

Unsupervised Learning

Marco Piastra

An aside: The K-means algorithm *(i.e. alternate optimization)*

Vector quantization

Quantization (compression via prototypes)

The basic idea is to replace each real-valued vector $\mathbf{x} \in \mathbb{R}^d$ with a discrete symbol $\mathbf{w}_i \in \mathbb{R}^d$ which belongs to a codebook of k prototypes $\theta := \{\mathbf{w}_1, \dots, \mathbf{w}_k\}$

Each data vector is encoded by using the index of the most similar prototype, where similarity is measured in terms, for instance, of Euclidean distance:

$$w(\mathbf{x}) := \operatorname{argmin}_{\mathbf{w}_j} \|\mathbf{x} - \mathbf{w}_j\|$$

For instance, part of mpeg4 and QuickTime (Apple) video compression algorithms work in this way and so does the Ogg Vorbis audio compression algorithm

k-means (Generalized Lloyd's Algorithm – Vector quantization)

Given a set $D := {\mathbf{x}_1, ..., \mathbf{x}_N}$ of observations (i.e. vectors in \mathbb{R}^d) and a set $\theta := {\mathbf{w}_1, ..., \mathbf{w}_k}$ of k prototypes (i.e. vectors in \mathbb{R}^d)

Clustering problem: find an assignment function $w: D \rightarrow \theta$ such that the objective (loss) function:

$$J(D,\theta) := \frac{1}{2} \sum_{i=1}^{N} \|\mathbf{x}_{i} - w(\mathbf{x}_{i})\|^{2}$$

is minimized.

k-means (Generalized Lloyd's Algorithm – Vector quantization)

k-means algorithm:

- 1) Position the *k* prototypes at random
- 2) Assign each observation to its closest prototype

$$w(\mathbf{x}_i) := \operatorname{argmin}_{\mathbf{w}_j} \|\mathbf{x}_i - \mathbf{w}_j\|$$

3) Position each prototype at the *centroid* of the observations assigned to it

$$\mathbf{w}_j = \frac{1}{|D(\mathbf{w}_j)|} \sum_{D(\mathbf{w}_j)} \mathbf{x}_i \qquad \text{where} \ D(\mathbf{w}_j) := \{\mathbf{x}_i \in D \mid w(\mathbf{x}_i) = \mathbf{w}_j\}$$

4) Unless no prototype was moved in step 3), go back to step 2)

This algorithm converges to a local minimum of $J(D, \theta)$

K-MEANS (Generalized Lloyd's Algorithm – Vector quantization)

Why does the algorithm work: *alternate optimization (also 'coordinate descent')* Step 2): Assign observations while keeping the k prototype fixed

$$w(\mathbf{x}_i) := \operatorname{argmin}_{\mathbf{w}_j} \|\mathbf{x}_i - \mathbf{w}_j\|$$

which minimizes each of the terms in $J(D, \theta) := \frac{1}{2} \sum_{i=1}^{N} \|\mathbf{x}_i - w(\mathbf{x}_i)\|^2$

Step 3): Reposition the k prototypes while keeping the assignments fixed $J(D,\theta) := \frac{1}{2} \sum_{i=1}^{N} \|\mathbf{x}_{i} - w(\mathbf{x}_{i})\|^{2} = \frac{1}{2} \sum_{j} \sum_{D(\mathbf{w}_{j})} (\mathbf{x}_{i} - \mathbf{w}_{j})^{2}$ $\frac{\partial}{\partial \mathbf{w}_{j}} J(D,\theta) = \frac{\partial}{\partial \mathbf{w}_{j}} \frac{1}{2} \sum_{D(\mathbf{w}_{j})} (\mathbf{x}_{i} - \mathbf{w}_{j})^{2} = \frac{\partial}{\partial \mathbf{w}_{j}} \frac{1}{2} \sum_{D(\mathbf{w}_{j})} (\mathbf{x}_{i} - \mathbf{w}_{j})^{T} (\mathbf{x}_{i} - \mathbf{w}_{j})$ $= \frac{\partial}{\partial \mathbf{w}_{j}} \frac{1}{2} \sum_{D(\mathbf{w}_{j})} (\mathbf{x}_{i}^{2} + \mathbf{w}_{j}^{2} - 2 \mathbf{x}_{i}^{T} \mathbf{w}_{j}) = \sum_{D(\mathbf{w}_{j})} (\mathbf{w}_{j} - \mathbf{x}_{i})$

then, by imposing $\frac{\partial}{\partial \mathbf{w}_j} J(D, \theta) = 0$ we obtain

$$\mathbf{w}_j = rac{1}{|D(\mathbf{w}_j)|} \sum_{D(\mathbf{w}_j)} \mathbf{x}_i$$

Artificial Intelligence 2019–2020

Unsupervised Learning [6]

Discussion of the *k*-means algorithm

- a) At each step of the algorithm $J(D,\theta)$ cannot increase: only decrease or stay equal
- b) The algorithm is a variant of a *gradient descent*, in which at each step the *gradient descent* is performed on one subset of variables only
- c) It must reach a *fixed point*, where both gradients vanish
- d) But the only guarantee is that the algorithm reaches a local minimum (unless it gets stuck in a saddle point)

*k***-***means* (Generalized Lloyd's Algorithm – Vector quantization)

Given a set $D := {\mathbf{x}_1, ..., \mathbf{x}_N}$ of observations (i.e. vectors in \mathbb{R}^d) and a set $\theta := {\mathbf{w}_1, ..., \mathbf{w}_k}$ of k prototypes (i.e. vectors in \mathbb{R}^d) **Voronoi cell:**

 $V(\mathbf{w}_j) := \{ \mathbf{x} \in \mathbb{R}^d \mid \|\mathbf{x} - \mathbf{w}_j\| \le \|\mathbf{x} - \mathbf{w}_l\|, \forall l \neq j \}$

Voronoi tesselation: the complex of all Voronoi cells of θ

Algorithm (rewritten):

- 1) Position the *k* prototypes at random
- 2) Assign each observation to its Voronoi cell

$$w(\mathbf{x}_i) := \mathbf{w}_j \mid \mathbf{x}_i \in V(\mathbf{w}_j)$$

3) Position each prototype at the *centroid* of the observations in its Voronoi cell

$$\mathbf{w}_j = \frac{1}{|\{\mathbf{x}_i \in V(\mathbf{w}_j)\}|} \sum_{\{\mathbf{x}_i \in V(\mathbf{w}_j)\}} \mathbf{x}_i$$

4) Unless no prototype was moved in step 3), go back to step 2)

k-means

An example run of the algorithm

The landmarks (empty circles) become black when they cease to move

b) 0 Lloyd iterations

c) 1 Lloyd iteration

The Expectation–Maximization (EM) algorithm

Expected value of a random variable

(also expectation)

Basic definition

$$\mathbb{E}_X[X] := \sum_{x \in \mathcal{X}} x \ P(X = x)$$

A linear operator

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$
$$\mathbb{E}[cX] = c\mathbb{E}[X]$$

More concise notation

$$\mathbb{E}[X] := \sum_{x \in \mathcal{X}} x \ P(x)$$

Continuous case

$$\mathbb{E}[X] := \int_{x \in \mathcal{X}} x \ p(x) dx$$

Conditional expectation

$$\mathbb{E}_X[X|Y=y] = \mathbb{E}[X|Y=y] := \sum_{x \in \mathcal{X}} x \ P(X=x|Y=y)$$

Iterated expectation (see Wikipedia)

 $\mathbb{E}_X[X] = \mathbb{E}_Y[\mathbb{E}_X[X|Y]]$

Joint Expected Value

The **expected value** of a function f of a <u>set</u> of random variables{ X_i } is

$$\mathbb{E}[f(\{X_i\})] := \sum_{\{X_i\}} f(\{X_i\}) P(\{X_i\})$$

the sum is over all possible combinations of values of the random variables

(Unless specified otherwise, the \mathbb{E} operator acts over *all* the random variables enclosed)

The extension to the continuous case is obvious

Incomplete observations

Example: 'Hidden Markov' model

Terminology: hidden = latent = always unobserved missing = unobserved (in a data set)

Typically, Z_i nodes are *hidden*, i.e. *non-observables*

$$P(\{X_i\}, \{Z_j\}) = P(Z_1)P(X_1 \mid Z_1) \prod_{i=2}^n P(Z_i \mid Z_{i-1})P(X_i \mid Z_i) \quad \text{Joint distribution}$$

Problem

MLE of parameters θ starting from *partial* observations of the $\{X_i\}$ variables <u>only</u>

In other terms, this is the MLE of the likelihood function

$$L(\theta|D) = P(D|\theta) = \sum_{\{Z_j\}} P(D, \{Z_j\}|\theta)$$

Note that the <u>model</u> (= the probability function) and the (partial) <u>observations</u> are known, the <u>parameters</u> and the values of some <u>variables</u> are <u>hidden</u>

An experiment with two coins

At each step, one coin is selected at random (*with equal probability*) and then tossed ten times

Random variables: X number of heads, Z selected coin (i.e A or B) Parameters to be learnt: $\theta = \{\theta_A, \theta_B\}$ probabilities of landing on head of A and B When the results are fully observable, by MLE:

$$\theta_A^* = \frac{N_{X=1,Z=A}}{N_{Z=A}} \qquad \theta_B^* = \frac{N_{X=1,Z=B}}{N_{Z=B}}$$

An experiment with two coins

At each step, one coin is selected at random (*with equal probability*) and then tossed ten times

Random variables: X number of heads, Z selected coin (i.e A or B)

Parameters to be learnt: $\theta = \{\theta_A, \theta_B\}$ probabilities of landing on head of A and B

What if Z is hidden (= latent, = unobserved)?

The results of each sequence of coin tosses are known, but not the coin selected

What if Z is hidden (= latent, = unobserved)? Likelihood

$$P(D \mid \theta) = P(\{x^{(i)}\} \mid \theta) = \sum_{\{Z^{(i)}\}} P(\{\langle x^{(i)}, Z^{(i)} \rangle\} \mid \theta)$$

MLE

$$\theta^* := \operatorname{argmax}_{\theta} \sum_{\{Z^{(i)}\}} P(\{\langle x^{(i)}, Z^{(i)} \rangle\} \mid \theta)_{* \tau h}$$

* This optimization is intractable, in general

- What if Z is hidden (= latent, = unobserved)? Intuitive idea: use expected values for unobserved variables
 - 1. Define an initial (random) guess $\hat{ heta}^{(0)}$
 - 2. Create an intermediate function $Q(\{\langle x^{(i)}, Z^{(i)} \rangle\} \mid \hat{\theta}^{(t)})$ based on $\mathbb{E}_{Z^{(i)}}[X^{(i)} \mid \hat{\theta}^{(t)}]$
 - 3. Maximize

$$\hat{\theta}^{(t+1)} = \operatorname{argmax}_{\theta} \sum_{i} Q(\{\langle x^{(i)}, Z^{(i)} \rangle\} \mid \hat{\theta}^{(t)})$$

4. Unless some convergence i criterion has been met, go to step 2.

Artificial Intelligence 2019-2020

Unsupervised Learning [18]

Artificial Intelligence 2019-2020

Unsupervised Learning [19]

Artificial Intelligence 2019–2020

Unsupervised Learning [20]

An aside: Jensen's inequality

Corollary:

when f is strictly convex, if and only if all the variables in $\{X_i\}$ are constant it is true that

 $f(\mathbb{E}[\{X_i\}]) \leq \mathbb{E}[f(\{X_i\})]$

Dual results also hold for *concave* functions

An aside: Jensen's inequality

A relationship between probability and geometry When f is convex function

 $f(\mathbb{E}[\{X_i\}]) \leq \mathbb{E}[f(\{X_i\})]$

To see this, consider

 $p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \lambda_4 p_4$ i.e. a *linear combination* of p_i points

This is an **affine** combination if $\sum \lambda_i = 1$ and it is a **convex** combination if also $\lambda_i \ge 0, \forall i$

When the λ_i define a probability, then p is a *convex combination* of p_i points

Any convex combination of p_i points lies inside their **convex hull** (see figure) and therefore above f:

$$\sum_{i} \lambda_i f(x_i) \geq f(\sum_{i} \lambda_i x_i)$$

Corollary: the only way to make the convex hull be <u>on</u> f is to shrink it to a single point (i.e. the Jensen's corollary)

Incomplete observations

Likelihood function with hidden random variables $L(\theta|D) = P(D|\theta) = \prod P(D^{(m)}|\theta)$ $\ell(\theta|D) = \sum_{m} \log P(D^{(m)}|\theta) = \sum_{m} \log \sum_{\{Z_i\}} P(D^{(m)}, \{Z_i\}|\theta_k)$ $= \sum_{m} \log \sum_{\{Z_i\}} Q^{(m)}(\{Z_i\}) \frac{P(D^{(m)}, \{Z_i\} | \theta)}{Q^{(m)}(\{Z_i\})}$ $= \sum_{m} \log \mathbb{E}_{Q^{(m)}(\{Z_i\})} \left[\frac{P(D^{(m)}, \{Z_i\} | \theta)}{Q^{(m)}(\{Z_i\})} \right] \ge \sum_{m} \mathbb{E}_{Q^{(m)}(\{Z_i\})} \left[\log \frac{P(D^{(m)}, \{Z_i\} | \theta)}{Q^{(m)}(\{Z_i\})} \right]$ $= \sum_{m} \sum_{\{Z_i\}} Q^{(m)}(\{Z_i\}) \log \frac{P(D^{(m)}, \{Z_i\} | \theta)}{Q^{(m)}(\{Z_i\})}$

Expectation-Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)

Log-likelihood function:

$$\ell(\theta|D) \geq \sum_{m} \sum_{\{Z_i\}} Q^{(m)}(\{Z_i\}) \log \frac{P(D^{(m)}, \{Z_i\} | \theta)}{Q^{(m)}(\{Z_i\})}$$

$$|_{This inequality becomes equality} |_{when this term is constant (see Jensen's corollary)}$$

$$I) \text{ Keep } \theta \text{ constant, define } Q^{(m)}(\{Z_i\}) \text{ so that the right side of the inequality is maximized}$$

$$Q^{(m)}(\{Z_i\}) := \frac{P(D^{(m)}, \{Z_i\} | \theta)}{\sum_{\{Z_i\}} P(D^{(m)}, \{Z_i\} | \theta)} = \frac{P(D^{(m)}, \{Z_i\} | \theta)}{P(D^{(m)} | \theta)} = P(\{Z_i\} | D^{(m)}, \theta) =: p_{\{Z_i\}}^{(m)}$$

$$These numbers can be computed from the |_{graphical model (i.e. as an inference step)}$$

2) Then maximize the log-likelihood while keeping $Q^{(m)}(\{Z_i\})$ constant

$$\begin{aligned} \theta^* &= \operatorname{argmax}_{\theta} \sum_{m} \sum_{\{Z_i\}} p_{\{Z_i\}}^{(m)} \log \frac{P(D^{(m)}, \{Z_i\} | \theta)}{p_{\{Z_i\}}^{(m)}} & \text{This is also called the entropy of } Q^{(m)}(\{Z_i\}) \\ &= \operatorname{argmax}_{\theta} \sum_{m} \left(\sum_{\{Z_i\}} p_{\{Z_i\}}^{(m)} \log P(D^{(m)}, \{Z_i\} | \theta) - \sum_{\{Z_i\}} p_{\{Z_i\}}^{(m)} \log p_{\{Z_i\}}^{(m)} \right) \right) \\ &= \operatorname{argmax}_{\theta} \sum_{m} \sum_{\{Z_i\}} p_{\{Z_i\}}^{(m)} \log P(D^{(m)}, \{Z_i\} | \theta) \end{aligned}$$

Artificial Intelligence 2019-2020

Unsupervised Learning [25]

Expectation-Maximization (EM) Algorithm

Alternate optimization (coordinate ascent)

Log-likelihood function and its estimator:

$$\ell(\theta|D) \geq \sum_{m} \sum_{\{Z_i\}} Q^{(m)}(\{Z_i\}) \log \frac{P(D^{(m)}, \{Z_i\}|\theta)}{Q^{(m)}(\{Z_i\})}$$

Algorithm:

- 1) Assign the θ at random
- 2) (*E-step*) Compute the probabilities

$$p_{\{Z_i\}}^{(m)} = Q^{(m)}(\{Z_i\}) = P(\{Z_i\}|D^{(m)},\theta)$$

3) (*M-step*) Compute a new estimate of θ

$$\theta^* = \operatorname{argmax}_{\theta} \sum_{m} \sum_{\{Z_i\}} p_{\{Z_i\}}^{(m)} \log P(D^{(m)}, \{Z_i\} | \theta)$$

4) Go back to step 2) until some convergence criterion is met

The algorithm converges to a local maximum of the log-likelihood The effectiveness of algorithm depends on the form of $P(\{Z_i\}|D^{(m)},\theta)$ (see step3) In particular, when this distribution is <u>exponential</u>... (e.g. Gaussian – see next slide)

EM Algorithm: mixture of Gaussians

Model:

Ζ

X

The hidden variable Z has k possible values, the observable variable X is a point in \mathbb{R}^d

 $P(Z = k) := \phi_k$ Multivariate normal distribution

 $P(X = x | Z = k) = \mathcal{N}(x; \mu_k, \Sigma_k) := (2\pi)^{-d/2} (\det \Sigma_k)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right)$

i.e. the condition probabilities are <u>normal</u> distributions

The observations are a set $D = \{x^{(1)}, \ldots, x^{(N)}\}$ of points in \mathbb{R}^d

Algorithm:

- 1) For each value k, assign ϕ_k , μ_k and Σ_k at random
- 2) (*E-step*) For all the x_i in D compute the probabilities $p_k^{(m)} = P(Z = k | x^{(m)}, \phi_k, \mu_k, \Sigma_k) = \phi_k \cdot \mathcal{N}(x^{(m)}; \mu_k, \Sigma_k)$
- 3) (*M-step*) Compute the new estimates for the parameters

$$\phi_{k} = \frac{1}{n} \sum_{m} p_{k}^{(m)}$$

$$\mu_{k} = \frac{\sum_{m} p_{k}^{(m)} x^{(m)}}{\sum_{m} p_{k}^{(m)}} \qquad \Sigma_{k} = \frac{\sum_{m} p_{k}^{(m)} (x - \mu_{k}) (x - \mu_{k})^{T}}{\sum_{m} p_{k}^{(m)}}$$

4) Go back to step 2) until some convergence criterion is met

EM Algorithm: mixture of Gaussians

Model:

Ζ

X

The hidden variable Z has k possible values, the variable X is a point in \mathbb{R}^d

$$P(Z=k) := \phi_k$$

 $P(X = x | Z = k) = \mathcal{N}(x; \mu_k, \Sigma_k) := (2\pi)^{-d/2} (\det \Sigma_k)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right)$ *i.e. the condition probabilities are <u>normal</u> distributions*

The observations are a set $D = \{x^{(1)}, \ldots, x^{(N)}\}$ of points in \mathbb{R}^d

Proof (of the M-step):

$$\sum_{m} \sum_{k} p_{k}^{(m)} \log P(X^{(m)}, Z = k | \phi_{k}, \mu_{k}, \Sigma_{k})$$

$$= \sum_{m} \sum_{k} p_{k}^{(m)} \log P(X^{(m)} | Z = k, \mu_{k}, \Sigma_{k}) P(Z = k | \phi_{k})$$

$$= \sum_{m} \sum_{k} p_{k}^{(m)} \left(\log \left(2\pi^{-d/2} (\det \Sigma_{k})^{-1/2} \right) + \left(-\frac{1}{2} (x - \mu_{k})^{T} \Sigma_{k}^{-1} (x - \mu_{k}) \right) + \log \varphi_{k} \right)$$

EM Algorithm: mixture of Gaussians

Model:

Ζ

X

The hidden variable Z has k possible values, the variable X is a point in \mathbb{R}^d

$$P(Z=k) := \phi_k$$

 $P(X = x | Z = k) = \mathcal{N}(x; \mu_k, \Sigma_k) := (2\pi)^{-d/2} (\det \Sigma_k)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right)$ *i.e. the condition probabilities are <u>normal</u> distributions The observations are a set D*= {x⁽¹⁾, ..., x^(N)} of points in \mathbb{R}^d

Proof (of the M-step):

$$\begin{aligned} \frac{\partial}{\partial \mu_{j}} \sum_{m} \sum_{k} p_{k}^{(m)} \left(\log \left((2\pi)^{-d/2} (\det \Sigma_{k})^{-1/2} \right) + \left(-\frac{1}{2} (x^{(m)} - \mu_{k})^{T} \Sigma_{k}^{-1} (x^{(m)} - \mu_{k}) \right) \right) \\ &= \frac{\partial}{\partial \mu_{j}} \sum_{m} \sum_{k} p_{k}^{(m)} \left(-\frac{1}{2} (x^{(m)} - \mu_{k})^{T} \Sigma_{k}^{-1} (x^{(m)} - \mu_{k}) \right) \\ &= \frac{\partial}{\partial \mu_{j}} \sum_{m} \sum_{k} p_{k}^{(m)} \left(-\frac{1}{2} (x^{(m)} \Sigma_{k}^{-1} x^{(m)} + \mu_{k}^{T} \Sigma_{k}^{-1} \mu_{k} - 2x^{(m)} \Sigma_{k}^{-1} \mu_{k}) \right) \\ &= \sum_{m} p_{j}^{(m)} \left(x^{T} \Sigma_{j}^{-1} - \mu_{j}^{T} \Sigma_{j}^{-1} \right) \\ \text{By imposing:} \quad \sum_{m} p_{j}^{(m)} \left(x^{T} \Sigma_{j}^{-1} - \mu_{j}^{T} \Sigma_{j}^{-1} \right) = 0 \quad \Rightarrow \quad \left| \begin{array}{c} \mu_{j} = \frac{\sum_{m} p_{j}^{(m)} x^{(m)}}{\sum_{m} p_{j}^{(m)}} \\ \mu_{j} = \frac{\sum_{m} p_{j}^{(m)}}{\sum_{m} p_{j}^{(m)}} \end{array} \right| \end{aligned}$$

See the link in the web page for the derivations of other parameters ...

Artificial Intelligence 2019-2020

Topic modeling

Topic modeling

Classifying a (large) corpus of digital documents relying on word counting only

Unsupervised Learning [30]

Multinomial distribution

Bernoulli

Head or Tail?

 $P(X=1) = \theta, \quad P(X=0) = 1-\theta$

Binomial

n heads out of *N* coin tosses

$$P(X=n) = \binom{N}{n} \theta^n (1-\theta)^{(N-n)}$$

Categorical

The result of throwing a dice with k faces

$$P(X = 1) = \theta_1, \quad P(X = k) = \theta_k, \quad \sum_{i=1}^k \theta_i = 1$$

Multinomial

Obtaining an outcome combination x_1, \ldots, x_k in N throws of a k-faced dice, with

$$\sum_{i=1}^{k} x_i = N$$

$$P(X_1 = x_1, \dots, X_k = x_k) = \frac{N!}{x_1! \dots x_k!} \prod_{i=1}^k \theta_i^{x_i}$$

Dirichlet distribution

Beta distribution

What do you think about a coin after obtaining $(\alpha_1 - 1)$ heads and $(\alpha_2 - 1)$ tails?

$$Beta(x_1, x_2; \alpha_1, \alpha_2) := \frac{x_1^{\alpha_1 - 1} \cdot x_2^{\alpha_2 - 1}}{B(\alpha_1, \alpha_2)}, \quad x_1 + x_2 = 1 \qquad This is just a re-writing of the 'standard' formula: Beta(x; \alpha, \beta) := \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

k

i=1

 $x_i = 1$

Dirichlet distribution

What do you think about a k-faced dice after obtaining $(\alpha_1 - 1), (\alpha_2 - 1) \dots (\alpha_k - 1)$ outcomes?

k

$$\mathbf{D}(x_1, \dots, x_k; \alpha_1, \dots, \alpha_k) := \frac{\prod_{i=1}^{k} x_i^{\alpha_i - 1}}{\mathbf{B}(\alpha_1, \dots, \alpha_k)},$$

k

where

$$B(\alpha_1, \dots, \alpha_k) := \frac{\prod_{i=1}^{k} \Gamma(\alpha_i)}{\Gamma\left(\sum_{i=1}^{k} \alpha_i\right)}$$

is the *multivariate Beta function*.

examples of Dirichlet distributions, for k = 3 (from Wikipedia)

The Dirichlet distribution is the *conjugate prior* of the Multinomial distribution

Dirichlet distribution

Symmetric Beta distribution

i.e. when
$$\alpha = \beta$$

Beta $(x_1, x_2; \alpha) := \frac{x_1^{\alpha - 1} \cdot x_2^{\alpha - 1}}{B(\alpha, \alpha)}, \quad x_1 + x_2 = 1$

Symmetric Dirichlet distribution

i.e. when
$$\alpha_1 = \alpha_2 = \dots = \alpha_k$$

 $D(x_1, \dots, x_k; \alpha) := \frac{\prod_{i=1}^k x_i^{\alpha - 1}}{B(\alpha, \dots, \alpha)}, \quad \sum_{i=1}^k x_i = 1$

Note: in both distributions, the parameters can be < 1 (which is true of the non-symmetric versions as well)

Artificial Intelligence 2019-2020

Unsupervised Learning [33]

An aside: plate notation

A shorthand notation for graphical models

An example: Probabilistic Topic Models (Blei & Lafferty, 2009)

Classifying a corpus of documents with k (unknown) topics when the only observable variables is the multiple occurrence of words *A mixture model*:

each document belongs to multiple topics, with different probabilities

An example: Probabilistic Topic Models (Blei & Lafferty, 2009)

Classifying a corpus of documents with k (unknown) topics when the only observable variables is the multiple occurrence of words

A <u>mixture</u> model:

each document belongs to multiple topics, with different probabilities

An example: Probabilistic Topic Models (Blei & Lafferty, 2009)

Classifying a corpus of documents as mixtures of k (unknown) topics when the only observable variables is the multiple occurrence of words

A three-level, <u>mixture</u> model:

each document belongs to multiple topics, with different probabilities

Latent Dirichlet Allocation (LDA)

Classifying a corpus of documents as mixtures of k (unknown) topics when the only observable variables is the multiple occurrence of words

A three-level, <u>mixture</u> model:

each document belongs to multiple topics, with different probabilities

A *generative* procedure:

1 Draw each topic $\beta_i \sim \text{Dir}(\eta)$, for $i \in \{1, \ldots, K\}$.

2 For each document:

- **1** Draw topic proportions $\theta_d \sim \text{Dir}(\alpha)$.
- 2 For each word:

1 Draw
$$Z_{d,n} \sim \operatorname{Mult}(\theta_d)$$
.

2 Draw $W_{d,n} \sim \operatorname{Mult}(\beta_{Z_{d,n}})$.

LDA: which results?

Identifying topics: relative frequencies of words that define a class

Each box represents a topic The size of words in a box represents its relative proportion

	1	2	3	4	5
	dna	protein	water	savs	mantle
	dene	cell	climate	researchers	high
	sequence	cells	atmospheric	new	earth
	genes	proteins	temperature	university	pressure
	sequences	receptor	dlobal	iust	seismic
	human	fig	surface	science	crust
	genome	binding	ocean	like	temperature
	genetic	activity	carbon	work	earths
	analysis	activation	atmosphere	first	lower
	two	kinase	changes	years	earthquakes
	6	7	8	9	10
	end	time	materials	dna	disease
	article	data	surface	i rna i	cancer
	start	two	high	transcription	patients
	science	model	structure	protein	human
	readers	fig	temperature	site	gene
1	service	system	molecules	binding	medical
	news	number	chemical	sequence	studies
	card	different	molecular	proteins	drug
	circle	mate	no	specific	normal
	letters	**	university	sequences	drugs
	11	12	13	14	15
	11 Vears	12 species	13 protein	14 Cells	15 space
	11 years million	12 Species evolution	13 protein structure	14 Cells cell	15 space solar
	11 years million ago	12 Species evolution population	13 protein structure proteins	14 Cells cell virus	15 space solar observations
	11 Years million ago age	12 Species evolution population evolutionary	13 protein structure proteins two	14 CellS cell virus hiv	15 space solar observations earth
	11 years million ago age university	12 species evolution population evolutionary university	13 protein structure proteins two amino	14 CellS cell virus hiv infection	15 Space solar observations earth stars
	11 years million ago age university north	12 species evolution population evolutionary university populations	13 protein structure proteins two amino binding	14 CellS cell virus hiv infection immune	15 Space solar observations earth stars university
	11 years million ago age university north early	12 species evolution population evolutionary university populations natural	13 protein structure proteins two amino binding acid	14 CellS cell virus hiv infection immune human	15 Space solar observations earth stars university mass
	11 Years million ago age university north early fig	12 species evolution population evolutionary university populations natural studies	13 protein structure proteins two amino binding acid residues	14 CellS cell virus hiv infection immune human antigen	15 Space solar observations earth stars university mass sun
	11 Years million ago age university north early fig evidence	12 species evolution population evolutionary university populations natural studies genetic	13 protein structure proteins two amino binding acid residues molecular	14 CellS cell virus hiv infection immune human antigen infected	15 Space solar observations earth stars university mass sun astronomers
	11 Years million ago age university north early fig evidence record	12 species evolution population evolutionary university populations natural studies genetic biology	13 protein structure proteins two amino binding acid residues molecular structural	14 CellS cell virus hiv infection immune human antigen infected viral	15 Space solar observations earth stars university mass sun astronomers telescope
	11 years million ago age university north early fig evidence record 16	12 species evolution population evolutionary university populations natural studies genetic biology 17	13 protein structure proteins two amino binding acid residues molecular structural 18	14 CellS cell virus hiv infection immune human antigen infected viral 19	15 Space solar observations earth stars university mass sun astronomers telescope 20
	11 years million ago age university north early fig evidence record 16 fax	12 Species evolution population evolutionary university populations natural studies genetic biology 17 Cells	13 protein structure proteins two amino binding acid residues molecular structural 18 energy	14 CellS cell virus hiv infection immune human antigen infected viral 19 research	15 Space solar observations earth stars university mass sun astronomers telescope 20 Neurons
	11 years million ago age university north early fig evidence record 16 fax manager	12 Species evolution population evolutionary university populations natural studies genetic biology 17 Cells cell	13 protein structure proteins two amino binding acid residues molecular structural 18 energy electron	14 CellS cell virus hiv infection immune human antigen infected viral 19 research Science	15 Space solar observations earth stars university mass sun astronomers telescope 20 Neurons brain
	11 years million ago age university north early fig evidence record 16 fax manager science	12 Species evolution population evolutionary university populations natural studies genetc toology 17 Cells cell gene	13 protein structure proteins two amino binding acid residues molecular structural 18 energy electron state	14 CellS cell virus hiv infection immune human antigen infected viral 19 research Science national	15 Space solar observations earth stars university mass sun astronomers telescope 20 Neurons brain cells
	11 years million ago age university north early fig evidence record 16 fax manager science aaas	12 Species evolution population evolutionary university populations natural studies genetc torogy 17 Cells cell gene genes	13 protein structure proteins two amino binding acid residues molecular structural 18 energy electron state light	14 CellS cell virus hiv infection immune human antigen infected viral 19 research Science national scientific	15 Space solar observations earth stars university mass sun astronomers telescope 20 Neurons brain cells activity
	11 Years million ago age university north early fig evidence record 16 fax manager science aaas advertising	12 Species evolution population evolutionary university populations natural studies genetc totogy 17 Cells cell gene genes expression	13 protein structure proteins two amino binding acid residues molecular structural 18 energy electron state light quantum	14 CellS cell virus hiv infection immune human antigen infected viral 19 research Science national scientific scientists	15 Space solar observations earth stars university mass sun astronomers telescope 20 <u>Neurons</u> brain cells activity fig
	11 Years million ago age university north early fig evidence record 16 fax manager science aaas advertising sales	12 Species evolution population evolutionary university populations natural studies genetc trotogy 17 Cells cell gene genes expression development	13 protein structure proteins two amino binding acid residues molecular structural 18 energy electron state light quantum physics	14 CellS cell virus hiv infection immune human antigen infected viral 19 research science national scientific scientiss new	15 Space solar observations earth stars university mass sun astronomers telescope 20 Neurons brain cells activity fig channels
	11 Years million ago age university north early fig evidence record 16 fax manager science aaas advertising sales member	12 Species evolution population evolutionary university populations natural studies genetc brokey 17 Cells cell gene genes expression development mutant	13 protein structure proteins two amino binding acid residues molecular structural 18 energy electron state light quantum physics electrons	14 CellS cell virus hiv infection immune human antigen infected viral 19 research science national scientific scientss new states	15 Space solar observations earth stars university mass sun astronomers telescope 20 Neurons brain cells activity fig channels university
	11 Years million ago age university north early fig evidence record 16 fax manager science aaas advertising sales member recruitment	12 Species evolution population evolutionary university populations natural studies genetc bology 17 Cells cell gene genes expression development mutant mice	13 protein structure proteins two amino binding acid residues molecular structural 18 energy electron state light quantum physics electrons high	14 Cells cell virus hiv infection immune human antigen infected viral 19 research science national scientific scientists new states unversty	15 Space solar observations earth stars university mass sun astronomers telescope 20 Neurons brain cells activity fig channels university cortex
	11 years million ago age university north early fig evidence record 16 fax manager science aaas advertising sales member recruitment associate	12 Species evolution population evolutionary university populations natural studies genetc biology 17 Cells cell gene genes expression development mutant mice fig	13 protein structure proteins two amino binding acid residues molecular structural 18 energy electron state light quantum physics electrons high laser	14 CellS cell virus hiv infection immune human antigen infected viral 19 research science national scientific scientists new states university united	15 Space solar observations earth stars university mass sun astronomers telescope 20 <u>Neurons</u> brain cells activity fig channels university cortex neuronal

Unsupervised Learning [39]

LDA: which results?

Classifying documents: relative topic assignment proportions

Each topic is represented by a list of most relevant words

Artificial Intelligence 2019-2020

Unsupervised Learning [40]

LDA in practice

There exist multiple methods

Mean-Field Variational Inference (Blei et al. 2003)

(not discussed here – see links to the literature) (It is a sort of generalization of the EM algorithm)

Many software implementations around: e.g. Apache Mahout

Real-world examples

The OCR'ed collection of Science from 1990-2000 [2009]

- 17K documents
- 11M words
- 20K unique terms (stop words and rare words removed) Model: 100 Topics

The New York Times online recommender system [2015] See http://open.blogs.nytimes.com/2015/08/11/building-the-next-new-york-times-recommendation-engine/