Artificial Intelligence

A course about foundations

Plausible Reasoning

Marco Piastra

Artificial Intelligence 2023-2024 Plausible Reasoning [1]

Plausible (defeasible) reasoning

Why plausible reasoning?

Consider a generic entailment problem $\Gamma \models \varphi$?

Four possible answers:

1.
$$\Gamma \models \varphi$$
 $\Gamma \not\models \neg \varphi$

2.
$$\Gamma \not\models \varphi$$

$$\Gamma \models \neg \varphi$$

3.
$$\Gamma \models \varphi$$
 _____ This case $\Gamma \models \neg \varphi$

4.
$$\Gamma \not\models \varphi$$

$$\Gamma \not\models \neg \varphi$$

This case occurs only when Γ is contradictory, i.e. $\underline{unsatisfiable}$

Case 4. is quite frequent: "our knowledge Γ does not allow deciding about φ "

Artificial Intelligence 2023-2024 Plausible Reasoning [2]

Plausible (defeasible) reasoning

A reasoning process where the **relation** between formulae is <u>rationally plausible</u> yet not necessarily <u>correct</u> (in the classical logical sense)

i.e. a specific reasoning method

Notation:

 $\Gamma \models_{\langle SysLog \rangle} \varphi$ says that φ is a **plausible** derivation from Γ in $\langle SysLog \rangle$

Properties of ├<sysLog>

$$\Gamma \hspace{-0.2em}\mid\hspace{-0.2em} \sim_{\langle SysLog \rangle} \varphi \Rightarrow \Gamma \hspace{-0.2em}\not\hspace{-0.2em}\mid\hspace{-0.2em} \sim_{\langle SysLog \rangle} \neg \varphi$$
 (coherence)

$$\Gamma \vdash_{\langle SysLog \rangle} \varphi \Rightarrow \Gamma \nvdash_{\langle SysLog \rangle} \varphi$$
 (compatibility with derivation)

$$\Gamma \models_{\langle SysLog \rangle} \varphi \Rightarrow \Gamma \models_{\langle SysLog \rangle} \varphi \iff \Gamma \models \varphi$$
 (not necessarily correct)

It occurs very often in practice:

"The train schedule does not report a train to Milano at 06:55, therefore we assume that such a train does not exist"

Most databases contain positive information only Negative facts are typically derived 'by default'

Artificial Intelligence 2023-2024 Plausible Reasoning [3]

Closed-World Assumption (CWA)

```
\{\Gamma \not\models \alpha\} \not\models_{CWA} \neg \alpha \qquad (\alpha \text{ is an } atom)
Example (a program):
     \Pi \equiv \{\{Philosopher(socrates)\}, \{Philosopher(plato)\}, \{Cat(felix)\}\}
  The program \Pi can be rewritten in L_{FO} as:
     \forall x ((x = socrates) \rightarrow Philosopher(x))
     \forall x ((x = plato) \rightarrow Philosopher(x))
     \forall x ((x = felix) \rightarrow Cat(x))
  The Closed-World Assumption (CWA) means completing (i.e. extending) the program \Pi:
     \forall x ((x = felix) \leftrightarrow Cat(x))
                                                                         Notice the double implication
     \forall x ((x = socrates \lor x = plato) \leftrightarrow Philosopher(x))
```

Then these plausible inferences become sound:

```
\Pi \models_{CWA} \neg Cat(socrates)
\Pi \models_{CWA} \neg Cat(plato)
\Pi \models_{CWA} \neg Philosopher (felix)
```

Artificial Intelligence 2023-2024

Plausible (defeasible) reasoning

Inference in defeasible reasoning is

Non-monotonic

$$\Gamma \hspace{0.2em}\sim_{<\hspace{0.5em} SysLog>} \hspace{0.5em} \varphi \hspace{0.2em} \Rightarrow \hspace{0.2em} \Gamma \cup \Delta \hspace{0.2em} \sim_{<\hspace{0.5em} SysLog>} \hspace{0.5em} \varphi$$

The arrival of new pieces of information may falsify inferences that used to be justified e.g. an extra train to Milano at 06:55 is announced ...

Systemic

In classical logic, the soundness of all inferences schema depend only on the few formulae involved.

e.g.
$$\varphi \to \psi, \varphi \vdash \psi$$

In defeasible reasoning, inferences are justified by an entire theory Γ

One must check the entire database (see CWA): $\Gamma \not\vdash \varphi \mid_{\sim SysLog>} \neg \varphi$

Artificial Intelligence 2023-2024

Inference and reasoning (according to C. S. Peirce, 1870 c.a.)

Different types of reasoning

<u>Deductive</u> inference (sound)

Derive only what is justified in terms of **entailment**

"All beans in this bag are white"

"This handful of beans comes from this bag"

"This is a handful of white beans"

<u>Inductive</u> inference (*plausible*)

From repeated occurrences, derive rules

"This handful of beans comes from this bag"

"This is a handful of white beans"

"All beans in this bag are white"

Abductive inference (plausible)

From rules and outcomes, derive premises

"All beans in this bag are white"

"This is a handful of white beans"

"This handful of beans comes from this bag"

$$\frac{\forall x \, \varphi(x) \to \psi(x)}{\varphi(a)}$$

$$\frac{\varphi(a)}{\psi(a)}$$

$$\frac{\psi(a)}{\varphi(a)}$$

$$\frac{\varphi(a)}{\forall x \, \varphi(x) \to \psi(x)}$$

$$\frac{\forall x \, \varphi(x) \to \psi(x)}{\psi(a)}$$

$$\frac{\varphi(a)}{\varphi(a)}$$