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Factorizations & Graphs
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Chain Factorization

= Univariate factorization of a JPD

From the definition of conditional probability
P(A,B,C,D)=P(A)P(B|A)P(C|A,B)P(D|A, B,C)

Any joint probability distribution can be factorized in a way such that
each factor is univariate (i.e. one random variable as independent) conditional distribution.

» Each factorization depends on an arbitrary sequence of the random variables
» Hence factorizations are not unique: any sequence produces a legitimate factorization of the same kind

Graphical equivalent

NN
T

In this oriented graph:
* each node represents a random variable (and the corresponding univariate factor)
» each arc represents a conditioning of a random variable over another one (i.e. dependence)
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Chain Factorization

* Graphical model
P(A,B,C,D) = P(A)P(B|A)P(C|A, B)P(D|A, B,C)

This graph:
 isacyclic: if you follow the arrows, you will never return to the same node
* is completely connected: if you ignore arc orientations, every node is connected to any other node

Any univariate factorization can be represented by a graphical model
Every completely connected, acyclic and oriented graph represents a univariate factorization
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Chain Factorization and Independence Assumptions

= Graphical model
P(A, B,C,D) = P(A)P(B|A)P(C|A, B)P(D|A, B, C)

* Independence

Let’s remove a few arcs from the graph and rewrite the factorization accordingly
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Chain Factorization and Independence Assumptions

* Graphical model
P(A, B,C,D) = P(A)P(B|A)P(C|A, B)P(D|A, B, C)

* Independence

Let’s remove a few arcs from the graph and rewrite the factorization accordingly

P(A,B,C, D) = P(A)P(B)P(C|A, B)P(D|A, C)

The latter holds true only if

Independence
P(B’A) — P(B) (4 = B) // Conditional Independence
P(D|A,B,C) = P(D|A,C) (B1 D|A,C)
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Determining lndeﬁendence
from Graphs
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Graphical models G ka. sayesian Networks)

Structure and numbers, instead of just numbers

= A structured, pre-numerical representation of a joint probability

Each graphical model is an oriented graph

* nodes are random variables
P(C=F) P(C=T)

e arcsrepresent dependence
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From graphical models to joint probability

= Joint probability factorization
A chain factorization like the following is always allowed
P(C,S,R,W)=P(C)P(S|C)P(R|C,S)P(W|C, S, R)

Hint: apply the definition of conditional probability repeatedly
(such factorization is not unique)

Factorization for a graphical model
P(X1,Xs5,...,X,) = HP(XZ- | parents(X;))

where parents(X;) are the nodes from which
C ‘P(S=F) P(S=T)

there is an entry arc to X;
F

T

0.5 0.5
0.9 0.1

For this example, the above rule produces:
P(C, 5, R,W) = P(C)P(S|C)P(R|C)P(W|S, R)
P—

Note the difference from above

Independence assumptions: <R L S|C> <W L C|R, S>
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A complete specification
of a joint probability would require

24 =16 values

The values in figure are just9

P(C=F) P(C=T)
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Patterns in Graphical Models

= Sequence or Chain

Consider the graph on the right
P(C,5,W) = P(C)P(S|C)P(W|S)

Now suppose you observe S

P(C, S, W)
P(S)

P(C)P(S|C)P(W|S)

P(C,W|S) =

P(S)

_ P(C,5)
- P(S)

— P(C|S)P(W|S)

P(W|S)

This implies (C' L W |S)
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Patterns in Graphical Models

* Fork
(CloudD
Consider the graph on the right fork -
P(C.5. ) = PIC)PSIC)P(RIC) G Cod

Now suppose you observe
P(C,S,R)
P(C)

_ P(O)P(S|C)P(R|C)
N P(C)

P(R,S|C) =

_ P(C,$)
- P(O)

— P(S|C)P(R|C)

P(R|C)

This implies (R 1. S |C)
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Patterns in Graphical Models

. -’ oin or COI I I der CAUTION: this case is different from the previous two

Consider the graph on the right
P(R,S, W)= P(S)P(R)P(W|S, R)
which is true onlyif (S | R) T Independence (also

‘Marginal Independence’)
Now suppose you observe W

P(R,S,W)

P(R,SIW) = =5
B P(S)P(R)P(W’S, R) No further simplification
— P(W) possible

7 P(S|W)P(R|W)

This implies (S £ R |W)
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Patterns in Graphical Models

= Join or Collider

The same loss of independence occurs
if you observe any of the descendants...

Consider the graph on the right
P(R,S,W,D) = P(S)P(R)P(W|S,R)P(D|W)
which is true onlyif (S | R) “—— Independence (also

‘Marginal Independence’)
Now suppose you observe D

P(R,S, W, D)
P(R,S,W|D) = P(D)
_ P(S)P(R)P(W|S,R)P(D|\W)  No further simplification
— P(D) possible

7 P(S|D)P(R|D)

This implies (S /. R |D)
... atany subsequent level of descendance
(try yourself)
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join or collider
(with descendant)
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d-Separation
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Paths in Graphical Models

In a graphical model

Consider any two nodes A and B

A path between A and B
is a path in the graph ignoring orientation (i.e. arrows)

Example:

In the graph on the right,
consider all paths between M, and Y
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Blocked Paths in Graphical Models

In a graphical model

A path between any two nodes A and B
is blocked whenever the observations { X, }
are such that the path contains either: "~ Observed Variables

1) asequence or a fork for which one observation
X € {X,} creates a condition of independence

2) acollider for which {X,} does not contain the
observation of the join node nor of any of its
descendants

This path is blocked
whenever any of these

nodes are observed @
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Blocked Paths in Graphical Models

In a graphical model

This path is blocked

whenever any of these
A path between any two nodes A and B nodes are observed

is blocked whenever the observations { X, } \ ‘
are such that the path contains either: "~ Observed Variables g
1) asequence or a fork for which one observation

X € {X,} creates a condition of independence

2) acollider for which {X,} does not contain the
observation of the join node nor of any of its
descendants
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Blocked Paths in Graphical Models

In a graphical model

A path between any two nodes A and B
is blocked whenever the observations { X, }
are such that the path contains either: "~ Observed Variables

1) asequence or a fork for which one observation
X € {X,} creates a condition of independence

2) acollider for which {X,} does not contain the
observation of the join node nor of any of its
descendants

This path is blocked AS IS:
the collider blocks it /

It becomes unblocked when this
node is observed...
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Blocked Paths in Graphical Models

In a graphical model

A path between any two nodes A and B
is blocked whenever the observations { X, }
are such that the path contains either: "~ Observed Variables

1) asequence or a fork for which one observation
X € {X,} creates a condition of independence

2) acollider for which {X,} does not contain the
observation of the join node nor of any of its
descendants

" and yet the path can be
blocked again by observing
any of these two nodes

It becomes unblocked when this
node is observed...
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D-Separation in Graphical Models

= Dependency Separation (d-separation)

Any two nodes A and B in a graphical model
are d-separated whenever the observations{X,}

\
are such that all paths between A and B Observed Variables
are blocked

In that case we have

(AL BKXo})

But only when all paths are
blocked

Artificial Intelligence 2023-2024

()
(W) D,
(@ —Cu)—Qn)—)

S

These observations make the two
nodes d-separated
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Graphical models: fundamental assumptions

Given its parent,
this node is
independent
from these ...

= Minimality

Adjacent nodes in the graph are dependent.

= Local Markov Assumption

Given its parents in the graph, a node A
is independent of all its non-descendants

But it is still
dependent on
these others

(descendants)
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D-Separation in Graphical Models

Example:

Cloudy and WetGrass are independent when
both paths in color are blocked

sequence *,SeQUence

5

COHENEN
(Spfiakler)  (_Reip )

o
<~

N
-
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D-Separation in Graphical Models

Example:

Cloudy and WetGrass are independent when
both paths in color are blocked

These are two sequences:
Sprinkler and Rain must be known

<Cloudy L WetGrass | Sprinkler, Rain> @
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D-Separation in Graphical Models

Example:

Sprinkler and Rain are independent when
both paths in color are blocked

join .

Qteors)
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D-Separation in Graphical Models

Example:

Sprinkler and Rain are independent when
both paths in color are blocked

One fork and one collider:
Cloudy must be known whereas WetGrass must be unknown

< Sprinkler L Rain | Cloudy >

Check more examples and quiz with Bayes program (see course webpage)!
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Inference in
a Graphical Model
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Building a graphical model

= Step 1

Defining the nodes, i.e. the random variables

. (tampering)
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Building a graphical model

= Step 2
Defining the structure, i.e. the graph

° G We are thus saying that:
<T L F > (butthey become dependent when
any of A, L or R are known)
<ALS|F>
O 0 DL
<LLF|A>
<ALR|L>

(fire)
(alarm)
(smoke)
leaving)
(report)

(tampering)
(

T:
F:
0
S:
L:
R:
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Building a graphical model

= Step 3
Defining conditional probability tables — CPTs

T | P(T) F |P(F)
0 0% 022 F|s[PGS|F)
: : 00| 0.99
T E 01| 001
10/ 01
TIF[A[PAITH 1]1] 09
0 0 0] 09999
0/0 1| 0.0001 A S
0 10| 001
0 1 1| 099 AlLI[PLIA
10 0| 015 0 0| 0999
1. 0/1] 085 0 1| 0001
1/1]0 05 L 10 012
1/1]1] 05 1/1] 088 T : (tampering)
LIR[PR|L) F:(flre)
010l 099 o A : (alarm)
01 001 S : (smoke)
1 cl) 832 L : (leaving)
: R : (report)
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Probabilistic inference

" Step 4

Consider a specific problem

T [P(T)
0 0.98
1002
-
TIF[A[PAITF
00| 0| 0.9999
001 00001
0/1/0/| o001
0/1/1] 099
1/0/0] 015
1/0/1] o085
1/1/0] 05
1/1/1] o5
L] R|PR|L)
0|0/ 099
0/ 1] o001
1/0] 025
11| 075
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Example: finding A given L=1 e S=0

P(AIL=1,8=0) =

F |P(F)
01059 AREAL
: 0/0] 0.99
F 0/ 1] o0.01
1/0] 01
1/1] 09
A S
Al LI[P(L|A)
0|0/ 0.999
L 0| 1] 0.001
1/0] 012
1/1] 088
Joint distribution, from the graph:
R

P(T,F,A,S,L,R)= P(T)P(F)P(A|T,F)P(S|F)P(L|A)P(R|L)

P(A,L=1,5=0)

P(L=1,5=0)

Graphical Models [30]



Probabilistic inference

= Step 5
Computing the answer
T [P(T) F [P(F)
002 500 F[ S [P [F)
: : 0/ 0| 099
T F 01| 001
1.0 01
TIF[A[PAITH 1]1] 09
0/0| 0| 09999
0 0 1] 00001 A S
ol1/0/| o001
011 0.99 Al L|PL|A)
1/0/ 0| 015 00| 0999
101 0.85 0|1 0.001
1110 0.5 L 10| 012
1111 05 11| 088
L] R[PR]|L)
00 099
01 001 R
110] 025
111] o075
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T,F\R

Note that:
P(A,L = l,S:())
P(L =1,5= O)

This is a normalizing term:
it can be computed from

P(A,L = 1,820)
In fact:
P(L

P(AIL=1,8=0) =

1,8§=0)=)» P(AL=1,5=0)
A

Typically, the most time-consuming computations
in an inference problem are marginalizations

This is the joint distribution to be computed:

P(A,L=1,8=0)= Y P(T)P(F)P(A|T,F)P(S = 0|F)P(L = 1|A)P(R|L = 1)

Graphical Models [31]



Probabilistic inference

= Step 5
Computing the answer
T | P(T) F | P(F)
0 0.98 0 | 0.99
1]0.02 1001 g g PESJQF)
T = 0/1 oo1
10/ o1
TIF[A[PAITH 1/1] 09
0 00| 09999
001 00001 A S
0 1/0 001
0/171/ 099 A|L|P(L|A)| By rewriting the joint distribution:
1/ 0/0| 015 0|0 0.999
1101 0.85 ol 1 0.001 P(A,L=1,5=0)
11 0 05 L) 10 on = S P(L = 1|A)P(A|T, F)P(T)P(F)P(S = 0|F)P(R|L = 1)
1111 0.5 11 0.88 T F R

= P(L = 1]4) 523 P(AIT, F)P(T)P(F)P(S = 0[F) S P(RIL = 1)

L|R[PR]|L)
0/0] 099

R .
(1) (1) ggé This sum has value 1
111 075 This is not surprising

given that <A L R|L>
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Probabilistic inference

= Step 5 P(A,L=1,5=0)
Computing the answer = P(L = |A);§F:P(A|T» F)P(T)P(F)P(S = 0|F)
By convention, we write:
T |P(T) F |P(F)
0 | 0.98 0 | 0.99 F1s PSP PA,L=1,5=0)= frps=o(A)fr=1(4)
10.02 1]0.01
0] 0 099 where the f are the factors of the method
T F 2 (1) 00'011 also known as elimination of variables:
TIE]APA|TE 1/1] 09 fT,F,S=0(A) =
0/0 0] 0.9999 P(A|T, F)P(T)P(F)P(S = 0|F
0 00 osmm | X 35 PIAIT, F)P(T)P(F)P(S = 0|F)
0/1/0] 001
011 099 AlLIPLIA . _
1,00 0.15 010 é_ggg) fL:l(A) T P(L — llA)
1/0 1| 085 0|1/ 0.001
1/1]0 0.5 L 1,0 012
111 0.5 11 088
Note in passing that factors f are not probabilities
L] R[PR]|L) (i.e. they do not sum to 1).
00| 0.99 R
01| 001
1,0 025
1/1] o075

Artificial Intelligence 2023-2024
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Probabilistic inference

= Step 5
Computing the answer
TP ETPE) Note that:
0 |0.98 0 |0.99 =TSTRETR P(A,L=1,5=0)= frrs=0(4)fr=1(4)
11]0.02 1 ]0.01 0101 099
T F ol1! o001 This factor comes from This factor comes from
10| 01 the parents of A the descendants of A
TIF[A[PAITH 1]1] 09
0/0]0] 0.9999 This is true
00| 1/ 00001 A S p e Athat d n h
010 0.01 or any node A that d-separates the grap
011 0.99 Al L|PL|A)
100 0.15 0 0 0.999
1101 0.85 0/ 1 0.01
1/1]0 0.5 L 10| 012
1111 0.5 111 088
L R|PR|L)
0/0 099
0/1 001 R
110 025
111 075
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Variable elimination for graphical models

* General idea
Write the marginal joint probability from the query in the form:
PX, 3 AX0) = Y [ POX | parents(X))
{X:t X
Find the best ordering of terms for the marginalization of irrelevant variables:

—

)
2) Move summations ‘inside’ the product as much as possible (i.e. find factors f)
3) Compute factors (i.e. by sum of products) and obtain numbers (i.e. terms)
4) Plug these terms into the product and obtain a simpler form for PH{X,},{X,})
5) Wrap it up and compute the response:

PHX 1 {Xo})

{;}P({X’r}v {Xo})

P({X?"H{Xo}) —

Remember: the method is NP-complete (anyway)
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Graphical models as a probabilistic method

[ ] A d van ta g es Independence in the graph model

\L implies independence in the joint probability distribution

Correctness (of representation) (XY LY {ZY)en = {XT LY} {Z})sprp

In a finitary setting, they are always computable

Graph models are easy to read (compared to JPDs)
= [imitations

No abstraction over multiplicity
(i.e. no First-order Logic equivalent - see also http://www.pr-owl.org/basics/bn.php#reasoning)

* Consider you receive multiple reports (random variable R) of fire:
do they support each other? Which ones are reliable?

« Time sequences or specific patterns of variable size

No completeness {X} LAY} {Z}spp # { X} LAY} {Z})am

* Counter example: no DAG can r epresent \ Not all JPDs can be faithfully represented
by a graph model
<X1 1 {X27Y2}>7 <X2 1 {X17Y1}>

without introducing some further independence relation
(no closure under marginalization - see also https://projecteuclid.org/download/pdf_1/euclid.aos/1031689015)

Artificial Intelligence 2023-2024
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Graphical Models
in Action
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Example of graphical models
= Complete dependency /\@

P(X17X23X39X4) — P(Xl (XZ ‘ Xl) (XS | XlaXZ) (Xél | XlaXQaXS)

= Markovian model @ @ @ @ ‘

P(Xy,...,Xn) = P(X1) ﬁp(xi | Xi_1)

1=2

* ‘Hidden’ Markovian model @ @ @ 4>®
G @ G m Typically, nodes X; are hidden,
in the sense of non-observable

(see later, about learning)

P(X1,..., XpY1,...,Y,) = P(X0) P | X0) [ [ P(Xi | Xima) P(Y; | X))
1=2

Artificial Intelligence 2023-2024 Graphical Models [38]



Example: anti-spam filter

a.k.a. ‘Naive (Discrete) Bayesian Classifier

n

PN(Y, X1,...,Xn) = P(Y) 1;[1 P(X;|Y)
@/® SRS

Anti-spam filter:
= All random variables are binomial (value: either 0 or 1)
» Y represents the class of the message: 1 spam, 0 not-spam

= Each X, represents the occurrence of the word 1 in the message

Assume (for now) that the probabilities are given

As we will see, finding the ‘right’ numbers is a learning problem (see after)

Artificial Intelligence 2023-2024 Graphical Models [39]



Inference in the anti-spam filter

Given a message with occurrence values {X,},

the class with the highest conditional probability is determined ’/P\x
PY =1]{Xx})

:;;mmi?ssage is BT Y @ @ @ @

Bayes' Theorem

Note that: ) .
Py 1] {x)) < PUXG Y =DPYV =1) _ PEY =DIIP(X: | Y =1)
_ ki) = ;P({Xk} | Y)P(Y) _\ ;P(Y)I;IP(X;C Y)

Conditional independency
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Inference in the anti-spam filter

Given a message with occurrence values {X,},

the class with the highest conditional probability is determined ’/P\x
PY =1]{Xx})

:;;mmi?ssage is BT Y @ @ @ @

Bayes' Theorem

Note that: ) .
Py 1] {x)) < PUXG Y =DPYV =1) _ PEY =DIIP(X: | Y =1)
_ ki) = ;P({Xk} | Y)P(Y) _\ ;P(Y)I;IP(X;C Y)

Therefore: Conditional independency
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Inference in the anti-spam filter

Artificial Intelligence 2023-2024

Given a message with occurrence values {X,},

the class with the highest conditional probability is determined ’/P\x
The message is PY =1]|{Xk}) oy
spam f PV =0 (%) X e e D)

Bayes' Theorem

Note that: TP 1
P(Y:1|{Xk}):P({Xk}|Y=1)P(Y:1) . k

;P({Xk:} | Y)P(Y) _\ ;P(Y)I;IP(Xk |Y)
Therefore: Conditional independency
P(Y =
P(Y

|
O =
——
la
——
S—
g
o~
~
|
| =
S—

The logarithm is used
to simplify computations: P(Y = 1{Xx})
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An aside: plate notation

A shorthand notation for graphical models

Artificial Intelligence 2023-2024 Graphical Models [43]
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