of parameters !
— ape . Logistic Regression
f(w) T wa: +0b = p(a:) 1 + e—(wz+bd)  (ie.aparametric distribution)
scalar product of vectors
0 .= {w, b}

Numerical Supervised Learning [7]
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Logistic Regression

= Maximum Likelihood Estimation 1 )
Dataset L4em® ool
D = {<33(i): y(i)> qjl\il / =
Conditional probability | ¥ |

P(Y = 1]2) = p(z)

- 1+ e—(wz+b)
Likelihood

N A 'discriminative' model
i (%) i _ (%)
L(D,0) := Hp(m( ))y (1- p(.cc( )))(1 v This is a product of conditional
i=1 probabilities (11D data)
Log-likelihood N
(D, 0) :=log (D, 0) = log [ [ p(@)¥" (1 = p(a))~+"

N i=1
= >~ yPlogp(a®) + (1 -y ) log(1 — p(a)
1=1
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Logistic Regression

= Maximum Likelihood Estimation
Log-likelihood  ,

U(D,0) => yDlogp(@®) + (1 —yP)log(1 — p(x'))
1=1

= Dy N (@) g PED)
— glog(l —p(x'")) + ;y log T p(@®)

N N
= log(1—p(@)) + >y (wz' +b)
1=1 )

1=1

N N
— Z —log(1 + e'w“’(mrb) + Z yD (wz'? + b)
1=1 1=1
MLE (a.k.a. Maximum Conditional Likelihood Estimator MCLE in this case)
0" .= argmax, (D, 0) = argmin, nl(D,0)
where ~nl(D,0) :== —I(D, )

negative log-likelihood ——

nl(D, 0) isconvexfor @ butitcannot be minimized analytically ...
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Gradient Descent
(and all that)
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Gradient Descent (GD): intuition it
u Objective Turn this into a minimization problem -
0* .= argming ni(D,0) 2 | L | \ | |
/ .
negative log-likelihood nl(D,0) := —I(D,0) - \\\;h;i/”///
= [terative mEthOd/ Step in the method j g:;i:?ifé‘fg
1. Initialize #© at random '.3 ' ".2 _0_ 1 2 : é

2. Update o) = plt=1) _ NV nl(D,Q(t_l))

3. Unless some termination criterion has been met, go back to step 2.

In detail
Vo nl(D,0) :=Y Vg nl(x®, y@ 0)
D

\
n <1

A learning rate, it is arbitrary (i.e. an hyperparameter)

The gradient of the loss over the dataset D is the sum of gradients over each data item
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Gradient Descent (GD): convergence

= Convergence

When nl (D, 9) is convex, derivable, and Lipschitz continuous, that is
Vo nl(D,01) — Vg nl(D,02)| < C ||y — 02|, C>0
the gradient descent method converges to the optimal 6™ for t — 0o

provided that n < 1/C

When nl(D, 9) is derivable, and Lipschitz continuous but not convex

the gradient descent method converges to a local minimum of nl(D, 0)
under the same conditions
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Gradient Descent (GD): practicalities

= Convergence in practice
The choice of the learning rate 71 is crucial

Cost . Cost . . .
learning rate too low learning rate too high (i.e. no convergence)

> 1
Start 6 Start > 8
Cost
A learning rate just right
\ \ Learning step
|
1
1
: Minimum
|
1
1 1 >
Random 0
initial value A

Images from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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Gradient Descent (GD): practicalities

= Convergence in practice
When nl(D, ) is not convex, the initial estimate 0(9) is crucial

Cost

A

Plateau

Y [ g

0) 0

. Global
Local minimum 7 .
minimum

D

The outcome of the method will depend on which 6©) is picked

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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Stochastic Gradient Descent (SGD): intuition

= Objective
0* := argminy nl(D, 0)

= [terative method

1. Initialize 89 at random
2. Pick a dataitem (:B(i), y(i)) € D with uniform probability
3. Update 9() = 9= — n(y, pi(x® 4@ -1

4. Unless some termination criterion has been met, go back to step 2.

n(t) <1

Note that the learning rate may vary across iterations...
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Stochastic Gradient Descent (SGD): convergence

= Convergence

When nl (D, 9) is convex, derivable, and Lipschitz continuous, that is
Vo nl(D,01) — Vg nl(D,02)|| <C |01 -6, C>0

the stochastic gradient descent method converges to the optimal 6* for t — oo
provided that 1

fr](t) < — Note that n(t) — 0 for £ = 00
—Ct

When nl(D, @) is derivable, and Lipschitz continuous but not convex

the gradient descent method converges to a local minimum of (D, 0)
under the same conditions
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Convergence rate comparison

Assume nl (D, 9) convex, derivable, and Lipschitz continuous
Accuracy p is attained when

| nl(D,0%) —nl(D,0%) | < p

Define also :
N :=|D| d := dim(0)
Size of data space Dimension of parameter space
o | . 0 () (D)
Time := time required to compute each gradient component: (97 nl(az Y, 9)
T J
Algorithm Cost per Iterations to reach Time to reach
iteration accuracy p accuracy p
Gradient descent 1 1
(GD) O(Nd) O (log —) O (Nd log —)
P P
Stochastic gradient
descent (SGD) O(d) O (l) O (dl)
P P

[from Bottou & Bousquet, 20071
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Convergence rate comparison

Assume nl (D, 9) convex, derivable, and Lipschitz continuous
Accuracy p is attained when

| nl(D,0%) —nl(D,0%) | < p

Define also

N := |D| d := dim(6)
Size of data space Dimension of parameter space
o | . 0 () 40
Time := time required to compute each gradient component: (97 nl(az Y, 9)
SGD can be much faster with large datasets ! o — J
Algorithm Cost per Iterations to reach Time to reach
iteration accuracy p accuracy p
Gradient descent 1 1
(GD) O(Nd) O (log —) O (Nd log —)
P P
Stochastic gradient
descent (SGD) O(d) O (l) O (dl)
P P

[from Bottou & Bousquet, 20071
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Mini-batch Gradient Descent (MBGD): intuition

= Objective

0* := argminy nl(D, 0)

= [terative method

1. Initialize 8(©) at random
2. Pickaminibatch B C D with uniform probability
3. Update 8% = 9Ut=1) — (I, ni(B, 1)

4. Unless some termination criterion has been met, go back to step 2.

Vo nl(B,0) :== > Vg nl(x™,y",0)
B

This method has the same convergence properties of SGD

Artificial Intelligence 2023-2024 Numerical Supervised Learning [19]



Qualitative methods comparison

38l s _a Stochastic 1

~—— Mini-batch ]
3.4} | == Batch 1

91 3.2+
3.0F

Typical traces
of the three methods 3.6}
(batch = GD)

2.8}
26}

2.4+
2.5 3.0 3.5 4.0 4.5

In general:

* GDis moreregular but slower (with large datasets)
« SGD is faster (with large datasets) but noisy
 MBGD is often the right compromise in practice...

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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Back to
Logistic Regression
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Logistic Regression

= Maximum Likelihood Estimation

Log-likelihood N

N
I(D,0) =3 —log(1+ e +t) 1 37y (awz + 1)
i=1 i=1
Iz, yD,0) = —log(1+ ) 4y (wz® +b)
This is the fundamental computation in all GD-like methods

Parameters can be expressed as:

0 = (w,b)
Hence the gradient can be split into two separate components:
0 0
V@ l(ﬂ?, Y, 9) — (8_’11)[(33’ Y, 9)7 %l(wa Y, 9))

Data item indexes dropped, for simplicity
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Logistic Regression

» [og-likelihood gradients

8 _ 8 wx+b
a—wl(m, y,0) = 5 (— log(1+e ) + y(wx + b))

_ 0 wx+b i
= awlog(lJre )+yaw('wm+b)

1 Y +b
:_1—l—e’U"""JFb8w(1+ewzc ) +yx

e'wa:—|—b

= T cweth gy WE T Y@

e'w:x:—i—b

T

= —o(wx + b)x + yx
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Logistic Regression
= [og-likelihood gradients

a _ a wx+b
%l(m,y, 0) = 3 (— log(1+e ) + y(wx + b))
0 0
— 1 1 wx+b -~
30 og(l—+e )+yab(wm+b)
_ 1 8 wx+b
= i ewengpt T )Y
e'wa:—l—b O
= o owath (%('wa:er) +y
e'w:x:—i—b
- 1 + e'w:c—|—b + y
= —o(wx+0b) +y
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A Practical Example:
Logistic Regression is Linear, Anyway
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Logistic Regression: qualitative example
= |RIS dataset

https://archive.ics.uci.edu/ml/datasets/iris

Three classes
(Iris Setosa, Iris Versicolour, Iris Virginica)

Numerical data
(petal length & width, sepal length & width)

150 data items (50 per each class)

e ' I ’
Virginica sy Setosa

Consider just one class: Iris Virginica
(the other class is the complement)
and petal width as unique input feature

Apply logistic regression (with any GD-like method)
This will be the result:

=
(=]
r

A A KX A AAAAGSADRARZRA
—

F === - - o
-
-
-

e
oo
‘
]
I
I

e
o

| — Iris-Virginica
| == Not Iris-Virginica

e
»

Probability

S~
= -
-
-
-----

0.0 0.5 1.0 1.5 2.‘0 25 3.0
Petal width (cm)

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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Logistic Regression: qualitative example
= |RIS dataset

https.//archive.ics.uci.edu/ml/datasets/iris
Three classes
(Iris Setosa, Iris Versicolour, Iris Virginica)
Numerical data
(petal length & width, sepal length & width)
150 data items (50 per each class)

. . . L. Virginica | , .."‘*‘| Setosa
Consider just one class: Iris Virginica
(the other class is the complement)
with petal width and petal length as input features
Apply logistic regression (with any GD-like method)
This will be the result:

251

[ g
=)
T

The separation improves

Petal width

£
5
T

The linearity of the parametrization is evident:
the two classes must be linearly separable Lof

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Petal length

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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Probabilistic Models
as Predictors
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Predictors?

From a known dataset to predicting further possible outcomes

* Probabilistic inference (redux)
In general, given a probabilistic model, the problem is finding:

P{X XD = ) PUX L AXIHX))
{ X}
where:
1) {XO} is the set of observations, i.e. what is known: partial knowledge
2) {X,.} is whatwewant to know
3) {X;} isany other variable in the model

Fundamental question:
How good is a probabilistic model when applied to data items

that are not in the dataset?

E.g. suppose we have a data item which is fully observed but not part of the dataset D
will the probabilistic model, given with partial observations, predict the remaining observations?

Artificial Intelligence 2023-2024
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Overfitting

When the training process becomes too specific to the training set

» Training set, validation set, test set
Splitting the dataset

D = Dtra,in U Dfua,l U Dtest
(@D, y D}, = {@D, gD U {@®,y ™) U {(@®,yO)1
Ntraz’n > Nvala Ntest

Train Validation Test
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Overfitting

When the training process becomes too specific to the training set

* Training set, validation set
Splitting the dataset

D = Dt'r’ain U Dval U Dtest
{(@W,y N, = {(&W), y W)} e g (™), )}
Ntraz’n > Nvala Ntest

Training is made on D¢rqin only

Ateach epoch __ when the whole D trgin
has been processed

Loss

the loss function is evaluated on D,

After some epochs, the performance on D,
might get worse

U@y pLy

4.0

3.5

3.0F

25¢F

2.0

15}

1.0f

0.5

- Validation set
- - Training set ||
Best model
»‘_l ............................................
0 100 200 300 400 500
Epoch

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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k-Fold Cross-Validation

* Onedataset, multiple splits
1) Divide the dataset into & splits (i.e. folds)
2) Use k-1 folds for training and 1 fold for testing

3) Unless all combinations have been
considered, change combination
and go back to 2)

All Data

Consider the average test loss
across all possible combinations

Training data Test data

‘ Fold 1 H Fold 2 H Fold 3 H Fold 4 ‘ Fold 5 ‘\

split1 | Fold1 || Fold2 || Fold3 || Fold4 | Folds |

split2 | Fold1 | Fold2 | Fold3 || Fold4 | Fold5 |

Spiit3 | Fold1 || Fold2 || Fold3 || Fold4 | Folds |

Split4 ‘ Fold 1 H Fold 2 H Fold 3 H Fold 4 ‘ Fold 5 ‘

Finding Parameters

Spiit5 | Fold1 || Fold2 || Fold3 || Fold4 || Folds |/

Final evaluation { Test data

Image from https://www.kdnuggets.com/2020/01/data-validation-machine-learning.html

Artificial Intelligence 2023-2024 Numerical Supervised Learning [32]



	Slide 1
	Slide 2: Prologue: Logistic Regression
	Slide 3: Graphical Models Redux
	Slide 4: Graphical Models Redux
	Slide 5: Graphical Models Redux
	Slide 6: Logistic Regression
	Slide 7: Logistic Regression
	Slide 8: Logistic Regression
	Slide 9: Logistic Regression
	Slide 10:  Gradient Descent (and all that)
	Slide 11: Gradient Descent (GD): intuition
	Slide 12: Gradient Descent (GD): convergence
	Slide 13: Gradient Descent (GD): practicalities
	Slide 14: Gradient Descent (GD): practicalities
	Slide 15: Stochastic Gradient Descent (SGD): intuition
	Slide 16: Stochastic Gradient Descent (SGD): convergence
	Slide 17: Convergence rate comparison  
	Slide 18: Convergence rate comparison  
	Slide 19: Mini-batch Gradient Descent (MBGD): intuition
	Slide 20: Qualitative methods comparison
	Slide 21: Back to Logistic Regression
	Slide 22: Logistic Regression
	Slide 23: Logistic Regression
	Slide 24: Logistic Regression
	Slide 25: A Practical Example: Logistic Regression is Linear, Anyway
	Slide 26: Logistic Regression: qualitative example
	Slide 27: Logistic Regression: qualitative example
	Slide 28: Probabilistic Models as Predictors
	Slide 29: Predictors?
	Slide 30: Overfitting
	Slide 31: Overfitting
	Slide 32: k-Fold Cross-Validation

