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Probability Space
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Probability Space (preliminary definition)

= Probability space
Atriple (W, %, P)

\

Possible worlds  Event Space Probability Measure
(a.k.a. Sample  (a collection of P:¥—[0,1]
Space) subsets over W)

The intuitive definition is simple enough, its mathematical translation ... not so much
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Event Space: 3 collection of subsets of possible worlds

= Boolean algebra
A non-empty collection of subsets X of a set W such that:
1) A, BeYX — AUuBeX
2) AeX = A eX
3) e

Corollary:
The sets @ e W belong to any Boolean algebra generated on W

2 is also closed under binary intersection

= g-algebra
A non-empty collection of subsets 2 of a set I/ such that:
1) A SN Vk e NT — (UzozlAk) € X —

This is a stronger requirement:

C
2) AeX > Ae X closeness under countable union
3) ey Hence a o-algebra is a boolean algebra
Corolla ry: but not vice-versa

The sets @ and W belong to any o- algebra generated on W
2 is also closed under countable intersection
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Probability Measure

= g-algebra (Event Space)
A non-empty collection of subsets X of a set W such that:
1) Ay e X, VEe NT = (Upey Ak) € X
2) AeX = A eX
3) ol

= Probability measure over a g-algebra (i.e., over the events)

A function P : ¥ — [0, 1]

l.e. P assigns a measure (i.e. a real number)
to each elements of a o-algebra X of subsets of W
1) VAe X, P(A) >0
2) Aj, As € X aredisjoint = P(A1 U Ay) = P(A;) + P(A»)
A € ¥, VE € NT arealldisjoint = P (Ur—, Ax) = > ey P(Ax)
3) P(@)=0

4) P(A°)=1—-P(A)  (whichimplies P(W) = 1)
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Probability Space

= Probability space
Atriple (W, %, P)

\

Possible worlds  Event Space Probability Measure
(a o-algebraoverW) P :¥% —[0,1]

Why bothering so much with these (very) technical definitions?

= Rationale (just a few hints)

Closure w.r.t. countable unions of a o-algebras (as well as countable additivity of P)
is required for dealing with infinite sequences of events

In such case, assuming countable union and additivity is a restriction,
to ensure measurability

(see the so-called Banach-Tarski paradox for counterexamples)
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An Aside: Probability is Systemic

In general / It follows from the additivity property
P(AuUB)=P(A)+ P(B)— P(ANB)

If AN B = & then events A and B are disjoint
P(AUB) = P(A) + P(B)

(*) Note that ANB=9g — P(AﬂB) — 0
but not vice-versa: as an event can have zero probability without being empty

(**¥) Unlike in propositional logic, knowing P(A) and P(B) is not sufficient

for determining P(A U B)
Namely, probability is not compositional ...
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Discrete Probability
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Studying basic properties: *3 finitary setting

A simpler setting that allows a more intuitive definition
of fundamental properties

» Finite event space

> is afinite collection of subsets

In this setting
boolean algebra = o-algebra

Events could also be defined via propositional logic
(ala de Finetti, 1937)

= Finitely additive probability measure

Just summations, no integrals
Computability will be always guaranteed
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Partitions, random variables*

= Partition
A finite collection A; of disjoint subsets (i.e. events) such that

UAi:W

A o-algebra can be generated from a partition
by taking its closure under union and complement
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Random Variables*
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Partitions, random variables*

= Random Variable (i.e. a convenient way to define a g-algebra)

Let X be a variable having a finite set of possible values {z, x5, ..., .}
In each possible world, the variable X is assigned a specific value z;

The set of possible assignments {X =z, X = z,, ... X = x, } defines a partition of W
A o-algebra can be obtained by taking the closure of the partition under union and complement

X =z; defines an event (i.e. a subset of W)

X =1; and X =g; aredisjoint events , whenever i # j

PX=z,UX=1a;)=P(X =z;)+ P(X =zy)

Random variables having binary values are also said to be binomial (also Bernoullian)
Random variables with multiple values are also said to be multinomial
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Random variables, joint distribution*

Multiple random variables

In practice, in a probabilistic representation, there will be multiple random variables

Example:
X, occurrence of a word ¢ in the body of an email (binomial)
Y classification of that email as spam (binomial)

The intersection of two or more o-algebras is a o-algebra
Together, a collection of random variables defines a partition of W

= Joint Probability Distribution

for a given set of random variables, e.q. X, Y, Z

It is a function that associates a value in [0, 1] to each individual combination of values
PX=xY=y7Z=2)

Given that X, Ye Z define each a partition of W':

SN PX =2y =y, Z2=2) =1
r Yy oz
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Random variables: notation*

= Random variables, events and o-algebras

Sometimes the notation can be ambiguous

Examples:
P(X)
This is the probability measure over the g-algebra generated by the random variable X
P(X =x)
This the probability (i.e. a value in [0,1] ) associated to theevent X = x
P(X,Y =y)

This is the probability measure over the g-algebra generated by the random variable X
in the subspace of W corresponding to the event Y=y
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Fundamental Operations®
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Marginalization*

Removing a random variable from a joint distribution
Given a joint probability distribution
P(X =z,Y =y)

The marginal probability P(X = x) is obtained via summation:

P(X=12) = Y P(X=uaY=y)

A marginal probability can be a joint probability too ...

Marginal probability of an event (shorthand notation, values of Y omitted):

P(X ZP =z,Y)

Marginal probability of a a—algebra (shorthand notation, values of Y omitted):

= Y P(X,Y)
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Conditionalization®

= Definition

PXY =y) =~

It is a form of inference: from aset W toaset W’
i.e., from a probability space to another probability space

Example: W is the set of possible worlds,
X, Y are binary random variables
and P(X,Y) isthejoint probability distribution

Suppose the agent learns that event Y =1 has occurred:

the event Y= 0 is then impossible (to him/her)
W' := {we WI|Y =1} isthe new set of possible worlds

P(X|Y =1) isthe new probability of X
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Conditionalization®

= Definition

PIXIY =) = —por—

It is a form of inference: from aset W toaset W’
i.e., from a probability space to another probability space

Marginal probability of a o-algebra (shorthand notation, values of Y omitted):
P(X,Y)
P(Y)

Denotes the conditional probabilities for the whole g-algebra
of events generated by Y (it represents a family of probability measures)

PX|Y) =
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Inference
(without learning)
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Probabilistic Inference* (general structure)

» General structure of probabilistic inference problems
The starting point is a fully-specified joint probability distribution
P(Xq1,Xo,...,X,)
In an inference problem, the set of random variables {X1,Xo,..., Xpn}
is divided into three categories:
1) Observed variables {XO}, i.e. having a definite (and certain) value
2) Irrelevant variables {X;},i.e. which are not directly part of the answer
3) Relevant variables {XT } i.e. which are part of the answer we seek

In general, the problem is finding:

P({XTH{XO}) = Z P({Xr}v {X?,H{XO})
{Xi}

= “Decidability” (actually “computability”) is not an issue (*in a finitary setting)
Given that the joint probability distribution is completely specified
= Computational efficiency can be a problem

The number of value combinations grows exponentially
with the number of random variables
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Bayes’ Theorem™ (1. Bayes, 1764)

= Definition
A relation between conditional and marginal probabilities
PY|X)P(X)
P(X|Y) =

P (Y| X) isalso called likelihood L(X | Y)

The theorem follows from the definition of conditional probability (chain rule)
P(X,)Y)=P(X|Y)P(Y)=PY|X)P(X)

Furthermore, given the definition of marginalization:

PY) = ZP(X’ V)= ZP(Y|X)P(X) T Alsocalled

‘law of total probability’
it follows an alternative formulation of the Bayes’ theorem:

 PYIX)P(X)
PO = = Py P(X)

Artificial Intelligence 2023-2024 Probabilistic Reasoning [21]



Example: information and bets

= Two envelopes, only one is extracted

One envelope contains two red tokens and two black tokens, it is worth $1.00
One envelope contains one red token and two black tokens, it is valueless

The envelope has been extracted.

Before posing you bet, you are allowed to extract on token from it

a) The token is black. How much do you bet ?
b) The token is red. How much do you bet ?

Purpose: showing that Bayes’ Theorem makes the representation easier
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Independence
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Independence, conditional independence

* Independence (also marginal independence)

Two events are independent
iff their joint probability is equal to the product of the marginals

<XLlY> = P(X,Y) = P(X)P(Y)
= P(X]Y) = Pl(fé’f)/) = P();zg)(y) = P(X)

» Conditional independence

Two events are conditional independent, given a third event,
iff their joint conditional probability is equal to the product of the conditional marginals

<X1lY|Z> = P(X,Y|Z) = P(X|Z2)P(Y|Z)
 P(X,Y|Z) P(X|Z2)P(Y|Z)
N P2 = "pvzy — P

CAUTION: the two forms of independence are distinct!
<XLY> = <XLY|Z> <XLY|Z> % <XLY>
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Independence, conditional independence

[from Wikipedia, “Conditional Independence”]

These are two examples illustrating conditional independence. Each cell &J
represents a possible outcome. The events R, B and Y are represented by the areas
shaded red, blue and yellow respectively. And the probabilities of these events are

shaded areas with respect to the total area. In both examples R and B are R, BandY here are subsets, i.e. events,
conditionally independent given ¥ because: / not random variables
Pr(RNB|Y) = Pr(R | Y)Pr(B | Y)"

but not conditionally independent given not ¥ because:

Pr(RN B |notY) #Pr(R|not Y)Pr(B | not Y).

The example above shows that (marginal or conditional) independence of two specific events
does NOT imply (marginal or conditional) independence of the whole o-algebras
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Continuous Random Variables
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Continuous random variables chints)

Although intuitively similar, dealing with continuous random variables is technically difficult

Consider a continuous randomvariable X e X — 4 ntinvous domain
X = 2 does not describe a proper event e.. therealinterval [0, 1]
For technical reasons (i.e. measurability), a point must have probability zero

Events need to be subsets, or better, intervals:
X<a,X<b,

a<X S b\Assuming a<b
Probability measures these subsets

P(ng):P(X<a)+P(a<X<b)
= These two events are

Pla< X <b)=P(X <b)— P(X <a)

disjoint

Sometimes written also as (see next slide)
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Density and Cumulative Distribution

= Probability Density Function (pdf)

dP(X
Assume that the derivative p(X) := dg( ) exists everywhere

It is due to be non-negative

— >
p(X ZU) — 0 T usually written as p(il?) 2 0

* Probability Measure as Cumulative Distribution Function (CDF)

cumulative distribution function (cdf)

P(><X§b) ::/bp(x)dw

probability density function (pdf)

As a probability measure, it must integrate to unity

P(W) = fexp(az) dr =1

Note that p(x) may well be above 1 (itis its integral that equals unity)
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Expected value of 3 random variable

(also expectation)

Basic defl nition* More concise notation

Ex[X]:= Y o P(X =) E[X]:= ) a P(x)

reX reX

Continuous case

Expectation is a linear operator
EX +Y]|=E[X]|+ E[Y]
ElcX] = cE[X]

Conditional expectation
Ex[X[Y =y] =E[X|Y =¢]:= > z P(X =a|]Y =y)
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Variance of a random variable

Basic definition
Var(X) := Ex[(X — Ex[X])?] = Ex[(X — ux)?]
where px = Ex[X]

Var(X) = Y P(X =z) (x—p)?

variance is not a linear operator

Conditional variance

Var(X|Y =vy) =Ex[(X —Ex[X|Y =y])? |V =]

Variance lemma
Var(X) = E[(X — ux)?] = E[X?] — 2uxE[X] + p%
= E[X?] — 2u% + px = E[X?] — p%

Where ox .= VELI'(X ) standard deviation
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