Artificial Intelligence

A course about foundations

Propositional Logic

Marco Piastra

Artificial Intelligence 2023-2024 Propositional Logic [1]

INIVERSIT DI PAVIA

Prologue: Boolean Algebra(s)

Boolean algebras by examples

Consider a finite set of objects W and construct, in a bottom-up fashion, the collection Σ of all possible subsets of W

Collections like Σ above are also called the **power set** of W W , also denoted as 2^W

Boolean algebras by examples

Consider a finite set of objects W and construct, in a bottom-up fashion, the collection Σ of all possible subsets of W

Boolean algebra (definition)

Any non-empty collection of subsets Σ of a set *W* such that:

\n- 1)
$$
\emptyset \in \Sigma
$$
\n- 2) $A, B \in \Sigma \implies A \cup B \in \Sigma$
\n- 3) $A \in \Sigma \implies A^c \in \Sigma$
\n- 4^c := W - A (the complement of A with respect to W)
\n
Corollaries:\n

- The set W belongs to any Boolean algebra generated on W
- Σ is closed under intersection

Artificial Intelligence 2023-2024 Propositional Logic [4]

Boolean algebras by examples

Consider a finite set of objects W and construct, in a bottom-up fashion, the collection Σ of all possible subsets of W

Which Boolean algebra for logic?

Given that all boolean algebras share the same properties we can adopt the simplest one as reference: the one based on $\Sigma := \{W, \emptyset\}$ This is a *two-valued* algebra: {*nothing*, *everything*} or {*false*, *true*} or { \bot , \top } or {0, 1}

- **Algebraic structure**
	- *<* {0,1}, OR, AND, NOT *>*
- Boolean functions and truth tables

Most generic type of boolean functions: $f: \{0, 1\}^n \rightarrow \{0, 1\}$

AND, OR and NOT are boolean functions, defined explicitly via truth tables

Composite functions

Truth tables can be defined also for composite functions

For example, to verify logical laws

Adequate basis

▪ How many boolean functions do we need to define any boolean function?

Just OR, AND and NOT: any other function can be expressed as composite function

In the generic truth table above:

- j where $f_j = 1$, create a Boolean expression composing by AND the n A_i , when the *i*-th value is 1, or $\operatorname{NOT} A_i$ when *i*-th value is 0
- Compose with OR all expressions obtained in the way above 2)

Other adequate bases

Also {OR, NOT} o {AND, NOT} are adequate bases

An adequate basis can be obtained by just one 'ad hoc' function: NOR or NAND

■ Two remarkable functions: *implication* and equivalence

Identities:

 $A \text{ IMP } B = (\text{NOT } A) \text{ OR } B$ $A \text{ EQU } B = (A \text{ IMP } B) \text{ AND } (B \text{ IMP } A)$

In passing, logicians prefer the adequate basis {IMP, NOT}

Artificial Intelligence 2023-2024 2008 Propositional Logic [9]

Language and Semantics: possible worlds

Propositional logic: the project

The simplest of 'classical' logics

• Propositions

We consider simple **propositions** which state something that could be either true or false

"Today is Friday" "Turkeys are birds with feathers" "Man is a featherless biped"

Example Formal language

A precise and formal language whose atoms are propositions (no intention to represent the internal structure of *propositions*) Atoms will be composed in complex formulae via a set of *syntactic* rules

Example Semantics

A class of formal structures, each representing a **possible world** or a possible 'state of things'

<This classroom right now> <My uncle's farm several years ago> <Ancient Greece at the time of Aristotle's birth>

The class of propositional, semantic structures

Each possible world is a structure $\langle \{0,1\}, \Sigma, \nu \rangle$

 $\{0,1\}$ are the truth values

 Σ is the **signature** of the formal language: a set of propositional symbols

v is a function : $\Sigma \rightarrow \{0,1\}$ assigning truth values to the symbols in Σ

Propositional symbols (signature)

Each symbol in Σ stands for an actual *proposition* (in natural language) In the simple convention, we use the symbols $A, B, C, D, ...$ Caution: Σ is not necessarily finite

Possible worlds

The class of structures contains all possible worlds:

 $\{0,1\}, \Sigma, \nu$ $<$ {0,1}, Σ , v' > $\langle \{0,1\}, \Sigma, \nu'' \rangle$

... Each class of structure shares Σ and $\{0,1\}$

The functions v are different: the assignment of truth values varies, depending on the possible world

Formal language

 \blacksquare In a propositional language L_p

A set Σ of propositional symbols: $\Sigma = \{A, B, C, ...\}$ Two (primary) *logical connectives*: \neg , \rightarrow Three (derived) *logical connectives*: \land , \lor , \leftrightarrow **Parenthesis:** (,) (there are no *precedence rules* in this language)

■ Well-formed formulae (wff)

Defined via a set of syntactic rules:

```
L_{P} is denoted as \mathrm{wff}(L_{P})A \in \Sigma \Rightarrow A \in \text{wff}(L_p)\varphi \in \text{wff}(L_p) \implies (\neg \varphi) \in \text{wff}(L_p)\varphi, \psi \in \text{wff}(L_p) \implies (\varphi \to \psi) \in \text{wff}(L_p)\varphi, \psi \in \text{wff}(L_p) \implies (\varphi \lor \psi) \in \text{wff}(L_p), \quad (\varphi \lor \psi) \iff ((\neg \varphi) \to \psi)\varphi, \psi \in \text{wff}(L_p) \implies (\varphi \land \psi) \in \text{wff}(L_p), \quad (\varphi \land \psi) \iff (\neg(\varphi \to (\neg \psi)))\varphi, \psi \in \text{wff}(L_p) \implies (\varphi \leftrightarrow \psi) \in \text{wff}(L_p), \ (\varphi \leftrightarrow \psi) \Leftrightarrow ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))
```
Formal semantics: interpretations

• Compositional (truth-functional) semantics for wff

Given a possible world $\langle \{0,1\}, \Sigma, \nu \rangle$

the function $v : \Sigma \to \{0,1\}$ can be <u>extended</u> to assign a value to *every* wff by associating binary (i.e., Boolean) functions to connectives:

■ Interpretations

 ν (extended as above) assigns a truth value <u>to each</u> $\varphi \in \operatorname{wff}(L_p)$

 $v: \text{wff}(L_p) \rightarrow \{0,1\}$

Then ν is said to be an *interpretation* of L_p

Note that the truth value of any wff φ is univocally determined by the values assigned to each symbol in the signature Σ (compositionality)

Artificial Intelligence 2023-2024 Propositional Logic [14]

An Aside: object language and metalanguage

\blacksquare The object language is L_p

The formal language of logic

It only contains the items just defined:

 Σ , \neg , \rightarrow , \wedge , \vee , \leftrightarrow , $($, $)$, plus *syntactic rules* (wff)

■ Meta-language

The formalism for defining the properties of the object language and the logic Small greek letters $(\alpha, \beta, \chi, \varphi, \psi, ...)$ will be used to denote a generic <u>formula</u> (wff) Capital greek letters $(\Gamma, \Delta, ...)$ will be used to denote a set of formulae Satisfaction, logical consequence (see after): \models Derivability (see after): \vdash "if and only if": "iff" Implication, equivalence (in general): \Rightarrow , \Leftrightarrow

Entailment

About formulae and their hidden relations

■ Hypothesis:

 $\varphi_1 = B \vee D \vee \neg (A \wedge C)$

"Sally likes Harry" OR "Harry is happy" OR NOT ("Harry is human" AND "Harry is a featherless biped")

 $\varphi_2 = B \vee C$

"Sally likes Harry" OR "Harry is a featherless biped"

 $\varphi_3 = A \vee D$

"Harry is human" OR "Harry is happy"

 $\varphi_A = \neg B$ NOT "Sally likes Harry"

Thesis:

 $\psi = D$ "Harry is happy"

Artificial Intelligence 2023-2024 Propositional Logic [17]

Is there any **logical relation** between hypothesis and thesis?

And among the propositions in the hypothesis?

Entailment

The overall truth table for the wff in the example

$$
\varphi_1 = B \lor D \lor \neg(A \land C)
$$

\n
$$
\varphi_2 = B \lor C
$$

\n
$$
\varphi_3 = A \lor D
$$

\n
$$
\varphi_4 = \neg B
$$

\n
$$
\psi = D
$$

Notation! **Entailment** $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\} \models \psi$

There is entailment when $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ satisfy ψ as well

Artificial Intelligence 2023-2024 Propositional Logic [18]

There is entailment iff every world that satisfies
$$
\Gamma
$$
 also satisfies φ

Satisfaction, models

• Possible worlds and truth tables

Examples: $\varphi = (A \lor B) \land C$

Different rows, different groups of worlds All rows, all possible worlds

Caution: in each possible world $\varphi \in \text{wff}(L_p)$ so a row in a table is not a single world, per se

A possible world **satisfies** a wff φ iff $v(\varphi) = 1$

We also write $\langle 0,1 \rangle, \Sigma, \nu \rangle \models \varphi$

In the truth table above, the rows that satisfy φ are in gray

Such possible world w is also said to be a **model** of φ

wff $\Gamma = {\varphi_1, \varphi_2, ..., \varphi_n}$ w satisfies (i.e. is model of) each of its $\text{wff }\varphi_1,\varphi_2,...\, ,\varphi_n$

Tautologies, contradictions

A tautology

Is a (propositional) wff that is always satisfied It is also said to be **valid** Any wff of the type $\varphi \vee \neg \varphi$ is a tautology

A contradiction

Is a (propositional) wff, that cannot be satisfied

Any wff of the type $\varphi \wedge \neg \varphi$ is a contradiction

Notes:

- Not all wff are either tautologies or contradictions
- **If** φ **is a tautology then** $\neg \varphi$ **is a contradiction and vice-versa**

Artificial Intelligence 2023-2024 Propositional Logic [21]

 \blacksquare Consider the set W of all possible worlds Each wff φ of L_p corresponds to a **subset** of W The subset of all possible worlds that satisfy it In other words, φ corresponds to $\{w : w \models \varphi\}$ The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

Example 1 Consider the set W of all possible worlds Each wff φ of L_p corresponds to a **subset** of W The subset of all possible worlds that satisfy it In other words, φ corresponds to $\{w : w \models \varphi\}$ The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

" φ is a tautology"

"any possible world in W is a *model* of φ "

" φ is (logically) **valid**"

Furthermore: $``\varphi$ is satisfiable" " φ is not *falsifiable*"

Example 1 Consider the set W of all possible worlds Each wff φ of L_p corresponds to a **subset** of W The subset of all possible worlds that satisfy it In other words, φ corresponds to $\{w : w \models \varphi\}$ The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

" φ is a contradiction"

"none of the possible worlds in *W* is a *model* of φ "

" φ is <u>not</u> (logically) *valid*"

Furthermore: " is not *satisfiable***"** " is *falsifiable***"**

Example 1 Consider the set W of all possible worlds Each wff φ of L_p corresponds to a **subset** of W The subset of all possible worlds that satisfy it In other words, φ corresponds to $\{w : w \models \varphi\}$ The corresponding subset may be empty (i.e. if φ is a contradiction) or it may coincide with W (i.e if φ is a tautology)

" φ is neither a contradiction nor a tautology"

"some possible worlds in *W* are *model* of φ , others are not"

" φ is <u>not</u> (logically) *valid*"

Furthermore: $``\varphi$ is satisfiable" " is *falsifiable***"**

• Consider the set of all possible worlds W

• Consider the set of all possible worlds W

"All possible worlds that are *models* of φ_1 "

 $\{\varphi_1\} \not\models \psi$

because the set of models for { φ_1 } is not contained in the set of models of ψ

• Consider the set of all possible worlds W

"All possible worlds that are *models* of φ_2 "

 $\{\varphi_1, \varphi_2\} \not\models \psi$

because the set of models of { φ_1, φ_2 } (i.e. the *intersection* of the two subsets) is not contained in the set of models of ψ

• Consider the set of all possible worlds W

"All possible worlds that are *models* of φ_3 "

{ $\varphi_1, \varphi_2, \varphi_3$ } $\neq \psi$ because the set of models of { $\varphi_1, \varphi_2, \varphi_3$ } is not contained in the set of models of ψ

• Consider the set of all possible worlds W

"All possible worlds that are models of φ_4 "

{ $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ } $\models \psi$

Because the set of models for { $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ } is contained in the set of models of ψ

■ Consider the set of all possible worlds W

"All possible worlds that are models for { $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ }"

{ $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ } $\models \psi$

Because the set of models for { $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ } is contained in the set of models of ψ

In the case of the example, all the wff φ 1, φ 2, φ 3, φ 4 are needed for the relation of *entailment* to hold

There is entailment iff every world that satisfies
$$
\Gamma
$$
 also satisfies φ

Further Properties

Symmetric entailment = logical equivalence

Equivalence

Let φ and ψ be wff such that:

 $\varphi \models \psi \in \psi \models \varphi$

The two wff are also said to be *logically equivalent*

In symbols: $\varphi \equiv \psi$

■ Substitutability

Two equivalent wff have exactly the same *models*

In terms of entailment, equivalent wff are substitutable

(even as sub-formulae)

In the example: { $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ } $\models \psi$

$$
\varphi_1 = B \lor D \lor \neg(A \land C)
$$

\n
$$
\varphi_2 = B \lor C
$$

\n
$$
\varphi_3 = A \lor D
$$

\n
$$
\varphi_4 = \neg B
$$

\n
$$
\psi_5 = D
$$

\n
$$
\varphi_6 = D
$$

\n
$$
\varphi_7 = B \lor C
$$

\n
$$
\varphi_8 = \neg A \rightarrow D
$$

\n
$$
\varphi_9 = D
$$

\n
$$
\psi = D
$$

\n
$$
\psi = D
$$

\n
$$
\varphi_1 = B \lor D \lor (A \rightarrow \neg C)
$$

\n
$$
\varphi_2 = B \lor C
$$

\n
$$
\varphi_3 = \neg A \rightarrow D
$$

\n
$$
\psi = D
$$

Artificial Intelligence 2023-2024 Propositional Logic [34]

Implication and Inference Schemas

The wff of the problem can be re-written using equivalent expressions: (using the basis $\{\rightarrow, \neg\}$)

■ Some *inference schemas* are valid in terms of entailment:

$$
\frac{\varphi \to \psi}{\varphi}
$$

It can be verified that:

 $\varphi \rightarrow \psi, \varphi \models \psi$

Analogously:

 $\varphi \to \psi$, $\neg \psi \models \neg \varphi$

Modern formal logic: fundamentals

Example 1 Formal language (symbolic)

A set of symbols, not necessarily finite Syntactic rules for composite formulae (wff)

Example Semantics

For each formal language, a class of structures (i.e. a class of possible worlds) In each possible world, every wff in the language is assigned a value In classical propositional logic, the set of values is the simplest: $\{1, 0\}$

E Satisfaction, entailment

A wff is *satisfied* in a possible world if it is <u>true</u> in that possible world In classical propositional logic, iff the wff has value 1 in that world (Caution: the definition of satisfaction will become definitely more complex with first order logic)

Entailment is a relation between a set of wff and a wff

This relation holds when all possible worlds satisfying the set also satisfy the wff

Properties of entailment (classical logic)

E Compactness

Consider a set of wff Γ (not necessarily finite)

 $\Gamma \models \varphi \implies \text{There exist a } \underline{\text{finite}} \text{ subset } \Sigma \subseteq \Gamma \text{ such that } \Sigma \models \varphi$

(This follows from compositionality, see textbook for a proof)

■ Monotonicity

For any Γ and Δ , if $\Gamma \models \varphi$ then $\Gamma \cup \Delta \models \varphi$

In fact, any entailment relation between φ and Γ remains valid even if Γ grows larger

E Transitivity

If for all $\varphi \in \Sigma$ we have $\Gamma \models \varphi$, then if $\Sigma \models \psi$ then $\Gamma \models \psi$

If Γ entails any φ in Σ , then any ψ entailed by Σ is also entailed by Γ

Ex absurdo...

 $\{\varphi, \neg \varphi\} \models \psi$

An inconsistent (i.e. contradictory) set of wff entails anything «Ex absurdo sequitur quodlibet»

