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Types of machine learning problems

Consider a number of observations (i.e. a dataset) made by an agent
{DW, DA, .., DN}

= Supervised learning

Learning form complete observations: each of the observations {D®, D@, ..., DN}
include values for all the random variables in the model

The objective is learning a distribution P

= Unsupervised learning

Learning form incomplete observations: observations {D®, D@, ..., DN}
do not necessarily include values for all the random variables in the model

The objective is learning a distribution P

» Reinforcement learning

The observations {DW, D@, ..., DN} are states o situations,
at each state X; the agent must perform an action a; that produces a result r;.

The objective is defining a function a;= w(D;) that describes a strategy that the agent will follow

The strategy should be optimal, in the sense that it should maximize
the expected value of a function v(<ry, 15, ..., I,>) of the sequence of results
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Observations and Independence

Each observation could be the outcome of an experiment or a test

The outcome of a particular experiment can be represented
by a set of random variables

For example, if the model makes use of the random variable {X, Y},
the N outcomes of the experiments are DO = (XD, YD), ... DN= (XN YN)

That is, a dataset
D= {(X, Y},

* Independent observations, same probability distribution
Independent and Identically Distributed (IID) random variables

Definition
A sequence or a set of random variables {X;, X,, ..., X, }
is Independent and Identically Distributed (11D) iff:
1) <X; L Xi>, Vi#£] (independence)

2) PXi=x)=P(X;<x), Vi#],Vx (identical distribution)

CAUTION: Being lID is not an obvious property of observations

e.g. different measurements on different patients may be IID,
but different measurements over time on the same patient are not IID
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ML = Representation + Evaluation + Optimization

Assume that an I.I.D. dataset D is available

* Representation
The objective is learning a specific distribution
P({X.};0)
where { X, } are all the random variables of interest and 6 is a set of parameters

Which kind of distribution (i.e. the model or also the learner) do we select?

Example: assume we select the anti-spam filter (i.e. Naive Bayesian Classifier) as the model
the parameters in such case are the numerical probabilities in the CPTs

= Evaluation

Given a dataset D, how well does a specific set of parameter values ¢
make the distribution P fit the dataset?

An estimator, i.e. a scoring function of some sort, must be selected

= Optimization

How can we find the optimal set of parameter values 6*
with respect to the estimator of choice?

In general, this is an optimization problem
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Maximum Likelihood Estimator
(MLE)
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Maximum Likelihood Estimation (MLE)

A probabilistic model P(X), with parameters 6
0 is a set of values that characterizes P(X) completely: once 0 is defined, P(X) is also defined.

A set of IID observations (data items) D = {D®, ..., DN}
» [ikelihood function
A function, or a conditional probability, derived from the model P(X)
LO|D)=PD|60) =PDW,. . . ,DN g

where P(D | 0) is the conditional probability that the parameter 6,
considered as a random variables, could generate the observations D

When the observations {DW, ..., DN} are IID:

P(D|6)=PDWIg) ... P(DM|o) =[] P(D"™ |0)

= Maximum Likelihood Estimation
0% = argmax,L(0|D)

Since the observations are IID, using log-Likelihood could ease computations:

(0] D) =log L(OID) = log | [ P(D'™|0) = > log P(D™)|6)

m

03,1 = argmaxyl(6|D)
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Example: coin tossing (ernoulli Trials)

Experiment: tossing a coin X, not necessarily fair (X = 1 head, X = 0 tail)
Parameters: 0 ={n} < PX=1)=x, PX=0)=1-=x

Observations: a sequence of experimental outcomes
D= {D1 :{X D=y (1)}, D2 :{X 2 =x (2)}’ . DN :{X (N) = x (N)}}

» Binomial distribution (N) N
k1 (

k)T T binomial coefficient

P(D|0) = ( Y )IZIP(X@‘Q) = ( N )P(X = 1])Nx=t P(X = 0]g)"Nx=0

N,-, is the number of X=1 (i.e. heads) in a sequence of N trials

N N N
— T X=1 1 — T X=0
(NH) (1)

It is the probability of obtaining N,_; times ‘head’ in a sequence of N trials
In this case, it is assumed to be the likelihood of {DW), ... , DN} given the parameters 0
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Example: coin tossing (ernoulli Trials)

* (Log-)Likelihood Function

((0|D) = log P(D|0) = log P({XV}|) = log ( Nile) HP(X@'H@) = log ( Nf:1>+21og P(X@p)

Rewrite P(X | 0) as:

P(X | 6) = aX=11 — n)X= where: (XD =] := { 1 if XW=wv Alsocalled

0 if X® £y indicatorfunction

((6 | D) = log ( Nf_l) + > log (r X (1 = )

N . .
—1o +loemy (XD =1] + log(1l -7 X —q
() + Toam X1 =1+ og(1—m) 37 (X0 =0

N
zlog( ) + Nx—1 10g7T + NX:010g(1_7T)
Nx—1

= Maximum Likelihood Estimation

% . % . NX=1 B NX=0 @ — 0 N 9* . NX:l o NX:1
0  or o7 (1—m) 20 ML ™ Ny_1+Nx—g N
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Anti-spam filter

P(Y.X1,....Xn) = PO [ [ P(Xi | V)
=1
Parameters: the conditional probability tables in the graphical model @ @ @ @
O:={my, mix} , PY =k) = m PXi=j|Y =k = 7w

Observations: a set of messages with classification
D= {D(l) :{Y (1) = 1, Xl(l) =1, ..., Xn(l) = O}’

DN ={y,™ =y X, M=x M X©N=x M}

= | jkelihood Function
L(#|D) = P(D|#) = PUD"}{mp,mii}) = [ P(D™ o, mijn})

(data items are 1ID)
= [TPHY™ =y x,0 = 2,0} {m, w5 })

= lT[P(Y(m) =y [, min ) PUXG™ = &MYy 0m) = () g, i })

= ﬁp(y(m) =y ™ |{m}) PUX™ = 2, Y ) = () {700}

= lT[P(Y(m) =y ™ {me}) TTPEGT™ =2, ™y () =y (") {75, })

(factorization)

(cond. independence)

(<X L X1 Y>)

Artificial Intelligence 2020-2021 Supetvised Learning [10]



Anti-spam filter

P(Y,Xy,...,Xn) =PV [[ P(X: | Y

S & w0 w

» [og-Likelihood Function

(({mmigp} D) = Y log PY™ =y {me}) +) Y log P(X"™ = 2,y 0™ = 0 {m03)

m 1

Alternative form for P: (i.e. rewritten using indicator functions)
P(Y = kl{m}) = [Im¥ ="
2

P(X; = jIY =k {mij1}) = [1T]mi X ==
j kK

(({mpmip D) = YD Y™ =k logme + > > Y [X, =4[y ™ = k] log i
m k m 1 J k

/ _—

Being both positive and depending on different variables,
the two terms above can be optimized separately
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Anti-spam filter

P(Y.X1,....Xn) = PO [ [ P(Xi | V)
=1
= Maximum Likelihood Estimation @ @ @ @
({mimgpdID) = 3 W™ =k logme + > > > > (X, = jI[Y™ = k] log miju
m k m 1 j k
Optimizing first term: 'Lagrange multiplier

//
CUmID) = YDV =k logm+ AL — > m)
m k k

y(m) — [
e L
o, Tk B - number of messages in D classified as k
or Ny—i
Oy, Tk A
o = = - - -
T =1 = Z \ =1 = A\ = ZNy—k = N
k k k
T = ;/V:k (Maximum Likelihood Estimator of =)
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Anti-spam filter

P(Y,Xy,...,Xn) =P(YV) ][ P(X: | V)

=1
= Maximum Likelihood Estimation @ @ @ @
(e migr} D) = Y ) YO = k] logme + 3> % > X" = IV = k] log i
m % m i o k
Optimizing second term: ~_Lagrange multipliers

B*({ﬂ'iijD Z ZZZ [X (m) — J y(m = k 10g Tijk T+ ZZ )\zk — Zﬂ'ijk)

> [Xi(m) = j)[v (™) = k]

or* —
= — Aik
aﬂijk 5k
or* Nx,—i y—
=0 = my= o hIE
OTijk ik

E Tijk = 1 = E NXiiji;Y:k =1 == A = E NXi:j, y=r = Ny—p
. . 7 .
J

T Nx,=j, v=k
ik NY:k

(Maximum Likelihood Estimator of ;)
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Learning CPTs for 3 graphical model

As Maximum Likelihood Estimation

Parameters: the conditional probabilities (i.e. all CPTs)
Observations: sequence of sets of values, from completely observed situations

Nr—g Np—o N
TIp@m) N Nra [ElpE) N L= Ns—o. p—o
i 1T Flspeip— 0
0l o ./ — ,SJ‘\;I,F—O
01 o— | F=0
110 ¢ Ng—o, F=1
TIF|APA|TF T TN,
oTo T a T N
Ny _ _
0|1/0 % NF:1
011 A=0
10 0 NI;I A=0
1]0]1 — A=0
1110 Ni—o, A=1
111 N
Np—1, 4-1

P(RIL)

[l el e AN e N
R OoORFr o
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Learning CPTs for 3 graphical model

As Maximum Likelihood Estimation

More in general:
The MLE of a (directed) graphical model is the MLE of each node
(in each corresponding observation subset)

0 = argmax, P(D | 6)
0 = {7TT,7TF:7TS|F77TA|S,F77TL|A77TR|L}

mp = argmax, . P(D | 7p)

Ty = argmax,  P(D |7p)

Tgp i= argmax,  P(Dp | mgF)
7r:2|T’F 1= argmax,, . . P(Dr.r | TaiT,F)
Trja i=argmax, . P(Da | mpa)

W2|L = argmax, P(Dy, | mRrL)

DTJ F denotes the subset of complete observation in which
the random variables T, F have the corresponding values
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Bayesian Learning:
Maximum 3 Posteriori (MAP)
estimator
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Bayesian learning

» Maximum a Posteriori Estimation (MAP)
Instead of a likelihood function, the a posteriori probability is maximized
P(D|0) P(6) P(D|9) P(6)
P0|D) = =
P(D) ;P(DIQ)P(Q)

Which is equivalent to optimize, w.r.t. 0:

P(D|0) P(0)
Oyap = argmax, P(D|0) P(6)

Advantages:
= Regularization: not all possible combinations of values might be presentin D
= A formula forincremental learning:
a priori terms could represent what was known before observations D
Problem:
= Which prior distribution P(6)?
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(*) In a finitary setting

Beta distribution

Gamma function (n integer > Q)
['(n) :=(n—1)!
Beta function (o and f integers > Q)

F(a)I‘(ﬁ) (Oﬁ — 1)'(ﬁ — 1)' The definition is more complex
B(Oé, /6) = F(a n 6) = (a n ,8 — 1)' when o and B are not integers (see Wikipedia)

= Beta probability density function (pdf) (@ and B integers > 0)

gr-1(1— )" ~1
Beta(0; a, B) = Ef(a ﬂ)) The maximum occurs at: 0 = - i 59

Beta(0;1,1) Beta(0;2,2) Beta(0;10,10) Beta(0;2,3)
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Conjugate prior distributions

Coin tossing (i.e. Binomial) ap and By are the result counts (i.e. heads and tails)
hal__—
ap + Bp ap + Bp
P(DI|6) = P(X;|0) = 6or (1 — g)°p
o) = (%2, ) TPecioy = (%20 %) o= a0

A posteriori probability with Beta prior

ap and Bp are are the hyperparameters of the prior

/

ap—1(1 _ p\Bpr—1
60 (1 — 0)° Beta(d; ap, fp) = orr (1 0)

B(ap,Bp)

P(D|0)P(6) = (O‘D + 5”)

ap

(OéD + Bp

ap

) 6P (1 —0)°P.

_ (QD + /BD) 9(113+ap—1(1 o 9),3D+18P—1 _ (OfD + ﬁD) B((]{D —1—(1’P,/6D + 6P)Beta(9_ O!D"‘aP /8D+6P)

B(Q{p,ﬁp) ap B(Oﬁp,ﬁp)

ap

this factor is a positive constant (for 6)
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Conjugate prior distributions

Coin tossing (i.e. Binomial) ap and By are the result counts (i.e. heads and tails)
P = (PP [T Pxide) = (*° PP Veer (1 - gy
ap ; ap

A posteriori probability with Beta prior

ap + /BD) B(ap + ap, Bp + Bp)
ap B(aPJﬂP)

P(D|0)P(§) = ( Beta(6; ap + ap, Bp + Bp)

/""is proportional to"

P(D|0)P(#) x Beta(bap + ap,Bp + Bp)

Optimization:

ap +ap —1
ap +ap + fp + fp — 2
which is the same as MLE but with the addition of @ + s pseudo-observations

Being a conjugate prior P(9) of a distribution P(D|9) /’” the above sense
means that the posterior P(D|8)P(0) isin the same family of P(0)

vAp = argmaxy Beta(6;ap + ap,Bp + fp) =
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Conjugate prior distributions

Coin tossing (i.e. a specific observation i)
P(D;|0) = gX=ta — g)Xi=0

Likelihood (of a dataset)

P(DI|0) = (NL) IZIP(D@-W) — (N§:1)9NX=1(1_9)NX=0

A posteriori probability with Beta prior

"is proportional to"

P(D|0)P(0) x Beta(f, Nx=1+ ap, Nx=o+ [p)

Therefore
Nx—14+ap—1
N + ap —I—,Bp — 2

HTMAP = argmaxe Beta(H, NX:]_ +O¥P, NX:O +/8P) —

which is the same as MLE but with the addition of «a, + B, pseudo-observations

Being a conjugate prior P(9) of a distribution P(D|9) in the above sense
means that the posterior P(D|0)P(68) is in the same family of P(6)
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Anti-spam filter

P(Y,Xy,...,Xn) = POV) [ P(Xi | Xioy
=1

» Maximum a Posteriori (MAP) Estimation
The adapted computations for:

Oyap = argmax, P(D|0) P(6)

yield:
o ap + Ny—p — 1 .
k ap + Be + N —2 (MAP Estimator of z\))
W,Zk ik = ik Xi=J, Y=k (MAP Estimator of )
ik + Bijk + Ny—=p — 2
where the

af, ﬁk, Qijk, Bz'jk

are the hyperparameters of the prior distribution
representing the pseudo-observations
made before the arrival of new, actual observations D

)

X e %
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Learning CPTs for 3 graphical model

As Maximum a Posteriori Estimation

More in general:
The MAP of a (directed) graphical model is the MAP of each node
(in each corresponding observation subset)

Oy ap = argmax, P(D | 0) P(0)

0 = {WTaWF:ﬂ'S|F77TA|S,Fa7TL|A77TR|L}

np = argmax,  P(D | mr) P(mr)

np = argmax,  P(D |7p) P(np)

7T:'§|F 1= argmax, P(Dp | 7T5|F) P(7T3|F)

7r:2|T’F 1= argmax,, . . P(Dr.r | mair,r) P(mair,F)
7r2|A = argmax,, . P(Dy4 | 7TL|A) P(’]TL|A)

T = argmax,  P(Dp | 7gy) P(7R 1)

DT, F denotes the subset of complete observation in which
the random variables T, F have the corresponding value
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