Artificial Intelligence

A course about foundations

UNIVERSITA
DI PAVIA

Horn Clauses and SLD Resolution

Marco Piastra

Artificial Intelligence 2023-2024 SLD Resolution [1]

Back to Propositional Logic

Artificial Intelligence 2023-2024 SLD Resolution [2]

Horn Clauses (in L)

= Definition

A Horn Clause is a wff in CF
that contains at most one literal in positive form

* Three types of Horn Clauses:

Rule: two or more literals, one positive

Examples: {B, =D, —=A, =C}, {A, =B} (equivalentto: (D AAAC)—>B, B—>A)
Facts: just one positive literal

Examples: {B}, {A}

Goal: one or more literals, all negative
Examples: {—B}, {—A, —B}

More terminology:
Rules and facts are also called definite clauses
Goals are allo called negative clauses

Artificial Intelligence 2023-2024 SLD Resolution [3]

Lost in Translation...

Many wffs can be translated into Horn clauses:

(AANB)>C
-(AAB)VC
—AVvV =BV C
A—> (B AC)
—AV (BACQC)
(FAVB)A(—-AVC)
(A vV B),(—A vV C)
(AvB)—>C
—-(AVvB)VC
(A A-B)VC
(FAVC)A(—B VO
(-AvVv C),(—-BvVvC

But not all of them:
(AN -B)>C

~(AA —B)V C
~AVBVC

A— (B VC)
~AVBVC

Artificial Intelligence 2023-2024

(rewriting —)
(De Morgan - CF —itis a rule)

(rewriting —)
(distributing V)
(CF - two rules)

rewriting —)
De Morgan)
distributing V)
CF - two rules)

(
(
(
(

(rewriting —)
(De Morgan)

(rewriting —)

SLD Resolution [4]

SLD Resolution

Linear resolution with Selection function for Definite clauses

= Algorithm

Starts from a set of definite clauses (also the program) + a goal
1) At each step, the selection function identifies a literal in the goal (i.e. subgoal)
2) All definite clause applicable to the subgoal are selected, in the given order

3) The resolution rule is applied generating the resolvent

Termination: either the empty clause { } is obtained or step 2) fails.

Example:
Selection function: leftmost subgoal first
Definite clauses: {C}, {D}, {B, =D}, {A, —B, —=C}
Goal: {—A}

Artificial Intelligence 2023-2024

{—=A}

~_{A -B,~C}
{—B, =C}

{8, —D}
{~=D, =C}

~1b}

G
{3

SLD Resolution [5]

SLD trees

SLD derivations {—A}

Example: {C}, {D}, {B, =D}, {A, =B, =C} goal {—A} & {—-B,~C}
In this example each subgoal can be resolved in one mode only 5 |
This is not true in general § {—D, -C}
v {=C}
|
{}
= SLD trees (= trace of all SLD derivations from a goal)
Example: {C}, {D}, {B, —F}, {B, —E}, {B, =D}, {A, =B, =C} goal {—A}
A few new rules have been added: there are now different possibilities
{—A} Selection function:
| leftmost subgoal first
{—-B, =C}
|
{—-F, -C} {—-E, -C} {-D, =C}
| | |
X X {—-C}
|
{}

Each branch correspond to a possible resolution for a subgoal

Artificial Intelligence 2023-2024

SLD Resolution [6]

SLD Resolution

= Aresolution method for Horn clauses in Ly
It always terminates
Itiscorrect: T ¢ = T'Eop
Itiscomplete:T'Ep = 'l

= Computationally efficient

It has polynomial time complexity (w.r.t the # of propositional symbols occurring in T and ¢)

Artificial Intelligence 2023-2024 SLD Resolution [7]

SLD resolution
in First-Order Logic

Artificial Intelligence 2023-2024 SLD Resolution [8]

Horn Clauses in L,

The definition is very similar to the propositional case

* Horn Clauses (of the skolemization of a set sentences)
Each clause contains at most one literal in positive form

Facts, rules and goals

Fact: a clause with just an individual atom
{Greek(socrates)}, {Pyramid(x)}, {Sister(sally, motherOf(paul))}
Rule: a clause with at least two literals, exactly one in positive form

{Human(x), —=Greek(x)},

Vx (Greek(x) - Human(x))

{—Female(x), —Parent(k(x),x), —Parent(k(y),y), Sister(x,y)}
VxVy ((Female(x) A 3z (Parent(z,x) A Parent(z,y))) — Sister(x,y))

{—Above(x,y), On(xk(x))}, {—Above(x,y), On(j(y).y)}
VxVy (Above(x,y) — (dz On(x,z) A dv On(v,y)))

Goal: a clause containing negative literals only
{—Mortal(socrates)}

{—Sister(sally,x), —Sister(x,paul)}
Negation of dx (Sister(sally,x) A Sister(x,paul))

Artificial Intelligence 2023-2024

SLD Resolution [9]

SLD Resolution in Ly

" |[nput: a program IT and a goal ¢
Program I (i.e. a set of definite clauses: rules + facts) in some predefined linear order:
V1i1Y21 o1 ¥Vn (each y; is a definite clause)

Goal ¢ (i.e. a conjunction of facts in negated form), which becomes the current goal y

Note: the selection function for the current goal and subgoal

will be discussed in the next slide
Procedure:

1) Select a negative literal —a (ie.the subgoal) in the current goal vy
2) Scan the program (in the predefined order) to identify a clause candidate literal v,
3) Try unifying —a and std(y,) (i.e. apply the standardization of variables to ')

4) If there is a unifier o of =« and std(y,), replace the current goal with the resolvent
of Std(yi) [0] and y[o] (e firstapply o to both std(y;) and ¢ and then generate the resolvent)

5) Then, if the resolvent is the empty clause, terminate with success,
otherwise select a new current goal and resume from step 1)

6) Else, if the unification fails , scan the program and select a new candidate literal y,
and resume from step 3)

7) Else, if there are no further clauses in the program, select a new current goal and resume from step 1)
8) If all the goals in the tree have been fully explored, terminate with failure

Artificial Intelligence 2023-2024 SLD Resolution [10]

SLD Resolution in L,

= Two alternative selection functions:

Depth-first (which is the most common...)
= Always select the most recent goal, i.e. the resolvent which has been generated last, as the current goal ¢
= Then, in the current goal ¢, select the leftmost subgoal —a not selected yet

= When the current goal ¢ is fully explored and no new resolvent has been generated, select the next most recent
goal in the tree (backtracking)

Breadth-first
= Always select the [east recent goal as the current goal ¢
= Then, in the current goal ¢, select the leftmost subgoal —a not selected yet
= When the current goal ¢ is fully explored select the next least recent goal in the tree

Comparison

Breadth-first is a fair selection function, in the sense that every possible resolution will be eventually attempted (i.e. ‘it leaves
nothing behind’).

Depth-first tends to save memory and be more efficient, but it is NOT fair (more to follow)

Artificial Intelligence 2023-2024 SLD Resolution [11]

SLD Trees

= Example (depth-first selection function):

IT = {{Human(x), —=Greek(x)}, {Mortal(y), =Human(y)},
{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}

goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1: {ﬂMolrtaI(x)} []
{—Mortal(x)}, {Mortal(y,), =Human(y,).} ||
I

2. {— Humalln(yl)} [X/yi]
{—Human(y,)}, {Humanfxl), —Greek(x,)} [x/y,]

3t {—~Greek(xy)} /v Ily,/x]
S
{—Greek(x,)} {Greek(socrates)} [x/y,|[y,/x,]

4: {3 Xy Qly./x1[x,/socrates]

Artificial Intelligence 2023-2024

SLD Resolution [12]

SLD Trees

. Example (depth-first selection function, forcing full exploration of SLD tree):

IT = {{Human(x), —=Greek(x)}, {Mortal(y), =Human(y)},
{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}

goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1: {ﬂMolrtaI(x)} []
{—Mortal(x)}, {Mortal(y,), =Human(y,).} ||
I
2: {ﬁHumaln(yl)} [X/y,]
{—Human(y,)}, {Human?xl), —Greek(xy)} /v,]

3: {—Greek(xy)} DXy Iy, /%]

S
{—Greek(x,)} {Greek(socrates)} [x/y,|[y,/x,]
{—Greek(x,)} {Greek(plato)} /v, 1ly./x,] \

{—Greek(x,)} {Greek(aristotle?} EOARNA
4: {3 Xy Qly./x1[x,/socrates] 5: {F Xty 1y /X 1[x,/plato] 6: {} Xy 1ly./X.1[x,/aristotle]

Artificial Intelligence 2023-2024

SLD Resolution [13]

SLD Trees

= Another example (depth-first selection function):

IT = {{Mortal(felix), —Cat(felix)}, {Human(x), —=Greek(x)}, {Mortal(y), =Human(y)},

{Greek(socrates)}, {Greek(plato)}, {Greek(aristotle)}}
goal = {—Mortal(x)}
“Is there anyone who is mortal?”

1: {ﬂMOEtaI(x)} []
{—Mortal(x)}, {Mortall(felix), —Cat(felix)} [| {—Mortal(x)}, {Mortal(y,), ~Human(y,).} [|
I

2: =Cat(felix) [x/felix] 3 {~ Humarll(yl)} [X/y,]
| {—Human(y,)}, {Human$x1), —Greek(x,)} [</v,]

goal 2: cannot be resolved
4: {—Greek(xy)} [x/yJ[y:/x]
I

{—Greek(x,)} {Greek(socrates)} [x/v,|[y./x]

{3} Xty 1ly./x{][x,/socrates]

Artificial Intelligence 2023-2024

SLD Resolution [14]

*The discreet charme of functions

= Representing data structures: lists ofitems|[a, b, c, ...]
Symbolsin X

cons/2
it’s a function that associates items (e.g. a) to a list (e.g. [b, c])
cons(a, cons(b, cons(c, nil))) represents the list [a, b,]

Append/3
it’s a predicate: each pair of lists X and y is associated to their concatenation z

nil
it’s a constant, represents the empty list.

Axioms (AL)

Vx Append(nil, x, x)
Vx Vy Vz (Append(x, Yy, z) > Vs Append(cons(s, x), Y, cons(s, z)))

Examples of entailment
{AL + 3z Append(cons(a, nil), cons(b, cons(c, nil), z) }
= Append(cons(a, nil), cons(b, cons(c, nil)), cons(a, cons(b, cons(c, nil))))
{AL + 3dx Iy Append(x, y, cons(a, cons(b, nil)))}

= Append(cons(a, nil), cons(b, nil), cons(a, cons(b, nil)))
= Append(nil, cons(a, cons(b, nil)), cons(a, cons(b, nil)))
= Append(cons(a, cons(b, nil)),nil, cons(a, cons(b, nil)))

Artificial Intelligence 2023-2024 SLD Resolution [15]

The world of lists

= Lists ofitems|[a, b, c, ...]

cons/2

it’s a function that associates items (e.g. a) to a list (e.g. [b, c])
cons(a,cons(b,cons(c,nil))) is the list [a, b,]

Append/3

it’s a predicate: each pair of lists X and y is associated to their concatenation z
nil

it’s a constant, the empty list.

Shorthand notation (Prolog): [] < nil
[a] < cons(a,nil)
[a,b] < cons(a,cons(b,nil))
[a][b,c]] < cons(a,[b,c])

Axioms (AL)

Vx Append(nil,x,x)
VxVyVz (Append(x,y,z) — Vs Append([s,x].y,[s.z]))

Artificial Intelligence 2023-2024 SLD Resolution [16]

The world of lists

Problem: ¥x Append(nil, x, x) E 3y ¥x Append(nil, cons(y, X), cons(a, X))

1: Vx Append(nil, x, x), =3y Vx Append(nil, cons(y, X), cons(a, X)) (refutation)
2: Vx Append(nil, x, x), Yy Ix —=Append(nil, cons(y, x), cons(a, X)) (prenex normal form)

3: {Append(nil, x, X)}, {—=Append(nil, cons(y, k(y)), cons(a, k(y)))}

(k/1 is a Skolem function, clausal form)
(N.B. there is no skolemization in Prolog : the programmer does it)

The pair of literals
Append(nil, x, x), =Append(nil, cons(y, k(y)), cons(a, k(y))))
... contains the same predicate Append/3 but the arguments are different

There is however an MGU o = [x/cons(a, k(a)), y/a] that yields
{Append(nil, cons(a,k(a)), cons(a,k(a)))}, {—Append(nil, cons(a, k(a)), cons(a, k(a)))}
From this, the resolvent is the empty clause.

Artificial Intelligence 2023-2024

SLD Resolution [17]

The world of lists in Prolog

% Identical to built-in predicate append/3, although it uses "cons"

% as a defined predicate, thus allowing trace-ability.

append (cons (S ,X) ,Y,cons(S,Z2)) :- append(X,Y,Z).

append (nil X ,X) .

% WARNING: express your queries with cons. Examples:

% ?- append(cons(a,nil), cons(b,cons(c, nil)) ,cons(a,cons(b,cons(c, nil)))).

% ?- append(X,Y,cons(a,cons(b,cons(c, nil)))).

Artificial Intelligence 2023-2024 SLD Resolution [18]

Infinite SLD Trees (Birness of SLD)

= An example:

1 = {{S(ab)}, {S(b,c)}, {S(x,2), =S(x.y), =S(y,2)}}
—|¢ = {_'S(a,X)}

goal: —iS(a,x) [
{=S(ax)}, I{S(?Jt,b)} []
{} [x/b]

Easy...

Artificial Intelligence 2023-2024 SLD Resolution [19]

Infinite SLD Trees (Birness of SLD)

= An example:

1 = {{S(ab)}, {S(b,c)}, {S(x,2), =S(x.y), =S(y,2)}}
—|¢ = {_'S(a,X)}

goal: —iS(a,X) [—_—
{—=S(@x)}, l{S(a,b)} 0 {=S@x)} {S(x3,25), =S(X3,Y3), —S(¥3:23)} [1
I
1} [x/0] {=3(ays), ~S(ys,z3)} [x4/a, X/z;]

I
{—~S(a.ys), —S(Ya,Z5)}, {S(a,b)} [X/z3, Xs/a, y4/b]
I
{—S(b.z5)} [¥/z3, x5/2]
I
{—S(b,z5)}, {S(b,c)} [X/z5, x4/a]

{} [¥/z,, >I<3/a, z,/c] (= [x/c])

Forcing to backtrack...
(easy again)

Artificial Intelligence 2023-2024

SLD Resolution [20]

Infinite SLD Trees (Birness of SLD)

= An example:

1 = {{S(ab)}, {S(b,c)}, {S(x,2), =S(x.y), =S(y,2)}}
—|¢ = {_'S(a,X)}
goal: =S(a,x) []

S
[...] {7S@X)} {S(X3:23), —!ls(x3,y3), ~S(Y3.25)} [
{—=S(a,y3), =S(y3,25)} [X5/a, x/z5]
{—3(@ys), ﬂS(ys,Zg)}l, {S(a.b)} [X/z3 x5/a]
{—-S(b,z?,)}I [X/z5, X5/a]
{—S(b,z,)}, {S(lla,c)} [X/z5, X4/@] {—S(b,z5)}, {S(X4.24), =S(X4,Y4), 7 S(V4sZ4)} [X/25, X5/a]

| |
{3} [¥/zs, X412, 25/c] (= [x/c]) {=5(0.Y4), ~S(Yai2a)} [X/23, X4/, Z5/24, X,/0]
|
{=S(b,ya), =S(yaza)} {S(Xs,25), =S(X5,Ys), ~S(¥sZs)} [X/z3, Xs/a, 25124, X,/D]
. |
';z;;g’l?tge jg f;f"”“c" a {=S(b.ys), ~S(¥s.25), —S(z524)} l[x/zg, X8, 2124, X/b, Y4l2s, X5/b]
[...]

Artificial Intelligence 2023-2024 SLD Resolution [21]

Infinite SLD Trees (Birness of SLD)

= A second example:
I = {{S(x,2), =S(x,y), =S(y.2)}.{S(a.b)}, {S(b.c)}}

_'¢ = {—'S(a,x)} i Notice the change in clause ordering.....
goal: —iS(a,x) [

{=S(@x)}, {S(x1.24), ﬁls(Xl,yl), —=S(y1,21)} (]
{=Sayy), =S(ynz)} [xi/a, x/z]
{=S(ayy), =S(y1.z0)} {S(x2.2,), l_'S(X21Y2), =S(Y2,25)} [X1/a, X/z4]
{=5(z5,21), =S(x2.Y2), _'S(Y%’Zz)} [X,/a, X/zy, X,la, y,/z,]
[..]

The infinite loop occurs immediately ...

Artificial Intelligence 2023-2024 SLD Resolution [22]

Infinite SLD Trees (Birness of SLD)

= A second example:
I = {{S(x,2), =S(x,y), =S(y.2)}.{S(a.b)}, {S(b.c)}}

_'¢ = {—'S(a,x)} i Notice the change in clause ordering.....
goal: ﬂlS(a,X) [l

{=S(@x)}, {S(x1,21), ~S(X,y1), =S(y1,2)} (1 {—=S(a,x)}, {S(a,b)} []
|

I
{} [}/b]

{—=S(a,y;), =S(y;,2))} [xi/a, x/z]
{=S(@y1), =S(y1.z0)} {S(%2.22), l_'S(Xziyz), ~S(Y2.22)} /e Xz)] £=S(a,x)}, {S(Xa1Zs), =S(Xa,Ya), —S(VaiZ)} []
{—S(z,,2;), =S(X,,Y,), —-S(yl,zz)} [xi/a, X[z, X,/a, y,/7,] {—S(a,ys), ﬂS(yL,z3)} [Xs/a, X/z,]
[.!.] {—S(ays), ﬂS(yg,Zg)}l, {5(@b)} [x/z5, x,/a]
{ﬂS(b,ze,)}I [X/z5, X5/a]
|
The infinite loop occurs immediately ... {730k {SGIJ’C)} s 8

Backtracking never occurs in this case (due to the infinite loop), W25, x3fa, zg/c] (= [x/cl)
yet, if it occurred it would have produced the two correct results

Artificial Intelligence 2023-2024 SLD Resolution [23]

Infinite SLD Trees (Birness of SL.D)

= Moral
* Inboth previous examples the infinite loop (i.e. divergence) is unavoidable
* Yetin thefirst one, the method first produces the right results and then diverges
* Sointhe first case the result is complete (i.e. all entailed formulae are derived)
while in the second case the method is not
A fair selection function is such that no possible resolution will be postponed
indefinitely: that is, any possible resolution will be performed, eventually.

In the two previous examples, we used a depth-first exploration method of the SLD tree:

which is not complete (in the above sense)
A breadth-first exploration method is fair hence it is complete (in the above sense)

In actual programming systems (e.g. Prolog) the depth-first is preferred for memory efficiency
since the breadth-first method forces to keep (most of) the whole SLD tree in memory

Artificial Intelligence 2023-2024

SLD Resolution [24]

	Slide 1
	Slide 2: Back to Propositional Logic
	Slide 3: Horn Clauses (in LP)
	Slide 4: Lost in Translation…
	Slide 5: SLD Resolution
	Slide 6: SLD trees
	Slide 7: SLD Resolution
	Slide 8: SLD resolution in First-Order Logic
	Slide 9: Horn Clauses in LFO
	Slide 10: SLD Resolution in LFO
	Slide 11: SLD Resolution in LFO
	Slide 12: SLD Trees
	Slide 13: SLD Trees
	Slide 14: SLD Trees
	Slide 15: *The discreet charme of functions
	Slide 16: The world of lists
	Slide 17: The world of lists
	Slide 18: The world of lists in Prolog
	Slide 19: Infinite SLD Trees (fairness of SLD)
	Slide 20: Infinite SLD Trees (fairness of SLD)
	Slide 21: Infinite SLD Trees (fairness of SLD)
	Slide 22: Infinite SLD Trees (fairness of SLD)
	Slide 23: Infinite SLD Trees (fairness of SLD)
	Slide 24: Infinite SLD Trees (fairness of SLD)

