Artificial Intelligence

A course about foundations

Automated Symbolic Calculus

Marco Piastra

DI PAVIA

Artificial Intelligence 2023-2024 Automated Symbolic Calculus [1]

Semantic Tableaux

Semantic Tableaux, alpha and beta rules

Semantic tableaux is a method that can be implemented as a Turing machine

■ It is a decision algorithm for the problem " is Σ satisfiable? " where Σ is a <u>set</u> of wffs in L_p

Despite its name, it is a *symbolic* method: it works on the structure of wffs only No explicit assignments of (semantic) values are involved

Semantic Tableaux, alpha and beta rules

Example 1 A tableau is a set of wffs in L_p

The method starts from an *initial* tableau (the set Σ whose satisfiability is to be determined)

- It is based on rules that transform wffs
- Alpha rules (expansion)

(a1) (a2) (a3) (a4)
\n
$$
\begin{array}{ccc}\n\gamma(\neg\varphi) & \varphi \wedge \psi & \neg(\varphi \vee \psi) & \neg(\varphi \rightarrow \psi) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\varphi & \varphi, \psi & \neg\varphi, \neg\psi & \varphi, \neg\psi\n\end{array}
$$

Beta rules (bifurcation)

Artificial Intelligence 2023-2024 Automated Symbolic Calculus [4]

Semantic Tableaux - a working example

- Original problem: " $\Gamma \models \varphi$? " Example input: $\{ A \rightarrow (B \rightarrow C) \} \models B \rightarrow (A \rightarrow C)$?
- Transformed problem: " is $\Gamma \cup \{\neg \varphi\}$ satisfiable?" Hence, the initial tableau is $\Gamma \cup {\neg \varphi}$

Semantic Tableaux - a working example

- Original problem: " $\Gamma \models \varphi$? " Example input: $\{ A \rightarrow (B \rightarrow C) \} \models B \rightarrow (A \rightarrow C)$?
- Transformed problem: " is $\Gamma \cup \{\neg \varphi\}$ satisfiable?" Hence, the initial tableau is $\Gamma \cup {\neg \varphi}$

NOTE: the usual notation in textbooks is even more concise: only those wffs that are *added* to the initial tableau in each branch are shown in the tree

Artificial Intelligence 2023-2024 Automated Symbolic Calculus [6]

Semantic Tableaux - algorithm recap

Algorithm: ▪

The input problem " $\Gamma \models \varphi$? " is transformed into " is $\Gamma \cup {\neg \varphi}$ satisfiable? "

Any methods of this type are deemed 'by refutation'

Set $\Gamma \cup {\neg \varphi}$ as the first *active* tableau

For each *active* tableau, there will be two cases:

1) The tableau contains only *literals*

If the tableau contains a complementary pair of literals then declare it closed else declare it open

2) The tableau contains one or more *composite* wff

First try to apply an *alpha* rule, generating a new tableau otherwise, if this is not possible, try to apply a beta rule generating two new tableaux Mark the tableau as *inactive*, mark the new tableau(x) as *active*

Continue until there are no more *active* tableaux

Output: the tree structure of tableaux

Result: either all the leaves in the tree are closed (success) or any of them are open (failure)

Semantic Tableaux - (required) algorithm properties

Termination \blacksquare

The algorithm never *diverges* (it never enters an infinite loop)

Each application of either alpha or beta rule *simplifies* a wff (it makes it *less* composite): therefore, the process of applying rules cannot go on forever

▪ **Symbolic derivation**

As already stated, despite its name, this is a symbolic method

We write

 $\Gamma \vdash_{ST} \varphi$

iff the Semantic Tableau method is successful (= all leaves are closed) for $\Gamma \cup \{\neg \varphi\}$

How do we know that $\Gamma \vdash_{ST} \varphi \Rightarrow \Gamma \models \varphi ?$

(Soundness - also correctness - of the method)

Exercise: prove it

(*hint*: consider the condition on $\Gamma \cup \{\neg \varphi\}$ and think about how it relates to each *rule*)

How do we know that $\Gamma \models \varphi \Rightarrow \Gamma \models_{ST} \varphi ?$

(Completeness of the method)

Proving it is a bit more difficult: see textbook (Ben-Ari's)

Semantic Tableaux - (required) algorithm properties

Termination ▪

The algorithm never *diverges* (i.e. it never enters an infinite loop)

Each application of either alpha or beta rule *simplifies* a wff (i.e. it makes it *less* composite): so the application of rules cannot continue forever

Soundness ▪

 $\Gamma \vdash_{ST} \varphi \Rightarrow \Gamma \models \varphi$

Completeness \Box

 $\Gamma \models \varphi \Rightarrow \Gamma \vdash_{ST} \varphi$

Termination + Soundness + Completeness = Decision Algorithm ▪(for propositional logic)

Which method is faster?

■ Time complexity (remember, consider the worst case)

 $O(2^n)$

■ How well do these method perform in practice?

It depends

Example 1(try it):

A \land *B* \land *C* \land \neg *A*

 $2^3 = 8$

The Semantic Tableau method requires applying the same alpha rule just 3 times

Example 2 (try it):

 $(A \vee B) \wedge (A \vee \neg B) \wedge (\neg A \vee B) \wedge (\neg A \vee \neg B)$

 $2^2 = 4$

The Semantic Tableaux method requires applying the same alpha rule 3 times; then the same beta rule is applied exhaustively producing a tree with 4 levels, with each node in a tree with a branching factor 2

 $2^4 = 16$

Inference rule: Resolution

 $\varphi \vee \chi$, $\neg \chi \vee \psi \vdash \varphi \vee \psi$

 $\varphi \vee \psi$ is also called the resolvent of $\varphi \vee \chi$ and $\neg \chi \vee \psi$

The resolution rule is *correct*

That is, $\varphi \vee \chi$, $\neg \chi \vee \psi \vdash \varphi \vee \psi \Rightarrow \varphi \vee \chi$, $\neg \chi \vee \psi \models \varphi \vee \psi$ Proof:

Normal forms

 $=$ translation of each wff into an equivalent wff having a specific structure

Conjunctive Normal Form (CNF) \blacksquare

A wff with a structure

 $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$ where each α_i has a structure $(\beta_1 \vee \beta_2 \vee \dots \vee \beta_n)$ where each β_i is a *literal* (i.e. an atomic symbol or the negation of an atomic symbol) Examples:

 $(B \vee D) \wedge (A \vee \neg C) \wedge C$ $(B \vee \neg A \vee \neg C) \wedge (\neg D \vee \neg A \vee \neg C)$

Disjunctive Normal Form (DNF) ▪

A wff with a structure $\beta_1 \vee \beta_2 \vee \ldots \vee \beta_n$ where each β_i has a structure $(\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n)$ where each α_i is a *literal*

Conjunctive Normal Form

Translation into CNF (it can be automated) \blacksquare

Exhaustive application of the following rules:

1) Rewrite \rightarrow and \leftrightarrow using \land , \lor , \neg

2) Move \neg inside composite formulae

"De Morgan laws": $\neg(\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi)$ $\neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi)$

3) Eliminate double negations: \neg

4) Distribute V

$$
((\varphi \land \psi) \lor \chi) \equiv ((\varphi \lor \chi) \land (\psi \lor \chi))
$$

Examples:

$$
\neg(B \to D) \lor \neg(A \land C)
$$

\n
$$
\neg(\neg B \lor D) \lor \neg(A \land C)
$$

\n
$$
(B \land \neg D) \lor (\neg A \lor \neg C)
$$

\n
$$
(B \lor \neg A \lor \neg C) \land (\neg D \lor \neg A \lor \neg C)
$$

\n
$$
(De Morgan)
$$

\n
$$
(distribute \lor)
$$

Artificial Intelligence 2023-2024 Automated Symbolic Calculus [14]

Clausal Forms

 $=$ each wff is translated into an equivalent set of wffs having a specific structure

Clausal Form (CF) ▪

Starting from a wff in CNF $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$ the clausal form is simply the set of all *clauses* $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$

Examples:

 $(B \vee D) \wedge (A \vee \neg C) \wedge C$ $\{(B \lor D), (A \lor \neg C), C\}$

E Special notation

Each clause is usually written as a set $\beta_1 \vee \beta_2 \vee \ldots \vee \beta_n$ $\{\beta_1, \beta_2, ..., \beta_n\}$ Example: $\{ \{B, D\}, \{A, \neg C\}, \{C\} \}$ A set of *literals*:

ordering is irrelevant no multiple copies

Artificial Intelligence 2023-2024 Automated Symbolic Calculus [15]

• The same example as before

 $B \vee D \vee \neg A \vee \neg C, B \vee C, A \vee D, \neg B \vdash D$ Refutation + rewrite in CNF:

 $B \vee D \vee \neg A \vee \neg C$, $B \vee C$, $A \vee D$, $\neg B$, $\neg D$ Rewrite in CF:

 ${B, D, \neg A, \neg C}, {B, C}, {A, D}, {\neg B}, {\neg B}$ Applying the resolution rule, one pair of literals at time:

• The same example as before

 $B \vee D \vee \neg A \vee \neg C, B \vee C, A \vee D, \neg B \vdash D$ Refutation + rewrite in CNF:

 $B \vee D \vee \neg A \vee \neg C$, $B \vee C$, $A \vee D$, $\neg B$, $\neg D$ Rewrite in CF:

 ${B, D, \neg A, \neg C}, {B, C}, {A, D}, {\neg B}, {\neg B}$ Applying the resolution rule:

- Algorithm ▪
	- Problem: " $\Gamma \vdash \varphi$ "?
	- The problem is transformed into: is " $\Gamma \cup {\{\neg \varphi\}}$ " coherent?
	- If $\Gamma \vdash \varphi$ then $\Gamma \cup \{\neg \varphi\}$ is incoherent and therefore a contradiction can be derived
	- $\Gamma \cup \{\neg \varphi\}$ is translated into CNF hence in CF

The resolution algorithm is applied to the set of *clauses* $\Gamma \cup \{\neg \varphi\}$

At each step:

- ${C_1, C_2}$
- C_r as the resolvent of { C_1 , C_2 }
- c) Add C_r to the set of clauses

Termination:

 C_r is the empty clause $\{\}$

or there are no more combinations to be selected in step a) *(failure)*

- Resolution by refutation for propositional logic *Is correct:* $\Gamma \vdash_{RES} \varphi \Rightarrow \Gamma \models \varphi$ *Is complete:* $\Gamma \models \varphi \Rightarrow \Gamma \models_{RES} \varphi$ In this sense: iff $\Gamma \models \varphi$ then there exists a refutation graph
- Algorithm

It is a decision procedure for the problem $\Gamma \models \varphi$

 $O(2^n)$

where *n* is the number of propositional symbols in $\Gamma \cup \{ \neg \varphi \}$