Artificial Intelligence

Probabilistic reasoning: supervised learning

Marco Piastra

Machine Learning

Types of machine learning problems

Consider a number of observations (i.e. a dataset) made by an agent $\{D^{(1)}, D^{(2)}, ..., D^{(N)}\}$

Supervised learning

Learning form <u>complete</u> observations: each of the observations $\{D^{(1)}, D^{(2)}, ..., D^{(N)}\}$ include values for <u>all</u> the random variables in the model

The objective is learning a *distribution P*

Unsupervised learning

Learning form <u>incomplete</u> observations: observations $\{D^{(1)}, D^{(2)}, ..., D^{(N)}\}$ do <u>not</u> necessarily include values for all the random variables in the model The objective is learning a *distribution P*

Reinforcement learning

The observations $\{D^{(1)}, D^{(2)}, ..., D^{(N)}\}$ are states o situations, at each state X_i the agent must perform an **action** a_i that produces a **result** r_i .

The objective is defining a function $a_i = \pi(D_i)$ that describes a strategy that the agent will follow

The strategy should be optimal, in the sense that it should maximize the expected value of a function $v(< r_1, r_2, ..., r_n >)$ of the sequence of results

Observations and Independence

About notation

Each observation could be the outcome of an experiment or a test

The outcome of a particular experiment can be represented by a set of *random variables*

For example, if the model makes use of the random variable $\{X,Y\}$, the N outcomes of the experiments are $D^{(1)} = \{X^{(1)}, Y^{(1)}\}$, $D^{(2)} = \{X^{(2)}, Y^{(2)}\}$, ..., $D^{(N)} = \{X^{(N)}, Y^{(N)}\}$

Independent observations, same probability distribution

Independent and Identically Distributed (**IID**) *random variables*

Definition

A sequence or a set of random variables $\{X_1, X_2, \dots, X_n\}$ is *Independent and Identically Distributed* (IID) iff:

1)
$$\langle X_i \perp X_i \rangle$$
, $\forall i \neq j$ (independence)

2)
$$P(X_i \le x) = P(X_i \le x)$$
, $\forall i \ne j, \forall x$ (identical distribution)

CAUTION:

Being IID is not an obvious property of observations

Example: different measurements on different patients *may* be IID, but different measurements over time on the same patient are <u>not</u> IID

ML = Representation + Evaluation + Optimization

Assume that an I.I.D. dataset *D* is available

Representation

The objective is learning a specific distribution

$$P({X_r};\theta)$$

where $\{X_r\}$ are all the random variables of interest and θ is a set of parameters

Which kind of distribution (i.e. the *model* or also the *learner*) do we select?

Example: assume we select the anti-spam filter (i.e. Naïve Bayesian Classifier) as the model the parameters in such case are the numerical probabilities in the CPTs

Evaluation

Given a dataset D, how well does a specific set of parameter values $\hat{\theta}$ make the distribution P fit the dataset?

An estimator, i.e. a scoring function of some sort, must be selected

Optimization

How can we find the optimal set of parameter values θ^* with respect to the *estimator* of choice?

In general, this is an optimization problem

Maximum Likelihood Estimator (MLE)

Maximum Likelihood Estimation (MLE)

A probabilistic model P(X), with parameters θ

 θ is a set of values that characterizes P(X) completely: once θ is defined, P(X) is also defined.

A set of IID observations (data items) $D = \{D^{(1)}, ..., D^{(N)}\}$

Likelihood function

A function, or a conditional probability, derived from the model P(X)

$$L(\theta \mid D) = P(D \mid \theta) = P(D^{(1)}, \dots, D^{(N)} \mid \theta)$$

where $P(D \mid \theta)$ is the conditional probability that the parameter θ , considered as a random variables, could generate the observations D

When the observations $\{D^{(1)}, \dots, D^{(N)}\}$ are IID:

$$P(D \mid \theta) = P(D^{(1)} \mid \theta) \dots P(D^{(N)} \mid \theta) = \prod_{m} P(D^{(m)} \mid \theta)$$

Maximum Likelihood Estimation

$$\theta_{ML}^* := \operatorname{argmax}_{\theta} L(\theta|D)$$

Since the observations are IID, using log-Likelihood could ease computations:

$$\ell(\theta \mid D) = \log L(\theta \mid D) = \log \prod_{m} P(D^{(m)} \mid \theta) = \sum_{m} \log P(D^{(m)} \mid \theta)$$

$$\theta_{ML}^* = \operatorname{argmax}_{\theta} \ell(\theta \mid D)$$

Example: coin tossing (Bernoulli Trials)

Experiment: tossing a coin X, not necessarily *fair* (X = 1 head, X = 0 tail)

Parameters:
$$\theta := \{ \pi \} \Leftrightarrow P(X=1) = \pi, P(X=0) = 1 - \pi \}$$

Observations: a sequence of experimental outcomes

$$D = \{D_1 = \{X^{(1)} = x^{(1)}\}, \ D_2 = \{X^{(2)} = x^{(2)}\}, \dots, D_N = \{X^{(N)} = x^{(N)}\}\}$$

Binomial distribution
$$\binom{N}{k} := \frac{N!}{k! (N-k)!}$$
 binomial coefficient

$$P(D|\theta) = \binom{N}{N_{X=1}} \prod_i P(X_i|\theta) = \binom{N}{N_{X=1}} P(X=1|\theta)^{N_{X=1}} \ P(X=0|\theta)^{N_{X=0}}$$

$$N_{Y=1} \text{ is the number of } X=1 \text{ (i.e. heads) in a sequence of } N \text{ trials}$$

$$= \binom{N}{N_{X=1}} \pi^{N_{X=1}} (1-\pi)^{N_{X=0}}$$

It is the probability of obtaining $N_{X=1}$ times 'head' in a sequence of N trials In this case, it is assumed to be the likelihood of $\{D^{(1)}, ..., D^{(N)}\}$ given the parameters heta

Example: coin tossing (Bernoulli Trials)

(Log-)Likelihood Function

$$\begin{split} &\ell(\theta|D) = \log P(D|\theta) = \log P(\{X_i\}|\theta) = \log \binom{N}{N_{X=1}} \prod_i P(X_i|\theta) = \log \binom{N}{N_{X=1}} + \sum_i \log P(X_i|\theta) \\ &\text{Rewrite } P(X|\theta) \text{ as:} \\ &P(X\mid\theta) = \pi^{[X=1]} (1-\pi)^{[X=0]} \quad \text{where:} \quad [X_i=v] := \left\{ \begin{array}{l} 1 & \text{if} \quad X_i=v \quad \text{Also called} \\ 0 & \text{if} \quad X_i \neq v \quad \text{indicator function} \end{array} \right. \\ &\ell(\theta\mid D) = \log \binom{N}{N_{X=1}} + \sum_i \log \left(\pi^{[X_i=1]} \; (1-\pi)^{[X_i=0]} \; \right) = \\ &= \log \binom{N}{N_{X=1}} + \log \pi \sum_i [X_i=1] \; + \; \log(1-\pi) \sum_i [X_i=0] \\ &= \log \binom{N}{N_{X=1}} + \; N_{X=1} \log \pi \; + \; N_{X=0} \log(1-\pi) \end{split}$$

Maximum Likelihood Estimation

$$\frac{\partial \ell}{\partial \theta} = \frac{\partial \ell}{\partial \pi} = \frac{N_{X=1}}{\pi} - \frac{N_{X=0}}{(1-\pi)} \qquad \frac{\partial \ell}{\partial \theta} = 0 \quad \Rightarrow \quad \theta_{ML}^* = \frac{N_{X=1}}{N_{X-1} + N_{X-0}} = \frac{N_{X=1}}{N}$$

$$P(Y, X_1, \dots, X_n) = P(Y) \prod_{i=1}^n P(X_i \mid X_{i-1})$$

Parameters: the conditional probability tables in the graphical model

$$\theta := \{ \pi_k, \ \pi_{ijk} \}$$
 , $P(Y = k) =: \pi_k \ P(X_i = j \mid Y = k) =: \pi_{ijk}$

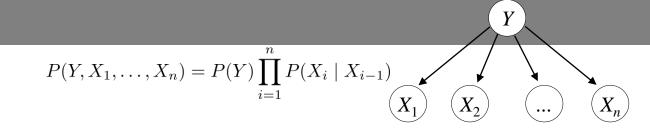
Observations: a set of messages with classification

$$\begin{split} D &= \{D_1 = \{Y^{(1)} = 1, X_1^{(1)} = 1, X_2^{(1)} = 1, ..., X_n^{(1)} = 0\}, ..., \\ D_N &= \{Y_2^{(N)} = y^{(N)}, X_1^{(N)} = x_1^{(N)}, X_2^{(N)} = x_2^{(N)}, ..., X_n^{(N)} = x_n^{(N)}\}\} \end{split}$$

Likelihood Function
 Sequence of messages

$$L(\theta|D) = P(D|\theta) = P(\{D^{(m)}\}|\{\pi_k, \pi_{ijk}\}) = \prod_m P(D^{(m)}|\{\pi_k, \pi_{ijk}\}) \quad \text{(messages are IID)}$$

$$\begin{array}{ll} &=& \prod\limits_{m} P(\{Y^{(m)}=y^{(m)},X_{i}^{(m)}=x_{i}^{(m)}\}|\{\pi_{k},\pi_{ijk}\}) \\ &=& \prod\limits_{m} P(Y^{(m)}=y^{(m)}|\{\pi_{k},\pi_{ijk}\}) \ P(\{X_{i}^{(m)}=x_{i}^{(m)}\}|Y^{(m)}=y^{(m)},\{\pi_{k},\pi_{ijk}\}) \\ &=& \prod\limits_{m} P(Y^{(m)}=y^{(m)}|\{\pi_{k}\}) \ P(\{X_{i}^{(m)}=x_{i}^{(m)}\}|Y^{(m)}=y^{(m)},\{\pi_{ijk}\}) \\ &=& \prod\limits_{m} P(Y^{(m)}=y^{(m)}|\{\pi_{k}\}) \ \prod\limits_{i} P(X_{i}^{(m)}=x_{i}^{(m)}|Y^{(m)}=y^{(m)},\{\pi_{ijk}\}) \\ &=& \prod\limits_{m} P(Y^{(m)}=y^{(m)}|\{\pi_{k}\}) \ \prod\limits_{i} P(X_{i}^{(m)}=x_{i}^{(m)}|Y^{(m)}=y^{(m)},\{\pi_{ijk}\}) \end{array}$$



Log-Likelihood Function

$$\ell(\{\pi_k, \pi_{ijk}\}|D) = \sum_{m} \log P(Y^{(m)} = y^{(m)}|\{\pi_k\}) + \sum_{m} \sum_{i} \log P(X_i^{(m)} = x_i^{(m)}|Y^{(m)} = y^{(m)}, \{\pi_{ijk}\})$$

Alternative form for P: (i.e. rewritten using indicator functions)

$$P(Y = k | \{\pi_k\}) = \prod_k \pi_k^{[Y=k]}$$

$$P(X_i = j | Y = k, \{\pi_{ijk}\}) = \prod_j \prod_k \pi_{i,j,k}^{[X_i = j][Y=k]}$$

$$\ell(\{\pi_k, \pi_{ijk}\}|D) = \sum_{m} \sum_{k} [Y^{(m)} = k] \log \pi_k + \sum_{m} \sum_{i} \sum_{j} \sum_{k} [X_i^{(m)} = j][Y^{(m)} = k] \log \pi_{ijk}$$

Being both positive and depending on different variables, the two terms above can be optimized separately

$$P(Y, X_1, \dots, X_n) = P(Y) \prod_{i=1}^{n} P(X_i \mid X_{i-1})$$

Maximum Likelihood Estimation

$$\ell(\{\pi_k, \pi_{ijk}\}|D) = \sum_{m} \sum_{k} [Y^{(m)} = k] \log \pi_k + \sum_{m} \sum_{i} \sum_{j} \sum_{k} [X_i^{(m)} = j][Y^{(m)} = k] \log \pi_{ijk}$$

Optimizing first term:

_Lagrange multiplier

$$\ell^*(\{\pi_k\}|D) = \sum_{m} \sum_{k} [Y^{(m)} = k] \log \pi_k + \lambda (1 - \sum_{k} \pi_k)$$

$$\frac{\partial \ell^*}{\partial \pi_k} = \frac{\sum_{m} [Y^{(m)} = k]}{\pi_k} - \lambda \qquad \text{number of messages in } D \text{ classified as } k$$

$$\frac{\partial \ell^*}{\partial \pi_k} = 0 \quad \Rightarrow \quad \pi_k = \frac{N_{Y=k}}{\lambda}$$

$$\sum_{k} \pi_k = 1 \quad \Rightarrow \quad \sum_{k} \frac{N_{Y=k}}{\lambda} = 1 \quad \Rightarrow \quad \lambda = \sum_{k} N_{Y=k} = N$$

$$\pi_k^* = \frac{N_{Y=k}}{N}$$
 (Maximum Likelihood Estimator of π_k)

$$P(Y, X_1, \dots, X_n) = P(Y) \prod_{i=1}^n P(X_i \mid X_{i-1})$$

Maximum Likelihood Estimation

$$\ell(\{\pi_k, \pi_{ijk}\}|D) = \sum_{m} \sum_{k} [Y^{(m)} = k] \log \pi_k + \sum_{m} \sum_{i} \sum_{j} \sum_{k} [X_i^{(m)} = j][Y^{(m)} = k] \log \pi_{ijk}$$

Optimizing second term:

Lagrange multipliers

$$\ell^*(\{\pi_{ijk}\}|D) = \sum_{m} \sum_{i} \sum_{j} \sum_{k} [X_i^{(m)} = j][Y^{(m)} = k] \log \pi_{ijk} + \sum_{i} \sum_{k} \lambda_{ik} (1 - \sum_{j} \pi_{ijk})$$

$$\geq \sum_{m} \sum_{i} \sum_{k} [X_i^{(m)} = j][Y^{(m)} = k]$$

$$\frac{\partial \ell^*}{\partial \pi_{ijk}} = \frac{\sum\limits_{m} [X_i^{(m)} = j][Y^{(m)} = k]}{\pi_{ijk}} - \lambda_{ik}$$

$$\frac{\partial \ell^*}{\partial \pi_{ijk}} = 0 \quad \Rightarrow \quad \pi_{ijk} = \frac{N_{X_i=j, Y=k}}{\lambda_{ik}}$$

$$\sum_{j} \pi_{ijk} = 1 \quad \Rightarrow \quad \sum_{j} \frac{N_{X_i=j, Y=k}}{\lambda_{ik}} = 1 \quad \Rightarrow \quad \lambda = \sum_{j} N_{X_i=j, Y=k} = N_{Y=k}$$

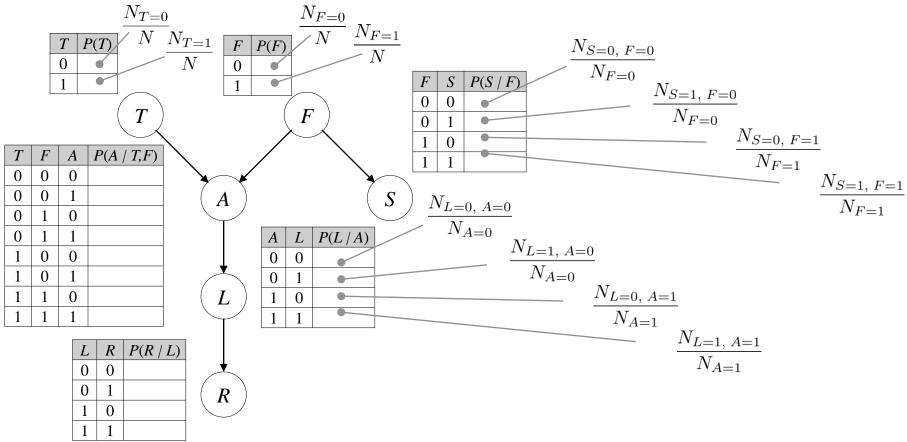
$$\pi_{ijk}^* = rac{N_{X_i=j,\;Y=k}}{N_{Y=k}}$$
 (Maximum Likelihood Estimator of π_{ijk})

Learning CPTs for a graphical model

As Maximum Likelihood Estimation

Parameters: the conditional probabilities (i.e. all CPTs)

Observations: sequence of sets of values, from <u>completely observed</u> situations

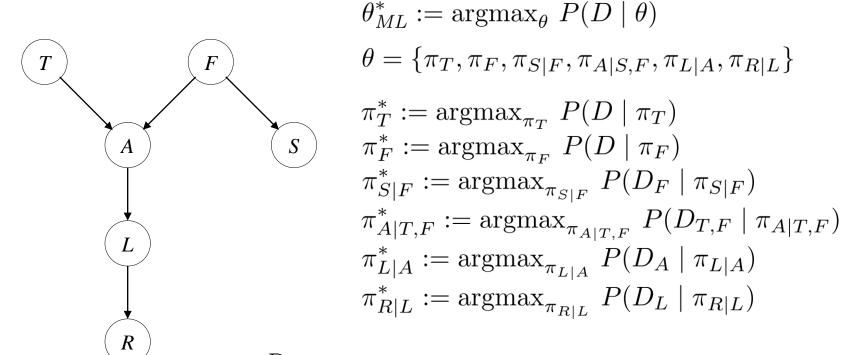


Learning CPTs for a graphical model

As Maximum Likelihood Estimation

More in general:

The MLE of a (directed) graphical model is the MLE of each node (in each corresponding observation subset)



 $D_{T,F}$ denotes the subset of complete observation in which the random variables T,F have the corresponding values

Bayesian Learning: Maximum a Posteriori (MAP) estimator

Bayesian learning

Maximum a Posteriori Estimation (MAP)

Instead of a likelihood function, the a posteriori probability is maximized

$$P(\theta|D) = \frac{P(D|\theta) P(\theta)}{P(D)} = \frac{P(D|\theta) P(\theta)}{\sum_{\theta} P(D|\theta) P(\theta)}$$

Which is equivalent to optimize, w.r.t. θ :

$$P(D|\theta) P(\theta)$$

$$\theta_{MAP}^* := \operatorname{argmax}_{\theta} P(D|\theta) P(\theta)$$

Advantages:

- Regularization: not all possible combinations of values might be present in D
- A formula for incremental learning:
 a priori terms could represent what was known before observations D

Problem:

• Which *prior* distribution $P(\theta)$?

Beta distribution

Gamma function (n integer > 0)

$$\Gamma(n) := (n-1)!$$

Beta function (α and β integers > 0)

$$B(\alpha, \beta) := \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)} = \frac{(\alpha - 1)!(\beta - 1)!}{(\alpha + \beta - 1)!}$$

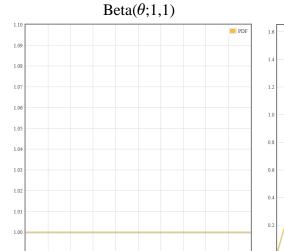
The definition is more complex when lpha and eta are not integers (see Wikipedia)

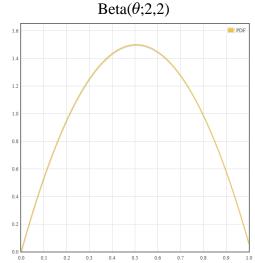
■ Beta probability density function (pdf) (α and β integers > 0)

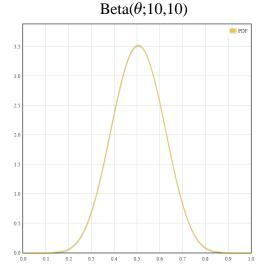
Beta
$$(\theta; \alpha, \beta) := \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)}$$

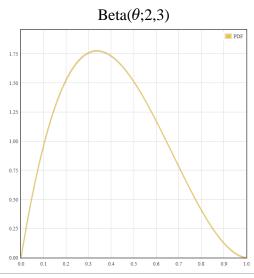
The maximum occurs at:

$$\theta = \frac{\alpha - 1}{\alpha + \beta - 2}$$









Conjugate prior distributions

Coin tossing (i.e. Binomial)

 α_D and β_D are the result counts (i.e. heads and tails)

$$P(D|\theta) = {\binom{\alpha_D + \beta_D}{\alpha_D}} \prod_i P(X_i|\theta) = {\binom{\alpha_D + \beta_D}{\alpha_D}} \theta^{\alpha_D} (1 - \theta)^{\beta_D}$$

A posteriori probability with Beta prior

 α_P and β_P are are the **hyperparameters** of the prior

$$P(D|\theta)P(\theta) = \begin{pmatrix} \alpha_D + \beta_D \\ \alpha_D \end{pmatrix} \theta^{\alpha_D} (1-\theta)^{\beta_D} \cdot \text{Beta}(\theta; \alpha_P, \beta_P) = \begin{pmatrix} \alpha_D + \beta_D \\ \alpha_D \end{pmatrix} \theta^{\alpha_D} (1-\theta)^{\beta_D} \cdot \frac{\theta^{\alpha_P - 1} (1-\theta)^{\beta_P - 1}}{B(\alpha_P, \beta_P)}$$

$$= {\alpha_D + \beta_D \choose \alpha_D} \frac{\theta^{\alpha_D + \alpha_P - 1} (1 - \theta)^{\beta_D + \beta_P - 1}}{B(\alpha_P, \beta_P)} = {\alpha_D + \beta_D \choose \alpha_D} \frac{B(\alpha_D + \alpha_P, \beta_D + \beta_P)}{B(\alpha_P, \beta_P)} Beta(\theta; \alpha_D + \alpha_P, \beta_D + \beta_P)$$

this factor is a positive constant (for θ)

Conjugate prior distributions

Coin tossing (i.e. Binomial) α_D and β_D are the result counts (i.e. heads and tails)

$$P(D|\theta) = {\binom{\alpha_D + \beta_D}{\alpha_D}} \prod_i P(X_i|\theta) = {\binom{\alpha_D + \beta_D}{\alpha_D}} \theta^{\alpha_D} (1-\theta)^{\beta_D}$$

A posteriori probability with Beta prior

$$P(D|\theta)P(\theta) = {\alpha_D + \beta_D \choose \alpha_D} \frac{B(\alpha_D + \alpha_P, \beta_D + \beta_P)}{B(\alpha_P, \beta_P)} Beta(\theta; \alpha_D + \alpha_P, \beta_D + \beta_P)$$

/ "is proportional to"

$$P(D|\theta)P(\theta) \propto \text{Beta}(\theta\alpha_D + \alpha_P, \beta_D + \beta_P)$$

Optimization:

$$\theta_{MAP}^* = \operatorname{argmax}_{\theta} \operatorname{Beta}(\theta; \alpha_D + \alpha_P, \beta_D + \beta_P) = \frac{\alpha_D + \alpha_P - 1}{\alpha_D + \alpha_P + \beta_D + \beta_P - 2}$$

which is the same as MLE but with the addition of $\alpha_P + \beta_P$ pseudo-observations

Being a **conjugate prior** $P(\theta)$ of a distribution $P(D|\theta)$ means that the posterior $P(D|\theta)P(\theta)$ is in the same family of $P(\theta)$

Conjugate prior distributions

Coin tossing (i.e. a specific observation i)

$$P(D_i|\theta) = \theta^{[X_i=1]} (1 - \theta)^{[X_i=0]}$$

Likelihood (of a dataset)

$$P(D|\theta) = \binom{N}{N_{X=1}} \prod_{i} P(D_i|\theta) = \binom{N}{N_{X=1}} \theta^{N_{X=1}} (1-\theta)^{N_{X=0}}$$

A posteriori probability with Beta prior

"is proportional to"
$$P(D|\theta)P(\theta) \propto \operatorname{Beta}(\theta, N_{X=1} + \alpha_P, N_{X=0} + \beta_P)$$

Therefore

$$\theta_{MAP}^* = \operatorname{argmax}_{\theta} \operatorname{Beta}(\theta, N_{X=1} + \alpha_P, N_{X=0} + \beta_P) = \frac{N_{X=1} + \alpha_P - 1}{N + \alpha_P + \beta_P - 2}$$

which is the same as MLE but with the addition of $\alpha_P + \beta_P$ pseudo-observations

Being a **conjugate prior** $P(\theta)$ of a distribution $P(D|\theta)$ in the above sense means that the posterior $P(D|\theta)P(\theta)$ is in the same family of $P(\theta)$

$$P(Y, X_1, \dots, X_n) = P(Y) \prod_{i=1}^n P(X_i \mid X_{i-1})$$
Estimation

Maximum a Posteriori (MAP) Estimation

The adapted computations for:

$$\theta_{MAP}^* := \operatorname{argmax}_{\theta} P(D|\theta) P(\theta)$$

yield:

$$\pi_k^* = \frac{\alpha_k + N_{Y=k} - 1}{\alpha_k + \beta_k + N - 2} \qquad (MAP \, \textit{Estimator of} \, \pi_k)$$

$$\pi_{ijk}^* = \frac{\alpha_{ijk} + N_{X_i=j, \, Y=k} - 1}{\alpha_{ijk} + \beta_{ijk} + N_{Y=k} - 2} \qquad (MAP \, \textit{Estimator of} \, \pi_{ijk})$$

where the

$$\alpha_k, \beta_k, \alpha_{ijk}, \beta_{ijk}$$

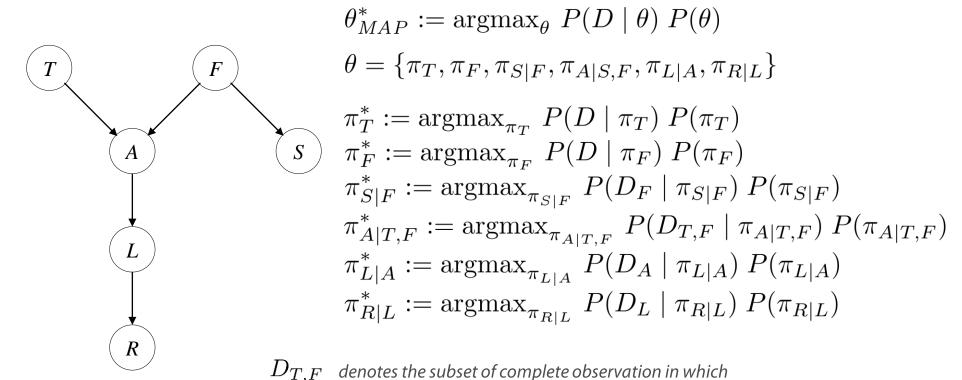
are the *hyperparameters* of the prior distribution representing the *pseudo-observations* made *before* the arrival of new, actual observations *D*

Learning CPTs for a graphical model

As Maximum a Posteriori Estimation

More in general:

The MAP of a (directed) graphical model is the MAP of each node (in each corresponding observation subset)



the random variables T, F have the corresponding value