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Proloque:
Logistic Regression
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Graphical Models Redux

» Naive Bayesian Classifier

/ \ P(Y,Xl,...,Xn):P(Y)ﬁP(XAY)
- A 'generative' model
DEONON

P(Y =1) H P(X;ly =1)

> A
L p(Xily =0)

Classification

= Alternative model*

/ \ P(Y,X1,...,X,) = P(Y|X1,..., X,,) [ P(X3)

PY =1|X4,...,X,)
PY =0[X1,...,X,)

Classification

Just reverting the arrows ...
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Graphical Models Redux

» Naive Bayesian Classifier

mn

A/P\ P(Y,Xy,....X,) = PY) [ P(XilY)
A 'generative' model
DEONON

1) +r P(X;lY =1)
P(Y =0) 11 P(X;|Y =0)

o~
I

> A

Classification

= Alternative model* i=1

0 PY,X1,....,X,) = P(Y|X1,...,X,)P(X1,...,X»)

@ Classification P(Y =1]Xy,..., Xn) >\
P(Y =0|X41,...,X,)

Removing any independence hypotheses ...
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Graphical Models Redux

= Alternative model*
0 P(Y,X1,...,X,) =P(Y|X1,...,X,)P(X1,..., X,)

Classification P(Y — 1|X17 tee Xn)

@ P(Y =0|Xy,...,X,)

It may sound promising...
No counter-intuitive independence assumptions (as compared to Naive Bayesian Classifier)
It is enough to learn one conditional distribution P(Y|X1,...,X,)
The MLE is the relative frequency

N == == =
P(Y:y|X1 ::Ela'--,Xn :iEn) = Y=y, X1=21,....Xn=20n

> A

However...
2" probabilities will have to be learnt
Hardly any real-world dataset will contain all possible combinations ...
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Logistic Regression

» Graphical Model
“ P(Y,X1,...,X,) =P(Y|X1,...,X,)P(X1,..., X,)

Classification P(Y — 1|X17 tee Xn)

@ P(Y =0|Xy,...,X,)

For convenience, define: L
X1

> A

plx):=PY =1|X1=21,..., X, =2,) where x:= | i.e. avector

PY=1|X1=x1,..., X, = x,) p(x)

P(Y:0|X1:5L’1,...,Xn:$n) B l—p(a‘c)

OK. How can we define p(x) then?
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Logistic Regression

» Graphical Model
“ P(Y,X1,...,X,) =P(Y|X1,...,X,)P(X1,..., X,)

plx):=PY =1|X1=21,...,. X, =x,)

@ Classification p(x) > \
1 —p(z)

Logit transform:
plx) B el (@) B 1 B
the sigmoid
Assume f(x) linear function
a vector of parameters 1
N _ Logistic Regression
f(aB) T ’wiL'\—I— b = p(w) 1+ e—(w=z+b)  (ie.aparametric distribution)
scalar product of vectors
0 .= {w, b}
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Logistic Regression

= Maximum Likelihood Estimation 1 o [

Dataset L +e™®

D= {(z,yI)} X,
Conditional probability X ol |

P(Y = 1]z) = plx) =

1+ e—(wz+b)
Likelihood

N A 'discriminative' model
vy i — (D)
L(D,0) := Hp(w( ))y (1— p(a:( )))(1 v This is a product of conditional
i—1 probabilities (IID data)
Log-likelihood N
I(D,0) :=logl(D,0) = log [ ] p(=®)*" (1 — p(x®))1-+"")

N i=1
= 3"y logp(@®) + (1 — ™) log(1 — p(z®))
1=1
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Logistic Regression

= Maximum Likelihood Estimation
Log-likelihood ~ ,

I(D,0) Zy( Vogp(x™) + (1 = y)log(1 — p(z))

() = ., @)
_Zlog 1—p ))+Zy logl—p(a:(i))
=1

N
— Z log(1 —p(z™)) + 4 (wz'? + )

=1 1=1
N
_ Z . log(l 4+ 8w:c(%)—|—b) + Zy(@) (ww(z) 4+ b)
=1 1=1

MLE (a.k.a. Maximum Conditional Likelihood Estimator MCLE in this case)
0" .= argmax, (D, 0) = argmin, nl(D,0)
negative log-likelihood — nl(D? 9) = _l(Da 9)

nl(D, ) isconvexfor 6 butitcannot be minimized analytically ...

where
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Gradient Descent
(and all that)
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Gradient Descent (GP): intuition

= Objective

Turn this into a minimization problem

0* := argminy nl(D, 0) ~1 |
/
negative log-likelihood nl(D,8) := —=1(D,0) =7

» [terative methOd/ Step in the method ¥

1. Initialize 89 atrandom

2. Update o) = p(t=1) _ NV nl(DaQ(t_l))

w°
]

3 2 1 0 1 2 3
X

3. Unless some termination criterion has been met, go back to step 2.

In detail
Vo nl(D,0) :=> Vg nl(x®, y@ 0)
D

\
n <1

A learning rate, it is arbitrary (i.e. an hyperparameter)

The gradient of the loss over the dataset D is the sum of gradients over each data item
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Gradient Descent (GD): convergence

= Convergence

When nl(D, ) is convex, derivable, and Lipschitz continuous, that is
Vo nl(D,61) — Vo nl(D,62)[| < C'[|6h —b2f], C>0
the gradient descent method converges to the optimal 6™ for t — 0o

provided that n < 1/C

When nl(D, 9) is derivable, and Lipschitz continuous but not convex

the gradient descent method converges to a local minimum of nl(D, 0)
under the same conditions
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Gradient Descent (GD): practicalities

= Convergence in practice
The choice of the learning rate 71 is crucial

Cost . Cost ) . .
learning rate too low learning rate too high (i.e. no convergence)

= 0 L
Start Start > 8

Cost
A learning rate just right

Learning step

Minimum

. >
Random 8
initial value A

Images from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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Gradient Descent (GD): practicalities

= Convergence in practice
When nl(D, ) is not convex, the initial estimate 6(%) is crucial

Cost

A

Plateau

50 9

. Global
Local minimum 7 .
minimum

(

The outcome of the method will depend on which 6©) s picked

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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Stochastic Gradient Descent (SGD): intuition

= Objective
0* := argminy nl(D, 0)

= [terative method
1. Initialize (%) at random
2. Pickadataitem {(x®, y()) € D with uniform probability
3. Update gt — pt=1) _ n(t)VB nl(w(i),y(";), g(t—l))

4. Unless some termination criterion has been met, go back to step 2.

n(t) <1

Note that the learning rate may vary across iterations...
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Stochastic Gradient Descent (SGD): convergence

= Convergence

When nl(D, ) is convex, derivable, and Lipschitz continuous, that is

||V9 nl(D,@l) — Vi nl(D,QQ)H < C ||91 — 92”, C >0

the stochastic gradient descent method converges to the optimal 6* for t — oo
provided that 1

n(t) < — Note that n(t) — 0 for t = 00
- Ot

When nl(D, @) is derivable, and Lipschitz continuous but not convex

the gradient descent method converges to a local minimum of (D, 0)
under the same conditions
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Converdence rate comparison

Assume nl(D, 0) convex, derivable, and Lipschitz continuous
Accuracy p is attained when

| nl(D,0%) —nl(D,0%) | < p

Define also ,
N := |D| d := dim(?})
Size of data space Dimension of parameter space
%, : :
Time := time required to compute —— nl(m(?’), y(z), 6)
00
Algorithm Cost per Iterations to reach Time to reach
iteration accuracy p accuracy p
Gradient descent 1 1
(GD) O(Nd) O (log —) O (Nd log —)
P P
Stochastic gradient
descent (SGD) O(d) o (l) O (dl)
P P

Lfrom Bottou & Bousquet, 2007]
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Converdence rate comparison

Assume nl(D, 0) convex, derivable, and Lipschitz continuous
Accuracy p is attained when

| nl(D,0%) —nl(D,0%) | < p

Define also :
N := |D| d := dim(#)
Size of data space Dimension of parameter space
%, : :
Time := time required to compute 0. nl (m(?’), y(z), 6)
SGD can be much faster with large datasets ! J
Algorithm Cost per Iterations to reach Time to reach
iteration accuracy p accuracy p
Gradient descent 1 1
(GD) O(Nd) O (log —) O (Nd log —)
P P
Stochastic gradient
descent (SGD) O(d) O (l) O (dl)
P P

Lfrom Bottou & Bousquet, 2007]
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Mini-batch Gradient Descent (MBGD): intuition

= Objective
0* := argminy nl(D, 0)

= [terative method

1. Initialize 89 at random
2. Pickaminibatch B C D with uniform probability
3. Update 8% = 9Ut=1) — (I, ni(B, o)

4. Unless some termination criterion has been met, go back to step 2.

Vo nl(B,0) :== > Vg nl(x™,y",0)
B

This method has the same convergence properties of SGD
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Qualitative methods comparison

Typical traces (| == Stochastic
of the three methods 3.6| — Mini-batch

(batch = GD)

3.4} | ==e Batch

91 3.2+
3.0

2.8}
26}

2.4+
2.5 3.0 3.5 4.0 4.5

In general:

* GDis more regular but slower (with large datasets)
« SGD is faster (with large datasets) but noisy
 MBGD is often the right compromise in practice...

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html

Artificial Intelligence 2019-2020 Supervised Learning [20]



Back to
Logistic Regression
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Logistic Regression

* Maximum Likelihood Estimation
Log-likelihood N N
I(D,0) =3 —log(1+ e +t) 1 37y (awz + 1)
1=1 =1
Iz, yD,0) = —log(1+ e *) + 4 (wz® + )
This is the fundamental computation in all GD-like methods

Parameters can be expressed as:

0 = (w,b)

Hence the gradient can be split into two separate components:

0 0
VQ l(l‘,y,g) — (a_wl(waya 9)7 %l(wayag))

Data item indexes dropped, for simplicity
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Logistic Regression

= | og-likelihood gradients

8 _ 8 wax+b
a—wl(a:, y,0) = 5 ( log(1+e ) + y(wx + b))
_ 0 wx+b i
——8—wlog(1—|—e )+yaw(wm+b)
_ 1 8 wx+b
__1—I—e’”’"*”rb(B?fw(lJre ) +yz
wx+b

= c 6)(w:’fn—l—b)—l— x
14 ewrtb Y

eww—i—b

T Tt ewern YT

= —o(wx + b)x + yx
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Logistic Regression

= | og-likelihood gradients

0 0
-~ — — (—] 1 wx+b
a5 (@ ,0) = o0 (= log(1 4+ €¥*™7) + y(wz + b))
0 0
— 1 1 wx+b -~
o og(l+e )+y8b(wm+b)
_ 1 8 wx+b
= Tl rewsmgptteT )Y
e'w:c—l—b O
=TT ewath gy WE D) Y
e'waz—i—b
- 1 + ewm—{—b + Y
= —o(wx+0b) +y
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Logistic Regression: qualitative example
= RIS dataset

https://archive.ics.uci.edu/ml/datasets/iris

Three classes
(Iris Setosa, Iris Versicolour, Iris Virginica)

Numerical data
(petal length & width, sepal length & width)

150 data items (50 per each class)

§

Virginica . . S , Setosa

Consider just one class: Iris Virginica
(the other class is the complement)
and petal width as unique input feature

Apply logistic regression (with any GD-like method)
This will be the result:

10F=——- - __ A A Kk AAAAAAAAR
------ —
0.8} RS
~
2 S~
Z 06| — Iris-Virginica
'§ 0.4l| == Notlris-Virginica
e
o
0.2
0.0k - ‘ e E
0.0 0.5 1.0 1.5 2.0 25 3.0

Petal width (cm)

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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https://archive.ics.uci.edu/ml/datasets/iris

Logistic Regression: qualitative example

= |RIS dataset

https://archive.ics.uci.edu/ml/datasets/iris

Three classes
(Iris Setosa, Iris Versicolour, Iris Virginica)

Numerical data
(petal length & width, sepal length & width)

150 data items (50 per each class)

Consider just one class: Iris Virginica
(the other class is the complement)

§ :

Virginica . . S , Setosa

with petal width and petal length as input features
Apply logistic regression (with any GD-like method)

This will be the result:

The separation improves

The linearity of the parametrization is evident:
the two classes must be linearly separable

251

Petal width
N
)

£
5
T

1.0f

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Petal length

Image from https://www.safaribooksonline.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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